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Motivation for this work

• This work has its root in an effort to better understand fundamental 
physics in general and classical Hamiltonian/Lagrangian particle 
mechanics in particular
– Why are classical states points in a cotangent bundle? What does the 

symplectic form represent? Why is time evolution a 
symplectomorphism? Must time evolution always be a 
diffeomorphism or a homeomorphism?

• At some point we realized that to give a satisfactory answer to 
those questions, we would have to better understand topological 
spaces on their own merit
– What physical concept is captured by a topology? What do open sets 

and continuous functions correspond to?

• We believe we have found the answer: a topology keeps track of 
what can be distinguished through experimentation
– It seems fitting that topology maps to such a fundamental concept for 

an experimental science



Overview

• Experimental observation
– Observations are statements combined with a way to 

experimentally verify them. We’ll define a Boolean-like 
algebra on them which is similar to topological structure.

• Experimental distinguishability
– Study observations that can identify an object within a set 

of possibilities. This will lead to Hausdorff and second 
countable topological spaces.

• Experimental relationships
– Study relationships between experimentally 

distinguishable objects. This will lead to continuous 
functions and homeomorphisms. We will not have time to 
go through this part, but it is included in the slides.



EXPERIMENTAL OBSERVATIONS
Keeping track of what is experimentally verifiable



Experimental observations

• In science, something is true if and only if it 
can be experimentally verified

• It is not enough to claim something
– E.g. “Bob likes chocolate” “The ball is moving at 

about 1 m/s” “Birds descend from Dinosaurs”

• We must provide a clear procedure such that 
the result can be independently replicated

• Let’s see if we can capture this requirement 
more precisely 



Experimental observations

• Def: an experimental test 𝑒 is a repeatable procedure
(i.e. can be stopped, restarted, executed as many times 
as needed) that, if successful, terminates in finite time 
(i.e. 0 < Δ𝑡 𝑒 < +∞)
– For example:

1. Find a swan
2. Check the color
3. If black terminate successfully otherwise go to 1

• Def: an experimental observation is a tuple
𝑜 =< 𝑠, 𝑒 > where 𝑠 is a statement that can be 
verified by the experimental test 𝑒: 𝑠 is true if and only 
if the experimental test 𝑒 is successful
– For example < “There are black swans”, “Find a swan, …”>



Algebra of experimental observations

• Now we want to understand how 
experimental observations behave under 
logical operations:

– Negation/logical NOT

– Conjunction/logical AND

– Disjunction/logical OR



Negation/Logical NOT

• Note: the negation of an experimental observation is not 
necessarily an experimental observation
– Being able to verify a statement in finite time does not imply the 

ability to verify its negation in finite time
– Non-verification is not verification of the negation. Not finding 

black swans does not verify “there are no black swans”

• This idea has been intuitively present in the scientific 
community
– James Randi’s “You can’t prove a negative”: pushing a few 

reindeer off the Empire State Building doesn’t prove they can’t 
fly

– “Absence of evidence is not evidence of absence”

• This formalizes that intuition more precisely



Negation/Logical NOT

• But negation still gives us something!
• Def: an experimental counter-observation is a tuple 𝑜𝐶 =
< 𝑠, 𝑒 >𝐶 where 𝑠 is a statement that can be refuted by 
the experimental test 𝑒: 𝑠 is false if and only if the 
experimental test 𝑒 is successful

• The negation of an experimental observation is an 
experimental counter-observation
– Being able to verify a statement 𝑠 allows us to refute the 

statement ¬𝑠
– The negation of a negation is the original observation

• In this sense, observations and counter-observations are 
dual to each other, so we can concentrate on the former



Conjunction/Logical AND

• Def: the conjunction of a finite number of 
observations 𝑖=1ٿ

𝑛 𝑜𝑖 = 𝑖=1ٿ
𝑛 < 𝑠𝑖 , 𝑒𝑖 > =

< 𝑠, 𝑒 > is the experimental observation where
– 𝑠 = 𝑖=1ٿ

𝑛 𝑠𝑖, the conjunction of the statements
– 𝑒 = 𝑒∧ 𝑒𝑖 𝑖=1

𝑛 , the experimental test that runs all 
tests and is successful if and only if all tests are 
successful

• The overall test is successful only if all sub-tests 
are successful
– Note: we cannot extend to countable conjunction as 

we would never terminate



Disjunction/Logical OR

• Def: the disjunction of a countable number of 
observations ڀ𝑖=1

∞ 𝑜𝑖 = 𝑖=1ڀ
∞ < 𝑠𝑖 , 𝑒𝑖 > =

< 𝑠, 𝑒 > is the experimental observation where
– 𝑠 = 𝑖=1ڀ

∞ 𝑠𝑖, the disjunction of the statements
– 𝑒 = 𝑒∨ 𝑒𝑖 𝑖=1

∞ , the experimental that successfully 
terminates once one test successfully terminates

• Here we can have countably many observations 
because we can terminate once one test is 
successful

• As unsuccessful tests may not terminate, though, 
we need to be clever in the implementation of 𝑒∨



Disjunction/Logical OR

• The idea is to run one test for one second, then 
two tests for two seconds and so on
1. initialize n to 1

2. for each i=1…n
a) run test 𝑒𝑖 for n seconds

b) if 𝑒𝑖 terminated successfully, terminate successfully

3. increment n and go to step 2

• All tests are eventually run for an arbitrary length 
of time. If one test is successful, it will eventually 
be run and it will terminate 𝑒∨ in finite time



Algebra of experimental observations

• Experimental observations are

– Not closed under negation/logical NOT

– Closed under finite conjunction/logical AND (but 
not under countable)

– Closed under countable disjunction/logical OR



Things we can do with this algebra

• We can define mutually exclusive observations if verifying 
one implies the other will never be verified. We can define 
the empty/zero observation as the one that is never 
verified.

• Given a set of experimental observations (sub-basis), we 
can always close it under finite conjunction and countable 
disjunction

• We can define a basis for such a set
– A set of experimental observations that we can use to verify all 

other experimental observations

• That is: we can take many ideas from set theory and 
topology and apply them to experimental observations!



Experimental domain

• Note: if we have a set of observations and we want (at 
least in the infinite time limit) to be able to find all 
experimental observations that are verified, then we 
must have a countable basis
– If there does not exist a countable basis, there will be 

observations we’ll never be able to test

• Def: an experimental domain is a set of experimental 
observations, closed under finite conjunction and 
countable disjunction, that allows a countable basis
– This represents the enumeration of all possible answers to 

a question that can be settled experimentally



EXPERIMENTAL 
DISTINGUISHABILITY

Using experimental observations to identify elements from a set



Observations and identifications

• Many experimental observations are about 
identifying an element from a set of 
possibilities

– E.g. “Bob’s illness is malaria” “The position of the 
ball is 5.1±0.05 meters” “This fossilized animal 
was a bird”

• Let’s look more carefully at how this works



Experimental identification

• Suppose we have a set 𝑿 of all possible elements (which 
we call possibilities) among which we want to identify an 
object.

• Def: a verifiable set 𝑈 ⊆ 𝑋 is a subset of possibilities for 
which there exists an associated experimental observation 
𝑜 =<“The object is in 𝑈”, 𝑒∈ 𝑈 > where 𝑒∈ 𝑈 is an 
experimental test that succeeds if and only if the object to 
identify is an element of 𝑈. We call such an observation an 
experimental identification.

• Conversely: a refutable set 𝑈 ⊆ 𝑋 is a subset of possibilities 
for which there exists an associated experimental counter-
observation 𝑜𝐶 =<“The object is in 𝑈”, 𝑒∉ 𝑈 >𝐶 where 
𝑒∉ 𝑈 is an experimental test that succeeds if and only if 
the object to identify is not an element of 𝑈.



Experimental identification

• And so:
– the complement of a verifiable set is a refutable set and vice-

versa
– the finite intersection of verifiable sets is a verifiable set
– the countable union of verifiable sets is a verifiable set

• For example, negation can be shown as:
– Suppose 𝑈 ⊆ 𝑋 is a verifiable set
– By definition, there exists an 𝑜 =<“The object is in 𝑈”, 𝑒∈ 𝑈 >
– Take the negation ¬𝑜 =< ¬“The object is in 𝑈”, 𝑒∈ 𝑈 >𝐶: this 

is an experimental counter-observation
– ¬𝑜 =<“The object is in 𝑈𝐶”, 𝑒∉ 𝑈𝐶 >𝐶

– 𝑈𝐶 is a refutable set because it is associated with a counter-
observation of the correct form



Experimental distinguishability

• Def: a set of elements 𝑋 is experimentally 
distinguishable if the set of all possible 
experimental identifications forms an 
experimental domain where given two 
elements we can always find two mutually 
exclusive observations such that each 
element is compatible with only one 
observation
– E.g. {“Cat”, “Sparrow”} -> {“x is a mammal”, “x is a 

bird”}



Hausdorff and second countable 
topology

• The set 𝑻(𝑿) of all verifiable sets associated to a set 𝑿 of 
experimentally distinguishable elements is a Hausdorff and 
second countable topology on 𝑿
– Since an experimental domain has a countable basis, T(𝑋) has a 

countable basis
– Since an experimental domain is closed under finite conjunction and 

countable disjunction, T(𝑋) is closed under finite intersection and 
arbitrary union
• Arbitrary unions can be written as countable disjunctions using the basis

– Since the experimental domain contains at least two mutually 
exclusive experimental observations, T(𝑋) contains the empty set

– Since each possibility is at least compatible with one experimental 
observation, the union of all basis elements is the verifiable set 𝑋

– Since for each two elements we can find two mutually exclusive 
observations, each compatible with one, T(𝑋) is Hausdorff



Cardinality of the elements

• This already has a very general implication: the 
cardinality of possibilities among which we can 
experimentally distinguish is at most that of the 
continuum
– Euclidean space ℝ𝑛, continuous functions from ℝ to ℝ, all 

open sets in ℝ, are all mathematical objects that can 
represent experimentally distinguishable objects

– All functions from ℝ to ℝ, all subsets of ℝ, are not objects 
that can represent experimentally distinguishable objects

• Naturally, not everything with the right cardinality 
corresponds to experimentally distinguishable 
elements: one needs to find an experimentally 
meaningful topology



Dictionary

Math concept Physical meaning

Hausdorff, second-countable 
topological space 

Space of experimentally distinguishable elements, 
whose points are the possibilities.

Open set Verifiable set. We can verify experimentally that an 
object is within that set of possibilities.

Closed set Refutable set. We can verify experimentally that an 
object is not within that set of possibilities.

Basis of a topology A minimum set of observations we need to test in order 
to test all the others.

Discrete topological space Set of possibilities that can be individually verified or 
refuted.

Standard topology on ℝ The value can be measured only with finite precision.

Continuous transformation A function that preserves experimental 
distinguishability.

Homeomorphism A perfect equivalence between experimentally 
distinguishable spaces.



Conclusion

• The application of topology in science is to capture 
experimental distinguishability

• This insight allows us to understand why topological 
spaces and continuous functions are pervasive in physics 
and other domains

• The hope is that we can build upon these ideas to 
understand why other mathematical concepts (e.g. 
differentiability, measures, symplectic forms) are also 
fundamental in science
• A better understanding of the concepts of today may lead to the 

new ideas of tomorrow



Extra material



RELATIONSHIPS AND EXPERIMENTAL 
DISTINGUISHABILITY

Establishing experimental relationships between elements



Relationships between experimentally 
distinguishable elements

• Another important category of experimental 
observations is one that relates two different elements

– E.g. “The person Bob is 1.74 ±0.005 m tall” “𝐸 =
1

2
𝑚𝑣2”

“The dinosaur Tyrannosaurus rex lived between 65 and 70 
million years ago”

– In fact, the real aim of scientific inquiry is finding such 
relationships

• We need to:
– Define and study relationships

• there are two ways and we show they are equivalent

– We need to make sure the relationships are themselves 
experimentally distinguishable (or we can’t verify them)



Relationships between experimentally 
distinguishable elements

• Suppose we have two experimentally 
distinguishable sets 𝑋 and 𝑌 and a map 
between them 𝑓: 𝑋 → 𝑌 that represents an 
experimental relationship (i.e. it can be used 
in an experimental test)

𝑓

𝑋 𝑌



Relationships between experimentally 
distinguishable elements

• If we are able to test if 𝑦 ∈ 𝑉 ⊆ 𝑌, then we 
can test if 𝑥 ∈ 𝑈 = 𝑓−1(𝑉) ⊆ 𝑋

– First map 𝑥 to 𝑦 = 𝑓(𝑥) then check y ∈ 𝑉 ⊆ 𝑌

𝑓

𝑋 𝑌

𝑉𝑈

𝑓−1
𝑒∈(𝑉)



Relationships between experimentally 
distinguishable elements

• If V is a verifiable set, 𝑈 = 𝑓−1(𝑉) is a verifiable set: 
𝑓 is a continuous function!
– Only continuous functions can properly represent 

experimental relationships as they preserve experimental 
distinguishability

𝑓

𝑋 𝑌

𝑉𝑈

𝑓−1

𝑒∈(𝑈)

𝑒∈(𝑉)



Relationships between experimentally 
distinguishable elements

• The previous definition is straightforward, but relies on 
the elements. We want to define the relationship 
based on the observations.
– If “the height of the mercury column is between 24 and 25 

mm” then “the temperature of the mercury column is 
between 24 and 25 degrees Celsius”

• We can define an experimental relationship between 
experimentally distinguishable elements as a function 
𝑔: T 𝑌 → T(𝑋) such that:
– The relationship is compatible with 

conjunction/intersection and disjunction/union
– 𝑔 𝑌 = 𝑋 and 𝑔 ∅ = ∅



Relationships between experimentally 
distinguishable elements

• Under those conditions, given 𝑔: T 𝑌 → T(𝑋), 
one can show that there exists a unique 
continuous function 𝑓: 𝑋 → 𝑌 such that 𝑔 𝑉 =
𝑓−1(𝑉) for all 𝑉 ∈ T 𝑌
– The two definitions are equivalent

• The main idea of the proof is that using Hausdorff
we take intersections of open sets to pin down 
specific points
– Extend 𝑔 to the Borel algebra

– Look at images of singletons



Continuity in physics

• This tells us why continuity is so important in 
physics: it preserves experimental 
distinguishability!

• A dynamical system that preserves 
experimental distinguishability is a continuous 
map

• A reversible dynamical system that preserves 
experimental distinguishability is a 
homeomorphism



Experimental distinguishability of 
experimental relationships

• Now we need to prove that experimental relationships 
are themselves experimentally distinguishable

• Let 𝑋 and 𝑌 be two topological spaces.
Let 𝐶 𝑋, 𝑌 be set of continuous functions from 𝑋 to 𝑌.
Let ℬ 𝑋 ⊆ 𝑇(𝑋) and ℬ 𝑌 ⊆ 𝑇(𝑌) be two bases of 
the respective spaces.

• We define the basis-to-basis topology 
𝑇(𝐶 𝑋, 𝑌 , ℬ 𝑋 , ℬ 𝑌 ) the topology generated by all 
sets of the form 𝑉(𝑈𝑋, 𝑈𝑌) = 𝑓 ∈ 𝐶 𝑋, 𝑌 𝑓 𝑈𝑋 ⊂
𝑈𝑌} where 𝑈𝑋 ∈ ℬ 𝑋 and 𝑈𝑌 ∈ ℬ 𝑌



Basis-to-basis topology preserves 
“Hausdorff and second countable”

• If 𝑋 and 𝑌 are Hausdorff, the basis-to-basis 
topology is Hausdorff

• If 𝑋 and 𝑌 are second countable, the basis-to-
basis topology is second countable

– If 𝑋 and 𝑌 are second countable, the sub-basis 
that generates the basis-to-basis topology is 
countable and generates a countable basis



Putting it all together

• Sets of experimentally distinguishable elements are 
Hausdorff and second countable topological spaces

• Relationships between experimentally distinguishable 
elements are continuous functions and form 
themselves a set of experimentally distinguishable 
elements

• We can recursively create relationships of 
relationships: they too will be experimentally 
distinguishable and form Hausdorff and second 
countable topological spaces.

• The universe of discourse is closed!!!
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