Detecting Changes in the Earth's Magnetic Field

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/308
Detecting Changes in the Earth’s Magnetic Field

A. McQuillen, R. Berney, M. Ahoujja

1. Department of Physics, University of Dayton, Dayton, OH;

Contact information: mcquillen.andrew@gmail.com

What is the goal of this study? The purpose of this project was to study the changes in the Earth’s magnetic field due to solar activity. A magnetometer was built using two neodymium magnets and mirrors suspended from a thin nylon thread. A change in the Earth’s magnetic field causes a slight rotation in the magnets which was then detected by a laser light reflected off the mirror.

The Earth’s magnetic field is impacted by variations in the sun’s sunspot activity and solar flares. We are in a peak of sunspot activity (see above.) The magnetic field of the Earth has an average value of ~50 μ Tesla. Sunspot activity can change that value by ~50 n Tesla. This is 1/1000 of the Earth’s field strength and requires a very sensitive instrument to detect this very small change in magnetic field.

Shown at top left is data collected during the experiment over a two day period. Below it is the data collected by the United States Geological Survey. This data was taken in Corbin, Virginia, as it is the closest geographic location to Dayton. The two data sets correspond very well.

References

References

* United States Geological Survey Geomagnetism Program (geomag.usgs.gov)