4-9-2014

Cost Optimization with Solar and Conventional Energy Production, Energy Storage, and Real Time Pricing

Ata Raziei
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/418

This Book is brought to you for free and open access by the Student Scholarship at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
I. Introduction/Motivation

Research is presented that investigates the potential for solar power generation with battery energy storage for reducing the effective cost of energy if real time pricing is present. A linear optimization approach is developed based upon a two-step process. This analysis considers an expected lifespan of the solar panel. The capital costs for the solar arrays and batteries are considered. The results illuminate the most cost effective means to provide power to customers.

Observation:

II. System Model

- With storage system and direct connection of PV to loads
- Demand vs. Wholesale Market Price vs. Solar Irradiance in Dayton, OH (Source: Duck Energy and Nrel)
- System without storage: No control on the flow of the power
- System with storage: With control on the flow of power (Very expensive)

III. Formulation

Objective Function:

\[\min \ C = \sum_{i=1}^{t} (G_t \times C_t) \]

Equality Constraints:

- \(D_t = G_t + P_i + B_i \)
- \(S_t \times PV_{size} = P_i + PC_t + L_t \)
- \(E_t = \sum_{i=1}^{t} (B_{eff} \times PC_i - B_i) \)

Inequality Constraints:

- On the grid:
 \[G_t \geq 0 \]
- Stored Energy:
 \[\sum_{i=1}^{t} (PC_i - B_i) + E_0 \geq 0 \]
- Battery Bank Size:
 \[E_t \leq E_{max} \]
- Battery Discharge:
 \[B_t \leq E_t \]

IV. Simulation Results:

1) Electricity Bill Minimization:

- For 8 kWh of Battery and 17 square meter of PV and average price of 11 cents per KWh

2) Investment Return:

- Initial electricity bill for a year was $1335, Optimized cost $835

Primary Objective:

Design a Central Energy Manager (CEM) to minimize electricity bill by managing flow of power between solar panels, storage, grid, and loads.

Questions to be answered:

1) At each time what percentage of the solar panels’ output must flow directly to the loads, and what percentage to the batteries?
2) At what time, for how long, and for how much, batteries should be charged and discharged?
3) What is the best size of the solar panels and battery bank? (Capitalized cost)

Secondary Objective:

Considering the capitalized cost of the Solar panels and Battery bank, to find the maximum investment return of the system.

Objective Function:

\[\min \ C = \sum_{i=1}^{t} (G_t \times C_t) \]

Inequality Constraints:

- On the grid:
 \[G_t \geq 0 \]
- Stored Energy:
 \[\sum_{i=1}^{t} (PC_i - B_i) + E_0 \geq 0 \]
- Battery Bank Size:
 \[E_t \leq E_{max} \]
- Battery Discharge:
 \[B_t \leq E_t \]