Parameter Identification in Structured Discrete-Time Uncertainties without Persistency of Excitation

Ouboti Djaneye-Boundjou
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/800
Parameter Identification in Structured Discrete-Time Uncertainties without Persistency of Excitation

Oubot Djaneye-Boundjou, Advisor: Raúl Ordóñez
Department of Electrical and Computer Engineering, University of Dayton

Background
- System Identification:
 - Function approximation
 - Sys-ID usage: machine learning, adaptive control, ...
 - Present study:
 - Discrete-time (DT) structured uncertainties
 - \(f(x(k)) = \theta^T \phi(x(k)) \) (1)
 - Example:
 - \(f_1(x(k)) = \frac{1}{4} + 10 \exp \left(\frac{-(x(k) - 2)^2}{4} \right) - \frac{1}{b(x(k))} \theta^T \phi(x(k)) \) (2)
 - Approximator:
 - \(\hat{f}(\phi(x(k)), \hat{\theta}(k)) = \hat{\theta}(k)^T \hat{\phi}(x(k)) \) (3)
- Parameter error:
 - \(\hat{\theta}(k) = \theta(k) \) is not computable
- Compute estimation error:
 - \(q(k) = \hat{f}(\phi(x(k)), \hat{\theta}(k)) - f(x(k)) \)
- Note:
 - 1 equation with \(r_0 \) unknowns

Parameter Identification (PI) Problem

Drive \(\hat{\theta}(k) \rightarrow 0^+ \) or \(\hat{\theta}(k) \rightarrow \theta \), causing \(q(k) \rightarrow 0 \), as \(k \rightarrow \infty \)

Motivation
- PI, i.e., \(\hat{\theta}(k) \rightarrow 0 \), leads to improved estimation performance
- Literature: traditional approximation methods guarantee PI provided persistency of excitation (very restrictive)
- Present study:
 - Develop an adaptive estimator with PI guarantees
 - Relax persistency of excitation requirement

Normalized Gradient (NG) Descent
- NG: traditional approach to approximation
- NG adaptation law:
 - \(\hat{\theta}(k+1) = \hat{\theta}(k) - \eta \frac{\phi(x(k)) q(k)}{m^2(k)} \) instantaneous update
 - \(\eta > 0 \): step size or learning rate or gain
 - \(m(k) \): normalization signal ensuring \(\psi(x(k)) = \phi(x(k)) \)
- Lyapunov stability analysis: we can show that \(\hat{\theta}(k) \) remains bounded for all \(k \) if \(0 < \eta < \pi_{NG} \)
- PI, i.e., \(\hat{\theta}(k) \rightarrow 0 \), only if \(\phi(x(k)) \) is persistently exciting

Concurrent Learning (CL) Preliminaries
- CL: first introduced in continuous-time framework
- Use of memory:
 - Record past data: for \(k_0 < \tau_j < k \), with \(j = 1, 2, \ldots, c_z \)
 - History stack of \(\psi(x(\tau_j)) \) vectors
- CL condition: \(\Omega \) contains \(r_0 \) linearly independent \(\psi(x(\tau_j)) \)
 - Less restrictive than persistency of excitation

Gradient-Based CL in DT
- Gradient-Based CL adaptation law:
 - Given an initial \(\hat{\theta}(k_0) \),
 - \(\hat{\theta}(k+1) = \hat{\theta}(k) - \eta \frac{\phi(x(k)) q(k)}{m^2(k)} \) (4)
- Estimation error based on recorded data:
 - \(q(k) = \hat{f}(\phi(x(\tau_j)), \hat{\theta}(k)) - f(x(\tau_j)) - \hat{\theta}^T(k) \phi(x(\tau_j)) \)
- Lyapunov stability analysis: granted CL condition is met, \(\Omega = ZZ^T \)
 - Computable in simulation
 - Positive definite and we prove that \(\hat{\theta}(k) \rightarrow 0 \) exponentially (PI) if \(0 < \eta < \pi_{CL} \)

Numerical Simulations
- Here, \(f = f_1 \) is approximated
- \(x \) is varied from \(x_L = -2 \pi \) to \(x_H = 3 \pi \) uniformly
- How good is \(\hat{f} \) if \(\theta(k) \) is frozen at each \(i \) to reconstruct \(f \)? Consider metric
 - \(e(k) = \int_{\tau_i}^{\tau_{i+1}} \| \hat{f}(\phi(x), \hat{\theta}(k)) - f(x) \| dx \)

Future Work
- How will CL fare with unstructured uncertainties?
- Apply CL adaptation law within a control loop

Use of memory
- History stack of \(\psi(x(\tau_j)) \) vectors
- \(Z \subseteq \mathbb{R}^{r_0} \): vector of \(r_0 \) values
- \(\psi(x(\tau_j)) \) values

Uncertainty
- Figure 1: On-line approximation
- Figure 2: Metric \(e(k) \)

Department of Electrical and Computer Engineering, University of Dayton