Document Type

Article

Publication Date

2001

Publication Source

Journal of Applied Physics

Abstract

The present study addresses the mechanism of metal-induced growth of device-quality silicon thin films. Si deposition was performed by magnetron sputtering on a 25-nm-thick Ni prelayer at 525–625 °C and yielded a continuous, highly crystalline film with a columnar structure. A Ni disilicide intermediate layer formed as a result of the Ni reaction with Si deposit provides a sufficient site for the Si epitaxial growth because lattice mismatch is small between the two materials. The reaction between Ni and Si was observed to progress in several stages. The NixSiy phase evolution in a Ni:Si layer was studied by x-ray photoelectron spectroscopy, Auger electron spectroscopy, Rutherford backscattering spectrometry, transmission electron microscopy, and x-ray diffraction and found to be controlled by the Ni-to-Si concentration ratio at the growing front. After Ni is completely consumed in the silicide, continued Si deposition leads to the nucleation and growth of Si crystals on the surface of the NiSi2 grains. The issues related to the nature of NixSiy phase transformations and Si heteroepitaxy are discussed

Inclusive pages

4648-4656

ISBN/ISSN

0021-8979

Document Version

Published Version

Comments

This document is provided for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.

Publisher

American Institute of Physics

Volume

89

Issue

8

Peer Reviewed

yes