Document Type

Conference Paper

Publication Date


Publication Source

Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference


Thin metal or reinforced concrete shells with granular infill structures are considered in this article. These structures are massive and they are used as support for the construction of berthing quays, piers, artificial islands, shore protection, and other structures of coastal infrastructure. It is more convenient to use the thin shell structures during the development of the Arctic shelf, because it is possible to install them from the ice side. In addition, it is possible to enhance the technology and install thin shells with infill on deeper solid foundation layers. A mathematical model for the stresses on a compressible foundation soil in front of a thin cylindrical shell with infill due to the eccentric loading is developed. A modeling and experimental determination of the interface strength of the contact surface between the infill and the inner surface of the shell is proposed. The details of the construction stages and testing of the physical model used for the experiments are discussed. The effects of the interface friction on the shell behavior and on the foundation stresses in front of the wall are investigated. The influence of parameters affecting the interaction between the soil infill and the inner surface of the shell material is determined. It is based on a comparison of experimental results with calculations performed using the proposed mathematical model. The obtained parameters and proposed methods can be used in numerical simulations using the finite element method to analyze and design the thin shell structures with soil infill. The findings of the study and proposed methods can also be applied to the thin shell structures used in other facilities such as hydraulic, industrial, civil, and transportation.

Inclusive pages




Document Version

Published Version


This document is provided for download by permission of the publisher. Permission documentation is on file.


International Society of Offshore and Polar Engineers (ISOPE)

Place of Publication

Kona, HI