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On Static and Dynamic Partitioning Behavior of L arge-Scale Networ ks

Derek Leonard, Zhongmei Yao, Xiaoming Wang, and Dmitri Liogur*
Department of Computer Science
Texas A&M University, College Station, TX 77843
{dleonard, mayyao, xmwang, dmit@cs.tamu.edu

Abstract Since users in P2P networks rarely fail simultaneously
[5], a different approach [23], [26], [32] is to examine
In this paper, we analyze the problem of network dis- disconnection indynamicsystems, where users continu-
connection in the context of large-scale P2P networks and 0usly join and leave the network according to some ar-
understand how both static and dynamic patterns of node'ival/departure processes. The only analytical resulasi-av
failure affect the resilience of such graphs. We start by ap- able on the dynamic resilience of generic P2P networks cor-
plying classical results from random graph theory to show relate the rate of churn with user notification frequency| [26
that a large variety of deterministic and random P2P graphs and examine how stabilization delays affect the consigtenc
almost surely (i.e., with probability — o(1)) remain con-  0f Chord's finger table [23].
nected under random failure if and only if they have no iso-  In this paper, we bridge the gap between static and dy-
lated nodes. This simple, yet powerful, result subseguentl namic disconnection analysis and show that the problem of
allows us to derive in closed-form the probability that a graph partitioning under both types of failure can be re-
P2P network develops isolated nodes, and therefore par-duced to computation of the probability that a P2P network
titions, under both types of node failure. We finish the paper develops at least one isolated node during the failure. Un-
by demonstrating that our models match simulations very der the umbrella of this unifying model, we then derive
well and that dynamic P2P systems are extremely resilienta closed-form model for static resilience and examine the
under node churn as long as the neighbor replacement de-same issue in dynamic networks where users depart the sys-
lay is much smaller than the average user lifetime. tem after spending random amounts of time online. Our re-
sults show that under-percent static failure, almost every
sufficiently largek-regular P2P grap&’ of n nodes remains
connected with probability:

1. Introduction .
P(G is connectefl= ¢ "(1=P)P" (1)
During the recent explosion of P2P research, network

resilience has become an important issue [17], [19], [29],  using Chord's degreé = log, n and the commonly
[38]. The primary interest in .'[hIS line of study is to under- ysed failure probability = 1/2 [20], [38], it immediately
stand how dynamic user arrivals and abrupt departures affollows that Chord remains connected afte#%-percent
fect the connectivity (and sometimes other metrics) of the t5jjure with probabilitye =95 ~ 0.6. Also notice that for
system. The original thrust [20], [19], [38] in this direc- |, < 1/2, this probability converges to (i.e., almost ev-

tion focused orstaticnode failure, where a fully-populated  ery graph is connected) as— oo and forp > 1/2, it con-
network experienced simultaneous node failures with inde-yerges ta) (j.e., almost every graph is disconnected).

pendent probabilityp. While analytical results on the ex-
act probability of disconnection under static failure ane-c
rently unavailable in the literature, prior analysis sugjge
that P2P networks are highly resilient to node faults and can
survive the failure of up t60% of the graph without signif-
icant degradation in performance [38].

Outside of static resilience, our second result is the
derivation of disconnection probabilities for dynamic sys
tems, which frequently exhibit high levels of churn [5], [26
and are more mathematically elusive. To capture user be-
havior in such systems, we propose a simple node-failure
model in which users stay in the system for random peri-
ods of time before deterministically failing at the end of
*  Supported by NSF grants CCR-0306246, ANI-0312461, and CNS- their lifetime. To maintain a resilient system, we assume

0434940. that each node monitors its neighbors and randomly re-




place$ them upon detecting their failure. Replacement de- well. For example, Burtin [9] and later Bollobas [7] prove
lays S; and lifetimesL; are drawn from some (possibly that under independent uniform failure, hypercubes are al-
heavy-tailed) distributions and generally determine #e r most surely connected if and only if they have no isolated
silience of the system. Our main result demonstrates thatnodes. Intuitively, this result means that the conditional
dynamick-regular P2P systems can surviie user joins probability that a hypercube partitions along a set bound-
without partitioning with probability at least: ary? 05, for some non-trivial sef, while having no iso-

N lated nodes is(1) asn — oco. We leverage these observa-

pk tions later in the paper.

(14 p)k + pk — 1) ’ Connectivity of generic deterministic graphs
) ) ) G = (V, E) under independent node failure has also re-
wherep = E[L;]/E[S;] is the ratio of the mean user life-  cgjved significant attention in the literature [6], [16]1]2

time to the mean neighbor replacement delay. To understandy, this line of work,®(G) is calledresidual node connec-
this result, consider the following example. Given a system tivity and can be written as:

with 5 million users that join the network once a day- 12
neighbors per node, mean user lifetimeé)df hours, and -

P(G survivesN joins) > (1 -

n

minute search delay (i.ep, = 30), the probability that the ®(G) = Z Si(G)p" (A = p)’,
network survives foit 0, 000 years without disconnecting is =t
99.2%. wherep is the failure probability of each node ai(G)

This paper is organized as follows. Section 2 examinesis the number of connected induced subgraphé ofith
previous work. Section 3 discusses how isolated nodes af-exactly ; nodes [6]. While this closed-form expansion is
fect graph connectivity under both static and dynamic node beneficial for simple graphs (such as trees), computation of
failure. Section 4 focuses on static resilience and Se&ion &(G) for a generic graph requires the knowledge of an NP-
discusses the dynamic case. Section 6 describes some impleomplete [39] metricS; (G), whose expression is unknown
cations of our results to real-world systems. Section 7 con-even for the basic hypercube.

cludes the paper. Najjar and Gaudiot [30], however, noticed that several
non-hypercube deterministic networks frequently develop

2. Background disconnections around individual nodes rather than along
boundaries of larger set$ |\S| > 2. This lead to the fol-

2.1. Random Graph Theory lowing model for the probability that an-node,k-regular

graph partitions under-percent node failure [30]:
One of the first approaches to network reliability stems n
. e n\ .
frpm randqm graph theory. The issue of partltlomng and ?(G) = ZQZ< _>p2(1 —p)ni ?)
disconnection of random graph(n, p) has a long his- (

tory [14]. It is well-known that, as with any other monotone =

property, connectivity of3(n, p) experiences a sharp tran- Where

sition from “almost never” to “almost always” at the thresh- i k(n—k =1 = 1)l(n — )

old p = logn/n; however, a more powerful result states Q; = H {1 — " - | ] . @
that G(n, p) and all of its derivatives [8], [33] are almost j=1 (n =D k)

surely connected and only if they have no isolated nodes
Defining®(G) to be the probability that a random graph re-
mains connected under node or edge failure and assumin
X is the number of isolated nodes in the graph, the follow-
ing holds with probabilityl — o(1) as the size of the graph

n — oo

Other approaches that study disconnection of hyper-
cubes include [12], [15], [18], [24]; however, none of them
%rovide a practically usable model that is both accurate and
simple to evaluate.

®(G) = P(X = 0). @ 2.3. P2P Reslience
L Given the wide variety of recently developed P2P sys-
2.2. Deterministic Graphs tems, several techniques have been employed to evaluate the
. . . o resilience of such graphs. One commonly-used method is
Aiter some technical manipulation, a result similarto (2) 44 mqnitor several performance metrics (e.g., percenthge o
can be shown to hold for certain deterministic networks as successful queries, graph connectivity, consistencyiab)i

under node failure and show how they change depending

1 Replacementin DHTSs is simply the predecessor taking ovdaileel
zone, while that in unstructured systems may rely on a varieaco
tive neighbor selection strategies not essential to ouyaisa 2 Allnodesu € V\S such thafu,v) € E,v € S.




on system parameters. A seminal paper in this genre writ-wherek = log, n is the degree of the graph. Condition
ten by Gummadet al. [19] explores the impact of differ- (5) states that larger sefs are always better connected
ent routing geometries on the static resilience of the graph than smaller sets (up to half the graph in size) and ensures
which is defined as the ability of the graph to route mes- that the probability that any large subgraph disconneets af
sagesbeforethe designed recovery algorithm repairs the ter node failure is negligible compared to that of individua
graph. Other papers that examine static resilience in a simi node isolation.
lar fashion are [27], [34], and [36]. A more recent study by ~ While the necessary conditions ¢hfor (2) to hold are
Chunet al. [13] uses simulations to analyze the impact of generally unknown, one can formulate a simple sufficient
different types of neighbor-selection algorithms on stedt condition as stated below.
silience of P2P graphs under both random node failures and o )
targeted attacks. The paper demonstrates that there is a dig’roPosition 1. If a graph & has node expansion proper-
tinct tradeoff between resilience and system performance. €S no worse than those of hypercubes or random graphs
The second approach is more analytical in nature. Chord(@s defined in [8]) of the same size, it will remain almost
[38] and Koorde [20] show that under independent uniform surely connected under random node failure if it has no iso-
node failure k-regular graphs require degrée> log, ,, n lated nodes.
in order to upper-bound the probability of individual node The statement of Proposition 1 is purposely generic so
isolation by1/n. Massoulieet al.[17], [29] develop anew s to apply to as many types of graphs as possible. This re-
P2P system based on random graphs and derive the probg,it clearly holds for all DHTs that can be reduced to the
ability that it remains connected undgfpercent failure. hypercube, which includes Chord [38], logarithmic CAN
Liben-Nowell gt al. in [26] §tgdy the dynamic nature of \yith 7 — O(log n) [34], randomized Chord [28], Tapestry
P2P systems in regards to joins and unexpected departureg 1] and Pastry [36]. It also holds for graphs (e.g., de Brui
and their impact on routing efficiency. The authors derive [27]) that have better expansion than hypercubes as long as
a_\_lower bou_nd on the number of users a _nod_e must be_ no-, _— Q(logn) and all types of random Gnutella-style net-
tified about in order for the_ system to avoid disconnection. \yqrks where each user relies on random selection of neigh-
In a more recent paper, Krishnamurteyal. [23] focus on 415 during join. Even though Proposition 1 refers to graphs
predicting the state of each finger pointer in a Chord systemqt aqymptotically large size, extensive simulations below

under dynamic failure conditions. They derive a probabilis gemonstrate the application and exceptional accuracy)of (2
tic characterization of each neighbor and successor ppinte graphs offinite size.

which allows them to obtain models for the percentage of

failed queries in the system under user churn. ] o
3.2. Static Resilience

3. Unifying Model of Disconnection Recall that static resilience alludes to the connectivity o

In this section, we discuss how connectivity of P2P sys- a graphG after_ each nodg_ IS remoyed fro_m the graph in-
dependently with probabilitp. In this section we exam-

tems under static and dynamic node-failure patterns can be . .
. . ine the accuracy of (2) in a wide array of networks that
reduced to the problem of node isolation.

satisfy Proposition 1. In order to enhance the understand-
o ) ing of how graphs disconnect, we introduce another metric
3.1. Generic Disconnection Model that captures the percentage of disconnections that contai

] ) ) at least one isolated node, which we denote {@y):
We first turn to the question of what properties a gréph

must possess in order to satisfy (2) under random edge and L P(X >0)
node failure. Interestingly, the property that makes hyper ~ 4(G) = P(X > 0[|G is disconnectep= 1T-9(G)’
cubes (and classical random graphs) very unlikely to parti-
tion into non-trivial subgraphwithout developing isolated  where X is the number of isolated nodes as before. Inter-
nodes is that the number of edges leaviiaghset.S is an preting this metric in the context of Proposition 1, it falle
increasingfunction of set sizd.S|. Burtin [9] showed that  thatg(G) in almost all well-connected graphs must tend to
for each setS in a hypercube, the size of its edge bound- 1 asn — co.
ary® is at least: We computedd(G), P(X = 0), andgq(G) for a num-
ber of degree-regular and irregular P2P networks us-
{(u,v) € E:ue SveV\S} = |[S|(k—log;[S]), (3)  ing 100,000 node-failure patterns for each value af To
deal with directed graphs, we assumed that each node’s
3 For node failure, a similar condition must hold for thedeboundary in-degree and out-degree neighbors contributed to its re-
ofeachsef,ie.{v: (u,v) € E,u € 5,v € V\S}. silience and that isolation happened when a node lost




P Chordn = 16384, k = 27 CANn = 16384, k = 14 de Bruijnn = 20736, k = 24 Pastryn = 15625, k = 24
PG PX =0 q¢G) G PX=0 qG ¢G PX=0) 4G G PX=0 q¢G)
4 | .99999 .99999 1 97321 97321 1 .99999 .99999 1 1 1 N/A
45 | 99999 .99999 1 .88093 .88098 .9996 | .99995 .99995 1 1 1 N/A
5| 99996 .99996 1 .60704 .60735 .9992 | .99930 .99930 1 .99950 .99950 1
.55 | .99918 .99918 1 .18308 18372 .9992 | .99444 .99444 1 .99535 .99535 1
6 | 99354 .99354 1 .00645 .00661 .9998 | .96181 .96194 .9966 | .97105 97105 1
.65 | .95001 .95004 .9994 0 0 .9999 | .79535 79556 .9989 | .83755 .83760 .9997
7| 72619 72650 .9988 0 0 1 .31999 .32119 .9982 | .41305 41395 .9985
75 | 17877 .18047 .9979 0 0 1 .00792 .00816 .9998 | .02045 .02140 .9990
8 | .00040 .00043 .9999 0 0 1 0 0 1 0 0 1
Table 1. Simulations with degree-regular DHTSs.
P Symphonyko.: = 14 Gnutellakoy: = 14 Randomized Choré#,,: = 14  Random-Zone Chortly,,: = 14
PG PX=0 qG) 96 PX=0) 4qG 2G PX=0 4G G PX=0 qG)
4 | .99999 .99999 1 .99316 .99316 1 .99999 .99999 1 .9444 .9455 .9802
45 | .99998 .99998 1 .96609 .96609 1 .99999 .99999 1 .9057 .9089 .9661
5| 99768 .99768 1 .86257 .86260 .9998 | .99971 .99971 1 8186 .8243 .9686
55 | 98750 .98750 1 .58042 58064 .9995 | .99747 .99747 1 .6248 .6367 .9683
6 | .93914 .93917 .9995 | .17081 17148 .9992 | .98443 .98443 1 .3193 .3370 .9739
.65 | .75520 75527 .9997 | .00547 .00560 .9998 | .91624 .91625 .9999 | .0585 .0673 .9907
7| 31153 .31205 .9992 0 0 1 63749 63772 .9994 | .0006 .0009 .9997
75 | .01269 .01296 .9997 0 0 1 .12993 .13076 .9990 0 0 1
8 0 0 1 0 0 1 .00028 .00029 .9999 0 0 1
Table 2. Simulations with degree-irregular graphs for n = 16384.

all of its in- and out-degree neighbors. Similarly, a di-
rected P2P network was considered partitioned (discon-gree to disconnect the graph.
nected) when itaindirectedversion was, which is a mea-
sure of weak connectivity of directed graphs.

For each directed P2P system, denotekBy; its out-

degree. Then, after some manipulation, it is not hard to ob-

more possibility for nodes with smaller-than-average de-

3.3. Dynamic Resilience

While the use op-percent uniform node failure provides

tain that Chord’s total node degreekis= 2k, — 1 =
2log, n — 1 and de Bruijn’s degree is ~ 2k,,:. Table

an accurate approximation of actual network behavior in
some cases, it has been noted that it has questionable ap-

1 shows the above three metrics for degree-regular DHTsplicability to real P2P networks [5], [26], where users join

Chord [38] withk,,; = 14 andk = 27, CAN [34] with
k = 14, de Bruin [20] withk,,; = 12 andk = 24, and
undirected Pastry [36] with = 24, each populated with the
maximum number of users. As shown in the taldié(7) is
very close toP(X = 0) for all graphs and all values gf
Further notice thag(G) ranges betwee§966 and1, which
confirms that almost every disconnection in this family of
graphs occurs with at least one isolated node.

For degree-irregular graphs, simulations in Table
2 demonstrate that Symphony [28], Gnutella (a ran-
dom graph with a fixed out-degrek,,;), Randomized
Chord [28], and “Random-zone” Chord (i.e., Chord with
a random partitioning of the circle) also follow the clas-
sical result well. Besides the fact thdi(G) is very
close to P(X = 0), notice in Table 2 that the per-
formance of Chord with random zone sizes is infe-

and leave the system asynchronously based on their individ-
ual browsing habits. One approach to modeling such sys-
tems is to assign each joining user a random lifetime
which determines the duration that nodstays in the sys-
tem before abruptly (i.e., without graceful notificationitsf
neighbors) departing from the network and represents the
amount of time a user spends in the network browsing for
content and/or providing services to other peers.

Most structured P2P systems [28], [38], [34] use
DHT-specific neighbor-replacement algorithms to re-
pair the zones of failed nodes and maintain consistency
of routing. Certain unstructured systems [11] also explic-
itly perform replacement of failed neighbors to achieve the
desired level of routing and search performance. In addi-
tion to maintaining consistency of routing [38] and avoid-
ing congestion in the graph [11], neighbor replacement

rior to load-balanced (i.e., complete) Chord since there isserves the purpose of keeping the system resilient to dis-



minutes),n = 4096 users, andV = 10%. The second sys-

Search CANN = 10° Chord,N = 50,000 . . .

delay Simulations Model (7)  Simulations  Model (6) t'em. is a random—zondegree—lrregu!arChord Wlth Pareto

6 min 9732 9798 6295 6251 lifetimes, o« = 3, 6 = 1 (mean lifetime als®@0 minutes),

7.5 min 8118 8124 3984 3184 n = 128 users,k ~ 13 (out-degreer), and N = 50, 000.

8.5 min .5669 .5659 .2189 .2206 Simulation results are shown in Table 3, where both mod-
9 min .4065 4028 .1460 .1483 els (6)-(7) matchP(Z > N) well. Observe in the table
9.5 min 2613 -2645 1211 1274 that zone-balanced CAN is significantly more resilient that
10.5 min 0482 0471 0493 0493 random-zone Chord since the latter frequently develops iso
Table 3. Lifetime simulations of the probabil- lation around nodes with smaller-than-average defjiee.
ity P(Z > N) that the network survives at fact,_the re_silience of (_ZAN ?s quite impressive as it can
least N user joins (fixed search delays). survive 1 million user joins with probabilityd.97 using6-

minute replacement delays.
Next, notice that while the node-failure scenario of this

connection. We next examine the question of how quickly S€ction is different from that in the static case, the previ-

failed neighbors should be replaced and what levels of re-0US conclusions about graph disconnection through isblate

silience one should expect from churn-based P2P net-nodes still hold. Table 3 already confirms this fact; howgver

works. additional analysis of the disconnection pattern obseived
Throughout the paper, we assume that each node per_simulations demonstrates that in cases when disconnecti(_)n

forms a “search” to find new neighbors as soon as it detectsd0€s occur, the largest connected component of dynamic

the failure. Atthis stage, we are not concerned with how this SyStems almost always contains exatly- 1 nodes. This

is accomplished and combine both failure detection and re-MPplies a much stronger resufr reasonably small search

pair into a generic random variab that measures the to- delays, network partitioning in I|fe_t|me-based systems al

tal delay required to perform these operations. Given this M0St surely effects only one node in the system

new paradigm of node-failure, we now define the probabil-

ity ¢ that a given uset becomes isolateduring its life- 4. Static Resilience

time because its neighbors are failing at a faster rate than

i is able to obtain their replacements from among the re-  This section develops a simple closed-form model for

maining nodes. We derivein the following sections; how- ~ P(X = 0), i.e., the probability that the graph contains at

ever, we now show how the knowledge of thigal met- least one isolated node, under static node failure and com-
ric can be used to studylobal resilience of lifetime-based ~ Pares this result to simulations &{G). In the next section,
P2P networks. we address the issue of dynamic node failure and derive a

Define Z to be the random time (in terms of user joins) mModel fore.
when graphG disconnects for the first time. Then assum-
ing thatG satisfies Proposition 1 and each joining nade 4.1. |solated Nodes
is assigned a Bernoulli random variabYe that determines
whether the user is isolated from the network during its life ~ Assume that each nodéask; neighbors in some graph
time, the probability that the graph stays connected foremor G and again defineX; to be a Bernoulli indicator variable

than N user joins is almost surely: of whether node is isolated or not after each node is re-
N N moved from the system with independent probabjlity
P(Z>N)=P <ﬂ[Xi = O]) =[[ - EX). 6 X 1 isolated and alive
=t =t " 10 otherwise '
For k-regular graphs, each user has the same probability
of isolation (i.e.,F[X;] = P(X; = 1) = ¢) and the above Denote byp; = P(X; = 1) = (1—p)p*: the probability
reduces to: thati is isolated and alive after the failure. Next, notice that
P(Z>N)=(1-¢)V. () {X;} may be identically or non-identically distributed, but

We next verify this evolution model and applicability of tE_ey dare alénost qerta|nlt§:]epenQethowever, as _’boo'
(7) using simulations, where both[X;] and ¢ are com- this dependency in graphs satisfying Proposition 1 becomes

puted empirically. The simulations use two types of DHTs Nedligible and{.X;} asymptotically behaves if they were
and two distributions of lifetimes: exponential with CDF !ndependent [4], [8]. This is a consequence of the fact that
1 — e=>* and shifted Pareto with CDF — (1 + z/3)~. in the P2P graphs under study, any two nodasd; have a

The first system under study isla-regular fully-populated
CAN with exponential lifetimes) = 2 (mean lifetime30 4 More analysis of zone size distributions in DHTs can be tbiar{40].




P Chordn = 16384, k =27  de Bruijnn = 20736, k = 24 P Symphony Gnutella Randomized Chord
®(G) Model Najiar ®(G) Model Najjar ®(G) Model &(G) Model @(G) Model
4 .9999 1 19986 | .9999  .9999 .9955 4 29999 19999 | .9932  .9934 | .9999 .9999
45 | 19999 1 19984 | .9999  .9999 .9948 45 | 19998 9996 | .9661  .9666 | .9999 .9999
.5 29999 9999 19982 | .9993  .9994 .9940 .5 9977 9977 | .8626  .8646 | .9997 .9997
55 | 19992 19993 9976 | .9944 9945 .9892 .55 | 9875 9875 | .5804  .5829 | .9975 .9976
.6 .9935 19933 .9916 9618 9615 .9550 .6 .9391 9394 1708 .1700 .9844 .9845
.65 | .9500  .9503 9463 | 7954  .7907 7750 .65 | .7552  .7535 | .0055  .0053 | .9162 9151
.7 7262 .7239 7055 | .3199  .3037 2737 .7 3115 .3107 0 10~7 | .6375 6372
75 | 1788 1766 .1501 .0079  .0055 .0033 75 | .0127 0122 0 10715 | .1299 .1282
.8 | .0004 .0004  .0002 0 10—° 10-10 8 0 10~7 0 10—34 | .0003 .0002

Table 4. Simulation results and model (9) for
two regular graphs.

fixednumber of common neighbors, which becomes negli-
gible compared to the total degree= Q(logn) asn — oo.

Next, letX = zg;l X, be the total number of isolated
nodes inG. Applying Markov’s inequalityP(X > 1) <
E[X], we directly obtain the next lower bound on the con-
nectivity of the system.

Proposition 2. For graphs satisfying Proposition 1, the fol-
lowing lower bound holds almost surely:

G)=1-) pi. (8)
=1

While this bound is very tight for smajfi and is better
than those shown in [12] for all values pfit produces neg-
ative values for sufficiently high failure rates. To over@m
this limitation, an alternative approach is to notice tiais
in fact a sum of a large number of Bernoulli random vari-
ables with certain well-know asymptotic properties. Due to
the diminishing dependency betwegH,} asn — oo, we
can applying the Chen-Stein method [4]Xoand immedi-
ately obtain a much tighter result dnG).

Proposition 3. For graphs satisfying Proposition 1 and
n — oo, the number of isolated vertices tends to a Pois-
son distribution with mean = ", p; and the probability
®(@) of having a connected graph convergeseta' with
probability 1.

In the next two sections, we use this generic result to ob-
tain static disconnection models for both degree-reguidr a
irregular graphs.

4.2. Degree-Regular Graphs

For degree-regular networks, the previous result simpli-
fies to a trivial closed-form expression:

B(G) = e -P", )

Table 5. Simulation results and model (10) for
three irregular graphs.

To verify (9), we compareb(G) calculated in simula-
tions over100, 000 node failure patters to that of the model
in Table 4 for Chord [38] withk = 27 (n = 16384) and
de Bruijn graphs [20] withk = 24 (n = 20736). As the ta-
ble shows, simulations follow the model quite well for each
graph over all values qf. For comparison purposes, the ta-
ble also plots Najjar's model (3), which is surprisinglydes
accurate than (9) and significantly more complex to com-
pute.

4.3. Degree-Irregular Graphs

While many ideal DHTs are degree-regular, their in-
stances under random node join and departure often exhibit
degree irregularity that depends on random partitioning of
the DHT space (e.g., zone-size distribution in Chord). Ad-
ditional degree-irregular graphs include DHTSs in which the
in-degree is random (e.g., Symphony, Randomized Chord
[28]) and unstructured P2P systems such as Gnutella. For
such graphs, we obtain the probability of disconnection un-
der static failure:

B(G) = e 1P, P (=P ERM] (10)
where)", p*i is approximated by, E[p*] treatingk; as a
random variable.

To compute this model, we first use simulations to ob-
tain E[p*:] and then utilize this value in (10). Simulations
of &(G) for Gnutella, Randomized Chord [28], and Sym-
phony [28], all with degreé,; = 14 and16384 nodes, are
shown in Table 5, which demonstrates that the model fol-
lows simulation results very accurately for all valuegof

To our knowledge there are no results on this topic for
degree-irregular graphs with which to compare our model.
As Najjar’s result (3) is based on a complicated combinato-
rial argument that only applies toregular graphs, it can-
not be easily extended to degree-irregular networks.



4.4, Summary

The results of this section have confirmed that large-

works that have evolved enough to allow asymptotic results
from renewal process theory to hold (this usually applies
in practice since real P2P systems continuously evolve and

scale P2P networks generally disconnect through isolatedseldom or never restart). We also require certain stationar
nodes, both in degree-regular and irregular cases. Metricity of lifetime L;, which means that all users joining the sys-

¢(G) in all studied simulations has remained betwe&68
and1, where deviation from was more apparent in smaller

tem have the same lifetime distributidf(z). While it may
be argued that users joining late at night browse the net-

graphs and cases when the degree of certain nodes wawork longer (or shorter) than those joining in the morning,

allowed to become much smaller than average (e.g., in

Random-Zone Chord). For larger graphs (hundreds of thou-

sands or millions of nodes), the agreement betw®&H)
andP(X = 0) will become even stronger.

5. Dynamic Resilience

Using lifetime-based concepts developed in Section 3,
we next derive the probability that all & neighbors of a
given nodev are simultaneously in the failed state before
the lifetime of nodev expires. We start with formalizing
churn-based P2P systems and explaining our assumptions

5.1. Lifetime M odd

our results below can be easily extended to non-stationary
environments and used to derive upper/lower bounds on the
performance of such systems. Finally, we allow the num-
ber of nodes: in the system to vary with time according
to any arrival/departure process as longragmains suffi-
ciently large.

We also impose some conditions on neighbor selection,
where we assume that selection of a nédeindependent
of i's lifetime L; and its current agel;. The first assump-
tion holds in practice since each node does not generally
know how long the user plans to browse the network. The

second assumption also holds in most current P2P systems

[20], [34], [36], [38], [11] since neighbor selection is per
formed based on a uniform hashing function in the case
of DHTs or other methods (e.g. random walks) in the case

Previous research suggests that the distribution of use! unstructured P2P graphs. An important consequence of

lifetimes in real systems is often heavy-tailed (i.e., Rare
[10], [37], where most users spend very little time brows-
ing the network, while a small group of other peers remain
logged in for weeks at a time providing services to other
peers. Thus, to allow arbitrarily small lifetimes, we use a
shifted Pareto distributiof’(z) = 1 — (1 + 2/8) %,z >
0,a > 1 to represent heavy-tailed user lifetimes, where
scale parametef > 0 can change the mean of the dis-
tribution without affecting its rang¢0, oc]. Note that the
mean of this distributior®’[L;] = §/(« — 1) is finite only
if @ > 1, which we assume holds throughout the paper.

In addition to node selectingk original neighbors when
it joins the graph, most current P2P systems repair bro-

ken routes and increase resilience by replacing neighbors
that have failed by nodes that are still present in the graph.

Failure detection can be easily performed through trarispor
or application-layer keep-alive mechanisms, which may in-

clude periodic probing, retransmission of lost messages,

these assumptions is that we can model the instance when
selects a neighbor to haiformly randonwithin the neigh-
bor’s lifetime (i.e., its presence online).

5.3. Modeling Neighbors

Next, we formalize the notion of residual lifetimes and
understand how to model neighbor evolution. DefRyeto
be the remaining lifetime of nodewhen it was selected by
a joining usemw to be its neighbor. As before, 1&t(x) be the
CDF of lifetime L,. Assuming that is large and the sys-
tem has reached stationarity, the CDF of residual lifetimes
is given by [35]:

1 x
Fr(x) =P(R; <z)= / 1—F(2))dz. (11)
n(@) = PR < @) = g [ (1= F(2)

For exponential lifetimes, which we study in this sec-
tion for comparison purposes, the residuals are triviatly e

and timeout-based decisions to search for a replacementponential using the memoryless propertytfr): Fr(z) =

Once a failure is detected, a repair algorithm is initiated

1—e~**; however, the residuals of Pareto distributions with

to replace the failed neighbor. Since the delays required toshapex aremoreheavy-tailed and exhibit shape parameter
carry out these actions are usually random, we use variablex — 1:

S; to denote the replacement (or search) time of faglure
in the system.

5.2. Assumptions

We impose the following restrictions on the systems we
study to maintain tractability. We only consider those net-

F - (145
(2) ( + 5) .
This means that Pareto-lifetime systems under churn are
moreresilient than the corresponding exponential systems
for a given average lifetime since each user in the for-
mer case acquires neighbors widrger remaining life-
times than those in the latter case. This can be explained

(12)



by the fact thatF'[R;] = 3/(a — 2) is larger thanE[L;] =
B/(a — 1) for all values of« and that residual lifetimeR;

in the Pareto case are stochastically larger than the corre-

sponding lifetimes.

Next, assume that each neighbarl < j < k) of node
v is either alive at any timeor v is searching for its replace-
ment. Thus, neighbai can be considered in thon state at
timet if it is alive or in theoff state otherwise. This neigh-

wherep = A/ Summing up all probabilities, we have:

m@(),)—l

Noticing that the above is a binomial expansior{ bf- p)*,
we getry = 1/(1 + p)* and directly obtain (15). O

(17)

bor failure/replacement procedure can be modeled as an al-

ternating renewal proced$(¢):

1 neighborj alive att

it = {0 otherwise (13)

Note that the averagen delay of each process;(¢) is
E[R;] and the averageff delay is E[S;]. Using this no-
tation, the degree of nodeat timet¢ is equal tolW (¢) =
Z -, Y;(t). Denote byT the time at which a node is iso-
Iated when all of its neighbors are simultaneously indffe

Before proceeding to the next result, we defipgeto be
the rate matrix that corresponds to states. ., k of W (¢)
(i.e., without the absorbing staf¢. Therefore, assuming
is the rate matrix of the entire chain, we can write:

0 O
lf‘Qo7

wherer is a column vector of transition rates into state

Q= (18)

state. Thus, the maximum time a node can spend in the sysfurthermore, define a diagonal matiik = diag(r;) of

tem before it is isolated can be written as first hitting
timeof procesdV (¢) on level0:

T=inf(t>0:W(t)=0[W(0)=k). (14)

Notice that for exponential; and.S;, processV (t) is a
birth-death chain with an absorbing staté&Ve thus first de-
velop a model fofl" assuming Markovian behavior &F (¢)
and then extend it to non-exponential cases.

5.4. Probability of Isolation

In this section, we analyze the probability that a node where—¢; is the j-th eigenvalue of?, 6 = (0,0, .

the stationary states di/(¢), a scaled rate matriR =
I1'/2Q,11~1/2, and thej-th orthonormal eigenvecto; of
R. Then we have the CDF of hitting tinig as follows.

Proposition 5. For exponential lifetimes and exponential
search delays, the CDF gt is:

r)(1—e &)

P(T<1t)=Z:(6V])(u 3 ;

Jj=1

(19)

,1)is

v becomes isolated due to all of its neighbors simultane-a1 x k vector,v; = II-/2x;, andu; = I1'/2x;

ously reaching the failed state durin lifetime. Assum-
ing L, is the random lifetime of node, notice thaty is
simply P(T < L,). To obtain this metric, we start with de-
riving the stationary distribution df’ (¢).

Proposition 4. For exponential lifetimes and exponential
search delays, the stationary distribution16f(¢) is given

by:

=l P00 == () 09

Lil/E[Si].
Proof. Denote by, = 1/F[L

wherep = E|

;] the node-failure rate and by

A = 1/E|[S;] the node-recovery rate. Then, the rate of tran-

sitions from statg < k to statej + 1isg; j+1 = (k — j)A
and from statg > 0 to statej — 1is ¢; ;1 = jp. Treat-

ing W (¢) as a Markov chain, the balance equations assume

the following shape:

k—j34+ 1A . !
T = 773;1# = Top’ - YR (16)
Ju gk —j)!

Proof. SinceW (t) is a reversible Markov chain, the PDF
of its first hitting time to stat® starting from staté can be
written as a mixture of exponential distributions with mate

& [22]:

(20)
Integrating (20) with respect o we obtain (19). O

Proposition 6. For exponential lifetimes and exponential
search delays, the probability of isolation is:

(0v;)( ur
¢ = Z u+£; : (21)

Jj=1

wherep = 1/E[L;] and the remaining variables are the
same as in the previous proposition.
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Figure 1. Comparison of model (21) to simulations with expon ential lifetimes and E[L;] = 0.5,k = 8.

Proof. Settings; = (dv;)(u] r) and integrating (19) using  following asE[S;] — 0:
the PDFf(t) of user lifetimes, we obtain:

pk
= 1), 23
¢ = P(T<L,= P(T < t)f(t)dt
0 wherep = E[L;]/E[S;] is the ratio of the mean user life-
_ / Z ﬁj 1 — e~ 6t ,ue_”tdt time to the mean search delay.
Proof. The proof proceeds in two steps. We start by deriv-
oot )t ing the expected timé&[T"] before the first visit to stateé
= / T ! )dt,  (22) and then use an exponential approximation to the density of
T to obtain an asymptotic expansiondf
which directly leads to (21). O We begin by derivingZ[T] in closed-form assuming that

search delays are reasonably small. Treating the chain as
We next verify (21) in simulations and show that it is Non-absorbing throughout this proof and denotingZhy
very accurate for non-exponential search delays as well.the delay between the visits to stateve get using the sta-
Figure 1 showss obtained in simulations using four dis- tionary distributionr derived in Proposition 4:

tributions of search time for a graph with= 8 and mean 1 E[S:]

. . . 7 k

lifetime E[L;] = 0.5 hours. Denoting by the mean search Ello] = —=——(1+p)", (24)
delay, the first distribution is uniform if®, 2s|, the second odo

is constant equal te, the third is exponential with rate/ s, wheregy = kXA = k/E[S;] is the rate of transition in the

and the fourth is Pareto with = 3 and( = s(a—1). As the non-absorbing chain from stageto itself. Using the fact
figure indicates, all four cases are very close to the valuesthat the relaxation time of the chain is asymptotically dmal
predicted by (21), which can be explained by the quickly- compared t&®[To] (see below) and assuming that the chain
mixing properties ofi¥’(¢) and relatively small values of starts in its stationary state, the expected delay befae th
search delays; [1]. Simulations with other values é@fand first visit to state0 converges to the mean delay between
E[L;] demonstrate that as search delays become small (i.e.the subsequent visits to the same state [2]. Thus, subtract-
E[S;] — 0), the above model is accurate fany distribu- ing from E[T},] the average time spent in stéitewe get:

tion of search delays as long as lifetimes are exponential. 1
E[T] = E[Too] - o +o(1)
5.5. Asymptotic Expansion E[S)] 0

- T’((l +p)f 1) +o(1),  (25)
Since (21) requires the spectrum of matfx our next
task is to simplify this model and obtain a simple closed- Where E[T] denotes the mean first hitting time on state
form expression for that does not involve any numerical 0 assuming that the initial distribution ¥ (0) is the sta-

manipu|ati0n_ The fo”owing result holds assuming asymp- tional’y distribution7 of the chain. Notice, hOWeVer, that
totically small search delays. asE[S;] — 0, the stationary distributiomr given in (16)

converges to the actual initial distribution of the chaie.(i
Proposition 7. For exponential lifetimes and exponential 7 — (0,0,...,1)andW(0) = k with probability1), which
search delays, the probability of isolation is given by the leads toE[T] = E.[T] + o(1).
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ential lifetimes with  E[L;] = 0.5,k = 8.

Next, observe that for small search del&§s E[T] is
large and staté is visited rarely. This allows the application
of Aldous’ inequality [3] for rare events in Markov chains,
which states thal” asymptotically behaves as an exponen-
tial random variable with meaf[T:

E[T]’

|P(T > t) — e /PI| < (26)
wherer is the relaxation time of the chain. For the birth-
death chain of our case, it can be shown [25] that
1/(A + u) = E[S;], where the last approximation holds
assuming thak'[S;] <« E[L;]. Hence a¥[S;] — 0, relax-
ation timer = o(1) and the bounds in (26) reduce to:
P(T > t) = e VT 1 o(1). (27)

Integrating (27) with respect to the POFt) of user life-

times, we get:

¢

pE[T)+1 (28)

Using (25) and recalling that = 1/E[L;], we obtain
(23) as the asymptotic shapedivhenE[S;] — 0. O

E[S;] Model (21) Model (23) Ratio
1hour  3.2480 x 102 1.3971 x 10~1  4.3017
6 min 1.5379 x 105 2.3814 x 1075  1.5485
36sec  8.2856 x 1012 8.7397 x 10~12  1.0548
3.6sec 1.0023 x 1018 1.0078 x 10~18  1.0054
360ms  1.0218 x 1072  1.0224 x 10—2°  1.0006

Table 6. Convergence of (23) to (21) for expo-
nential search delays and FE[L;] = 0.5,k = 8.

non-negative nature of search times and the fact that for a
given E[S;] higher variance of; implies that more proba-
bility mass is concentrated at values well bel&ijs;]. We

thus obtain that random search delays can anfyrovethe
resilience of the system compared to the worst-case sce-
nario (i.e., constans;). This can be observed in Figure 2
whereg in part (b) is the largest among the four cases. Since
constant search delays produce an almost ideal match to the
approximate model, the result in (23) can be treated as an
upper bound o for all cases with exponential lifetimes.

To finish this subsection, we examine the convergence
of approximation (23) to the exact model (21) in more de-
tail. Table 6 shows the values ¢fproduced by both models
asFE|[S;] becomes very small. Observe in the table that both
models indeed converge and that the relative difference di-
minishes to zero a&/[S;] becomes small.

This model is verified in Figure 2 for the same four cases 5.6. Pareto Lifetimes

of search delay;. Notice that the asymptotic model is less

accurate for the exponential search delays, but provides an Due to the non-Markovian nature & (¢) under Pareto
almost exact match to the constant delay case (part (b) in thdifetimes and its slowly mixing properties, derivation &f

figure). Also observe that &s[.S;] becomes smaller, all four

for this case is very complicated. Furthermore, the result i

cases indeed converge to (23) and achieve isolation probaexpected to be sensitive to the exact value of parameters

bility ¢ ~ 4.2 x 10~ when the expected search time re-
duces tal.5 minutes

Also note that constant search delays providewbest-
casescenario for isolation, while highly-variable distribu-
tions of S; are the best. This immediately follows from the

andg of the Pareto distribution, which are difficult to mea-
sure and may vary from system to system. We leave the ex-
ploration of Paret@ for future work and instead utilize the
exponential metric (23) as an upper boundgoim systems
with sufficiently heavy-tailed lifetime distributions. €lre-
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Figure 3. Upper bound (29) and simulations for Pareto lifeti

¢ Uniform Lifetime Mean Search tim&|[.S;]
p=1/2 P2P 6min  2min 20 sec
10~4 14 Bound (29) 8 5 4
Simulations 7 5 4
10-6 20 Bound (29) 10 7 5
Simulations 10 7 5
108 27 Bound (29) 13 9 6
Simulations 13 8 6

Table 7. Minimum degree needed for a cer-
tain ¢ in systems with Pareto lifetimes with
a=3,8=1and E[L;] = 0.5 hours.

sult below follows from the fact that heavy-taildg imply
stochastically larger residual lifetimég and that (23) pro-
vides an upper bound for all search delay distributions.

Coroallary 1. For an arbitrary distribution of search delays
and any lifetime distributior¥'(z) with an exponential or
heavier tail, which includes Pareto, lognormal, Weibuhida
Cauchy distributions, the following upper bound holds:

pk

<
= (1+4+p)k+pk—-1’

(29)

wherep = E[L;]/E|S;] is the ratio of the mean user life-
time to the mean search delay.

For example, using0-minute average lifetime$,neigh-
bors per node, anttminute average node replacement de-
lay, the upper bound in (29) equalsd2 x 10!, which
allows each user in 800-billion node network to stay con-
nected to the graph for his/her entire lifespan with proba-
bility 1 — 1/n. Using the uniform failure model of prior
work andp = 1/2 [38], each user requirel neighbors to
achieve the sameg regardless of the actual dynamics of the
system

To confirm that the upper bound (29) holds in practice,
Figure 3 shows in simulations with Pareto lifetimes with
E[L;] = 0.5 andk = 8. Observe in the figure that Pareto

isolation probability

1.E-01 4 1.E-01 4

simulations
bound

[ ] ®  simulations

bound

1.E-02 1.E-02 4

1.E-03 4 1.E-03 +

1.E-04 4 1.E-04
1.E-05 4 1.E-05
1.E-06 1.E-06 +

1.E-07 1.E-07 4

isolation probability

1.E-08 1.E-08 +

1.E-09 1.E-09 4 =

1E-10 T
1.E-02 1.E-01
mean search time E[S] (hours)

(d) ParetaS; with o = 3

1.E-10 T
1.E-02 1.E-01
mean search time E[S] (hours)

1.E+00 1.E+00

(c) exponentialS;

mes with E[L;] = 0.5 hours and & = 8.

systems are in fact more resilient than those with exponen-
tial lifetimes. Also notice that constant search delayseonc
again provide the worst-case resilience for a giveld;]
and that the difference between the Pareto and exponential
¢ is by a constant factor (i.e., the two curves become paral-
lel asE[S;] — 0).

Even though exponential is often several times larger
than the Paret@ (the exact ratio depends on shapg
it turns out that the difference in node degree needed to
achieve a certain level of resilience is usually negligible
To illustrate this result, Table 7 shows the minimum degree
k that ensures a given for different values of search time
E[S;] and Pareto lifetimes with = 3,3 = 1 (F[L;] = 0.5
hours). The column “unifornp = 1/2” contains degreé
that can be deduced from thepercent failure model (for
p = 1/2) discussed in previous studies [38]. Observe in the
table that the exponential case in fact provides a tight up-
per bound on the actual minimum degree and that the dif-
ference between the two cases is at maseighbor.

5.7. Graph Disconnection

We now apply the newly acquired model for the proba-
bility of isolation ¢ to (7) and examine its accuracy in sim-
ulations. Re-writing (7), the dynamic resilience of a graph
G is lower-bounded by:

N
). e

where Z is the number of user joins before the first dis-
connection of the system. Table 8 contai?&Z > N) ob-
tained in simulations of2-regular CAN with exponential
lifetimes, E[L;] = 0.5 hours,n = 4096, andN = 106 user
joins. The table also includes the value computed by model
(7) using empirically measureglalong with the newly de-
rived model (30) for comparison purposes. Note that even
in the case of relatively large search delays (i%.= 10.5
minutes), the simulations still follow the model quite well

pk
(14 p)k+pk—1

P(Z>N)2<1—



Ered search Actual Model  Model et tlpn of lifetimes, nodes with large age are expectgd to sur-
time P(Z > N) % 30)  q(G) vive longer and possess stochastically larger residusd lif
times R; than those with small age. We propose intention-

6 min 9732 9728 9728 1 thd P

7 5 min 8218 8294 8215 1 ally monitoring the age of each node and giving more pref-
8.5 min .5669 5659 .5666 1 erence during neighbor selection to the nodes with a larger
9 min 4065 4028 .4016 1 value of this metric, which causes the system to achieve a
9.5 min -2613 2645 2419 1 twofold effect: short-lived nodes do not attract a large Aum
10.5 min .0482 0471 0424 1

ber (if any) neighbors and long-lived nodes are given a big-
Table 8. Comparison of P(Z > N) in CAN. ger responsibility over the structure of the graph. Prelimi
nary simulation results of this method indicate t#R;]
of chosen neighbors increases by several times over uni-
and that the graph never partitions without having at leastformly random selection of neighbors and leads to much
one isolated node (i.e7(G) = 1). lower ¢.
To further illustrate the gravity of (30) when used as
a lower bound on the performance of lifetime-based P2P 7. Conclusion
systems, consider the example first mentioned in the in-
troduction. In ak-regular P2P system witk = 12 for This paper tackled the problem of P2P graph connectiv-
each neighbor, search del#/S;] = 1 minute, and aver- ity under both static and dynamic node-failure methods by
age lifetimeE[L;] = 0.5 hours, the probability of isolation  establishing that almost every sufficiently large netwark r
is ¢ = 4.57 x 10716, Wheng is applied to (30) in which  mains connected if and only if it has no isolated nodes, a re-
35 million users join and leave the system each week, thesult from random graph theory that we confirm applies to
probability that the network survives fa6, 000 years with- P2P networks under both independent uniform node failure
out disconnecting is at leas9.2%. Model (30) further im- and lifetime-based node departure. We used this powerful
plies that the mean delay between disconnections is lower—result to derive models of graph connectivity for both the

bounded byt /¢ user joins, or.2 million years. static and dynamic node failure cases that are much more
Relatively small systems are also very resilient based onaccurate than previous efforts and are easily calculahle. O
this analysis. A system with = 8, a search delay &0 sec- results show that most current P2P systems are extremely

onds, average lifetim&|[L;] = 0.5 hours, and0,000 users  resilient to disconnections when the ratio of average life-

join each day will survive foil 00 years without disconnec- time to average search delay is non-trivial. Future work in-

tion with probability no less thafl9.5%. These two exam-  cludes deriving an exact model for dynamic node failure

ples show that both large and small-scale systems can easilysing Pareto and other heavy-tailed lifetimes, extendieg t
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