Totally Geodesic Surfaces in Arithmetic Hyperbolic 3-Manifolds

Benjamin Linowitz
Oberlin College, benjamin.linowitz@oberlin.edu

Jeffrey S. Meyer

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the Geometry and Topology Commons, and the Special Functions Commons

http://ecommons.udayton.edu/topology_conf/14

This Topology + Geometry is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds

Benjamin Linowitz

Department of Mathematics
Oberlin College
Definition: A hyperbolic 3-manifold is a quotient \(M = \mathbb{H}^3 / \Gamma \) of three dimensional hyperbolic space \(\mathbb{H}^3 \) by a discrete subgroup \(\Gamma \) of \(\text{PSL}_2(\mathbb{C}) \) acting freely and properly discontinuously.

The Kleinian group \(\Gamma \) is isomorphic to the fundamental group \(\pi_1(M) \).

If we relax the requirement that \(\Gamma \) acts freely, allowing \(\Gamma \) to contain torsion, then we obtain a hyperbolic 3-orbifold.

Theorem (Mostow-Prasad Rigidity, 1974)

If \(M_1 \) and \(M_2 \) are complete finite volume hyperbolic \(n \)-manifolds with \(n > 2 \) then any isomorphism \(f : \pi_1(M_1) \rightarrow \pi_1(M_2) \) is induced by a unique isometry from \(M_1 \) to \(M_2 \).
The Length Spectrum of Hyperbolic 3-Manifolds

Fundamental domains of a pair of isospectral hyperbolic 3-orbifolds

Fundamental domains of a pair of isospectral hyperbolic 3-orbifolds
The Length Spectrum of Hyperbolic 3-Manifolds

What is an arithmetic hyperbolic 3-manifold?

The **commensurator** C_Γ of a Kleinian group $\Gamma \subset \text{PSL}_2(\mathbb{C})$ is

$$C_\Gamma = \{g \in \text{PSL}_2(\mathbb{C}) : g\Gamma g^{-1} \text{ is commensurable with } \Gamma\}.$$

Theorem (Margulis)

Γ is arithmetic if and only if C_Γ is dense in $\text{PSL}_2(\mathbb{C})$.

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
Background

Recall the classification of elements $\gamma \in \text{PSL}_2(\mathbb{C}) \setminus \{\text{Id}_2\}$:

- γ is *elliptic* if $\text{Tr}(\gamma) \in \mathbb{R}$ and $|\text{Tr}(\gamma)| < 2$.
- γ is *parabolic* if $\text{Tr}(\gamma) = \pm 2$.
- γ is *loxodromic* otherwise.

We will typically abuse notation and consider the eigenvalues (up to sign) of a lift of γ to $\text{SL}_2(\mathbb{C})$. These are the roots of

$$p_\gamma(x) = x^2 - \text{Tr}(\gamma)x + 1;$$

that is,

$$\lambda_\gamma = \frac{\text{Tr}(\gamma) \pm \sqrt{\text{Tr}(\gamma)^2 - 4}}{2}.$$
When γ is loxodromic it has a pair of fixed points and the unique geodesic in H^3 joining these points is the axis of γ.

Let $M = H^3/\Gamma$ be a finite-volume hyperbolic 3-manifold. The axis of γ projects onto a closed geodesic in M whose length is the translation length $\ell_0(\gamma)$ of γ, where

$$\ell_0(\gamma) = 2 \log |\lambda_\gamma|.$$

The element γ also rotates around its axis as it translates along it. If $\theta(\gamma)$ is the angle incurred it translating along the axis by $\ell_0(\gamma)$, then the complex translation length of γ is

$$\ell(\gamma) = \ell_0(\gamma) + i\theta(\gamma).$$
The length spectrum $L(M)$ of a hyperbolic 3-manifold M is the set of all complex translation lengths of all closed geodesics in M, considered with multiplicities.

The length spectrum of M determines the Laplace spectrum of M, hence determines spectral invariants like dimension and volume.

It is known however, that the length spectrum $L(M)$ of M does not determine the isometry class of M.
Theorem (Vigneras, 1980)

There exist non-isometric hyperbolic 3-manifolds with the same length spectra.

By the Mostow Rigidity Theorem, this shows that the isomorphism class of the fundamental group of a hyperbolic 3-manifold is not a spectral invariant.
It is in general unknown whether $L(M)$ determines the commensurability class of M. This is known to be the case when M is arithmetic however.

Theorem (Chinburg, Hamilton, Long and Reid, 2008)

If two arithmetic hyperbolic 3-manifolds have the same length spectra then they are commensurable.
On the other hand non-commensurable hyperbolic 3-manifolds may share arbitrarily large portions of their length spectra.

Theorem (Futer and Millichap, 2016)

For every sufficiently large \(n > 0 \) there exists a pair of non-isometric finite-volume hyperbolic 3-manifolds \(\{ N_n, N_n^\mu \} \) such that:

1. \(\text{vol}(N_n) = \text{vol}(N_n^\mu) \), where this volume grows coarsely linearly with \(n \).
2. The (complex) length spectra of \(N_n \) and \(N_n^\mu \) agree up to length \(n \).
3. \(N_n \) and \(N_n^\mu \) have at least \(e^n/n \) closed geodesics up to length \(n \).
4. \(N_n \) and \(N_n^\mu \) are not commensurable.

This builds on previous work of Millichap.
The Length Spectrum of Hyperbolic 3-Manifolds

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
One of the major open problems in the study of arithmetic hyperbolic 3-manifolds is the following.

Conjecture (Short Geodesic Conjecture)
There is a positive universal lower bound for the length of closed geodesics on an arithmetic hyperbolic 3-orbifold.

It is known that the Short Geodesic Conjecture would follow from Lehmer’s Conjecture on Mahler measures of polynomials.

This conjecture has long been known to be false in the context of non-arithmetic hyperbolic 3-orbifolds. In 2006 Agol showed that closed hyperbolic 4-manifolds may also have arbitrarily short closed geodesics.
Let M be a closed hyperbolic 3-manifold.

The length spectrum of M encodes isometric immersions of S^1 into M.

It turns out to be useful to consider the two-dimensional case; that is, totally geodesic immersions of orientable, finite type surfaces into M.

Let $GS(M)$ denote the set of isometry classes of finite area, properly immersed, totally geodesic surfaces of M, considered up to free homotopy.

$GS(M)$ is called the Geometric Genus Spectrum of M.
The geometric genus spectrum was introduced by McReynolds and Reid.

Theorem (McReynolds and Reid, 2009)

If two arithmetic hyperbolic 3-manifolds have the same geometric genus spectra then they are commensurable.
Recently Jeff Meyer and I have proven that non-commensurable hyperbolic 3-manifolds may share arbitrarily large portions of their geometric genus spectra.

This is a two-dimensional analog of Futer and Millichap’s result.

Given $N \geq 1$, define $GS(M)[N]$ to be the first N terms of $GS(M)$ (which we consider as being ordered by area).
The geometric genus spectrum of a hyperbolic 3-manifold

Theorem (L. and Meyer, 2016)

Let $N \geq 1$. There exists an infinite sequence of incommensurable arithmetic M_1, M_2, \ldots such that:

1. $\text{GS}(M_i)[N] = \text{GS}(M_j)[N]$ for all i, j,
2. $\text{vol}(M_n) < c_1(n \log(2n))^{3/2}$, and
3. $\text{sys}_1(M_n) < c_2 \log(n)$.
Define $\text{Sys}^{TG}_2(M)$ to be the totally geodesic 2-systole of M. That is, the minimal area of an immersed totally geodesic surface.

In analogy with the Short Geodesic Conjecture, one may ask whether there is a universal lower bound for $\text{Sys}^{TG}_2(M)$ as M varies over all arithmetic hyperbolic 3-orbifolds.

This turns out to be trivially true, as it has long been known that the $(2, 3, 7)$ triangle group has minimal co-area amongst all Fuchsian groups.
Theorem (L. and Meyer, 2016)

Let M be an arithmetic hyperbolic 3-manifold which has minimal volume in its commensurability class and contains a finite area, properly immersed, totally geodesic surface. Then

$$\text{Sys}_{2}^{TG}(M) > c \cdot \text{vol}(M)^{1/2},$$

where c is a positive constant.

Corollary

For every $X > 0$ there exist infinitely many arithmetic hyperbolic 3-manifolds M such that $\text{Sys}_{2}^{TG}(M) > X$.

Let $\text{sysg}(M)$ denote the **systolic genus** of M; that is, the minimal genus of a π_1-injective surface of M.

Denote by $N(V)$ the number of commensurability classes of arithmetic hyperbolic 3-manifolds which have a representative with volume less than V.

Denote by $N^g(V; x)$ the number of commensurability classes of arithmetic hyperbolic 3-manifolds which have a representative M with volume less than V and $\text{sysg}(M) < x$.
Theorem (L. and Meyer)

For all sufficiently large \(x \) we have

\[
\lim_{{V \to \infty}} \frac{N^g(V; x)}{N(V)} = 0.
\]

Proof.

Our proof has two main ingredients. The first is a strengthening of Gromov’s high genus systole inequality and is due to Belolieptskey.

The second is a systole counting result which is joint work with Ben McReynolds, Paul Pollack and Lola Thompson.
The geometric genus spectrum of a hyperbolic 3-manifold

Theorem (Belolipetsky)

Let M be a closed hyperbolic 3-manifold. For any $\epsilon > 0$, if $\text{sys}_1(M)$ is sufficiently large, then

$$\text{sys}_g(M) \geq e^{(1/2 - \epsilon)\text{sys}_1(M)}.$$

Choose x_0 large enough so that Belolipetsky’s bound holds with $\epsilon = 1/4$ whenever $\text{sys}_1(M) > x_0$.

It is now straightforward to show that $N^g(V; x)$ is at most the number of commensurability classes of arithmetic hyperbolic 3-manifolds having a representative with volume less than V and systole at most $\max\{x_0, 4 \log(x)\}$.

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
The geometric genus spectrum of a hyperbolic 3-manifold
The geometric genus spectrum of a hyperbolic 3-manifold

The result now follows from the following.

Theorem (L., McReynolds, Pollack and Thompson, 2015)

Let $F(V, X)$ denote the number of commensurability classes of arithmetic hyperbolic 3-manifolds with volume less than V and systole less than X. Then

$$\lim_{V \to \infty} \frac{F(V, X)}{N(V)} = 0.$$
Thanks!