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Abstract

We study some mathematical programming formulations for the origin-destination model
in airline revenue management. In particular, we focus on the traditional probabilistic model
proposed in the literature. The approach we study consists of solving a sequence of two-stage
stochastic programs with simple recourse, which can be viewed as an approximation to a multi-
stage stochastic programming formulation to the seat allocation problem. Our theoretical results
show that the proposed approximation is robust, in the sense that solving more successive
two-stage programs can never worsen the expected revenue obtained with the corresponding
allocation policy. Although intuitive, such a property is known not to hold for the traditional
deterministic linear programming model found in the literature. We also show that this property
does not hold for some bid-price policies. In addition, we propose a heuristic method to choose
the re-solving points, rather than re-solving at equally-spaced times as customary. Numerical
results are presented to illustrate the effectiveness of the proposed approach.

∗Supported by the National Science Foundation under grant DMI-0115385.



1 Introduction

Revenue management involves the application of quantitative techniques to improve profits by

controlling the prices and availabilities of various products that are produced with scarce resources.

Perhaps the best known revenue management application occurs in the airline industry, where

the products are tickets (for itineraries) and the resources are seats on flights. In view of many

successful applications of revenue management in different areas, this topic has received considerable

attention in the past few years both from practitioners and academics. The recent book by Talluri

and Van Ryzin [20] provides a comprehensive introduction to this field, see also references therein.

A common way to model the airline booking process is as a sequential decision problem over

a fixed time period, in which one decides whether each request for a ticket should be accepted or

rejected. A typical assumption is that one can separate demand for individual itinerary-class pairs;

that is, each request is for a particular class on a particular itinerary, and yields a pre-specified

fare. Typically, a class is determined by particular constraints associated with the ticket rather

than the physical seat. For example, a certain class may require a 14-day advance purchase, or

a Saturday night stay, etc. (for the purposes of this paper, we assume that first-class seats are

allocated separately).

The existence of different classes reflects different customer behaviors. The classical example is

that of customers traveling for leisure and those traveling on business. The former group typically

books in advance and is more price-sensitive, whereas the latter behaves in the opposite way. Airline

companies attempt to sell as many seats as possible to high-fare paying customers and at the same

time avoid the potential loss resulting from unsold seats. In most cases, rejecting an early (and

lower-fare) request saves the seat for a later (and higher-fare) booking, but at the same time that

creates the risk of flying with empty seats. On the other hand, accepting early requests raises the

percentage of occupation but creates the risk of rejecting a future high-fare request because of the

constraints on capacity.

Many of early models were built for single flights. While that environment allows for the deriva-

tion of optimal policies via dynamic programming even with the incorporation of extra features

[19], the drawback is clear in that the booking policy is only locally optimized and it cannot guar-

antee global optimality. Because of that, models that can incorporate a network of flights are

usually preferred by the airlines. Network models, however, can only provide heuristics for the

booking process, since determining the optimal action for each request in a network environment

is impractical from a computational point of view. One type of heuristics is based on mathemat-

ical programs, where the decision variables are the number of seats to allocate to each class. In

particular, methods based on linear programming techniques have been very popular in industry,

for several reasons: first, linear programming is a well developed method in operations research; its

properties have been thoroughly studied for decades. Secondly, commercial software packages for
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linear programming are widely available and have proven efficient and reliable in practice. Finally,

the dual information obtained from the linear program can be used to derive alternative booking

policies, based on bid prices; we will return to that in section 4.

Booking methods based on linear programming were thoroughly investigated by Williamson

[25]. The basic models take stochastic demand into account only through expected values, thus

yielding a deterministic program that can be easily solved. However, the drawback of such approach

is obvious, as it ignores any distributional information about the demand. A common way to

attempt to overcome that problem is to re-solve the LP several times during the booking horizon.

While such an approach may seem intuitive, it turns out that re-solving can actually backfire —

indeed, Cooper [7] shows a counter-example where re-solving the LP model may lower the total

expected revenue.

An alternative way to incorporate demand distribution information into the model is by formu-

lating a stochastic linear program. In the particular case of airline bookings, such models typically

reduce to simple recourse models, a formulation that is called probabilistic nonlinear program in the

revenue management literature (see, e.g., [25]). Higle and Sen [13] propose a different stochastic

programming model, based on leg-based seat allocations, which yields an alternative way to compute

bid prices. Another stochastic optimization model is proposed by Cooper and Homem-de-Mello [8],

who consider a hybrid method where the second stage is actually the optimal value function of a

dynamic program.

In this paper we discuss various aspects of the multi-stage version of the simple recourse model

discussed above (henceforth denoted respectively MSSP and SLP). The MSSP model we present is

shown to yield a better policy than SLP in terms of expected total revenue under the corresponding

allocation policies; however, that multi-stage model does not have convexity properties (even its

continuous relaxation), whereas simple recourse models can be solved very efficiently with linear

integer programming. Of course, these conclusions are valid for the underlying MSSP model;

alternative multi-stage models proposed in the literature (notably the ones in DeMiguel and Mishra

[10] and Möller et al. [16]) do not suffer from the non-concavity issue, although a precise relationship

with the SLP model is not established in those papers.

Given the difficulty to develop exact algorithms for large multi-stage problems, we propose

an approximation based on solving a sequence of two-stage simple recourse models. The main

advantage of such an approach is that, as mentioned above, each two-stage problem can be solved

very efficiently, so an approximating solution to the MSSP can be obtained reasonably quickly.

The idea of solving two-stage problems sequentially is not new, and appears in the literature under

names such as rolling horizon and rolling forward ; see, for instance, [1, 2, 15]. The details on

the implementation of the rolling horizon, however, vary in the above works. Our work is more

closely related to Balasubramanian and Grossmann [1] in that we consider shrinking horizons, i.e.,

each two-stage problem is solved over a period spanning from the current time until the end of the
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booking horizon. In this paper this is called the re-solving SLP approach.

Although the rolling horizon approach has been proposed in the literature, to the best of our

knowledge there have been no analytical results regarding the quality of the approximation. In this

paper we provide some results of that nature, though we do not claim to give definitive answers.

More specifically, we compare the policies obtained from the re-solving SLP approach with the

policies from the MSSP model. We show that, for a given partition into stages, the policy from

MSSP is better than the policy from re-solving SLP. However, the inclusion of just one extra re-

solving point can make the re-solving approach better. The importance of this conclusion arises

from the fact that, because of the sequential nature of the re-solving procedure, adding an extra

re-solving point requires little extra computational effort; in comparison, including an extra stage

in a multi-stage model makes the problem considerably bigger and therefore harder to solve.

We also study the effect of re-solving the SLP model, compared to not re-solving it. Our

results show that, unlike the aforementioned example in [7] for the DLP model, solving the SLP

sequentially cannot be worse (in terms of expected revenue from the resulting policy) than solving

it only once. In addition, we provide an example to illustrate that re-solving may actually be worse

in the context of standard bid-price policies, where the bid prices are calculated from the dual

problem of either the DLP or the SLP models. These results are, to the best of our knowledge,

novel.

Motivated by the flexibility of the re-solving approach, we also study the issue of whether one

can improve the results by carefully choosing the re-solving points instead of using equally-sized

intervals as it is usually done. Indeed, the structure of our problem allows us to do so, and we

provide a heuristic algorithm to determine the re-solving points. Our numerical results, run for two

relatively small-sized networks, indicate that the procedure is effective.

The remainder of the paper is organized as follows: in section 2 we introduce the notation

and describe mathematical programming methods for the seat allocation problem. The re-solving

approach is treated in detail in section 3, and bid-price policies are discussed in section 4. Section 5

describes the algorithm for improving the choice of re-solving points, whereas section 6 presents

numerical results. Concluding remarks are presented in section 7.

2 Allocation methods

Following the standard models in the literature, we consider a network of flights involving p booking

classes of customers. This model can represent demand for a network of flights that depart within

a particular day. Each customer requests one out of n possible itineraries, so we have r := np

itinerary-fare class combinations. The booking process is realized over a time horizon of length τ .

Let {Njk(t)} denote the point process generated by the arrivals of class-k customers who request

itinerary j. Typical cases customary in the revenue management literature are (i) {Njk(t)} is
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a (possibly nonhomogeneous) Poisson process, and (ii) there is at most one unit of demand per

time period. Throughout this paper we do not make those assumptions unless when explicitly

said otherwise; we only assume that arrival processes corresponding to different pairs (j, k) are

independent of each other.

The demand for itinerary-class (j, k) over the whole horizon is denoted by ξjk (i.e., ξjk = Njk(τ))

and we denote by ξ the whole vector (ξjk). The network is comprised of m leg-cabin combinations,

with capacities c := (c1, . . . , cm), and is represented by an (m× np)-matrix A ≡ (ai,jk). The entry

ai,jk ∈ {0, 1} indicates whether class k customers use leg i in itinerary j.

Most policies we deal with in this paper are of allocation type. We denote by xjk the decision

variable corresponding to the number of seats to be allocated to class k in itinerary j. Whenever

a itinerary-class pair (j, k) is accepted, the revenue corresponding to the fare fjk accrues. A

customer’s request is rejected if no seats are available for his itinerary-class, in which case no revenue

is realized. The vectors of decision variables and fares are denoted respectively by x = (xjk) and

f = (fjk).

Allocation methods require solving an optimization problem to find initial allocations before the

booking process starts. The classical deterministic linear program (DLP) for the network problem

is written as follows:

max {fT x : Ax ≤ c, x ≤ E[ξ], x ≥ 0}. [DLP]

Model [DLP] is well known in the revenue management literature. Implementation of the resulting

policy x∗ is very simple — accept at most x∗jk class k customers in itinerary j. Notice that the

policy is well-defined even if the solution x∗ is not integer. Notice also that the objective function

of [DLP] is not the actual revenue resulting from the policy x∗, even if x∗ is integer.

A major drawback of formulation [DLP] is the fact that it completely ignores any information re-

garding the distribution of demand, except for the mean. This leads to the stochastic programming

formulation

max {fTE[min{x, ξ}] : Ax ≤ c, x ∈ Z+}.

where the min operation is interpreted componentwise (note that we have imposed an integrality

constraint on x to ensure we get an integer allocation of seats; we will comment on that later).

Equivalently, we have

max fT x + E[Q(x, ξ)]

subject to: [SLP]

Ax ≤ c,

x ∈ Z+,
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where Q(x, ξ) = max {−fT y|x−y ≤ ξ, y ≥ 0}. Notice that [SLP] can be formulated as a two-stage

integer problem with simple recourse. A major advantage of such models is that, when ξ has a

discrete distribution with finitely many scenarios, problem [SLP] can be easily solved because of its

special structure. In principle, this may not be the case of our model, for example when the total

demand for each itinerary-class pair (j, k) has Poisson distribution, which has infinite support. It is

clear, however, that in that case all but a finite number of points in the distribution have negligible

probability; thus, we can approximate the distribution of ξjk by a truncated Poisson. Thus, in what

follows we assume that ξ takes on finitely many values, and that those values are integer.

To describe the solution procedure, we need to introduce some notation. For each itinerary-class

pair (j, k), let Sjk denote the number of possible values taken by ξjk, and let d1
jk, . . . , d

Sjk

jk denote

those values, ordered from lowest to highest. Let {δs
jk}, s = 1, . . . , Sjk be coefficients defined as

δs
jk := fjkP (ξjk ≤ ds

jk). As discussed in [5] and [14], problem [SLP] can then be re-written as

max
x,u,u0

fT x−
∑

j,k

Sjk∑

s=1

δs
jku

s
jk

subject to: (1)

Ax ≤ c

u0
jk +

Sjk∑

s=1

us
jk − xjk = −E[ξjk]

u0
jk ≤ d1

jk − E[ξjk]

0 ≤ u ≤ 1

x ∈ Z+.

Notice that the decision variables of the linear integer program (1) are the vectors x = (xjk),

u0 := (u0
jk) and u := (us

jk), s = 1, . . . , Sjk (the vectors u and u0 correspond to the slopes of

the objective function of the second stage, which is piecewise linear). That is, problem (1) has

O(Snp) variables and O(Snp + m) constraints (where S := maxj,k Sjk), which is far smaller than

the deterministic linear program corresponding to general two-stage programs with finitely many

scenarios — in that case, it is well known that the number of constraints and variables is exponential

on the number of scenarios, see for instance [5]. Thus, problem (1) can be solved by standard linear

integer programming software.

It is worthwhile pointing out that, if one implements the booking policy based on seat allocations

(we call it the allocation policy henceforth), then the objective function of [SLP] does correspond

to the actual expected revenue resulting from a feasible policy x — though this is not true if the

integrality constraint is relaxed. Note also that the solution obtained from [DLP] yields the same

expected revenue as its rounded-down version. Moreover, it is easy to see that a rounded-down

feasible solution to [DLP] is feasible for [SLP]. An immediate consequence of these facts is that
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the optimal allocation policy calculated from [SLP] is never worse than that of the DLP model in

terms of expected total revenue. We emphasize that this is true in the present context of simple

allocation policies, so such a conclusion may not hold for other policies.

2.1 Multi-stage models

We discuss now a multi-stage version of the SLP model described above, in which the policy is

revised from time to time in order to take into account the information about demand learned so

far. Suppose we divide the time horizon [0, τ ] into H + 1 stages numbered 0, 1, . . . ,H. The stages

correspond to some partition 0 = t0 < t1 < . . . < tH−1 < tH = τ of the booking horizon, so that

stage 0 corresponds to the beginning of the horizon and stage h (h = 1, . . . , H) consists of time

interval (th−1, th]. The decision variables at each stage are denoted x0, . . . , xH , where xh = (xh
jk).

Also, we associate with each stage h, h = 1, . . . , H, random variables ξh
jk representing the total

demand for itinerary-class (j, k) between stages h − 1 and h, that is, ξh
jk = Njk(th) − Njk(th−1).

We denote by ξh the random vector (ξh
jk). Notice that the decision vector xh at stage h is actually

a function of x0, x1, . . . , xh−1 and ξ1, . . . , ξh.

The resulting multi-stage model is written as follows:

max fT x0 + Eξ1

[
Q1(x0, ξ1)

]

subject to [MSSP]

Ax0 ≤ c

x0 ∈ Z+.

The function Q1 is defined recursively as

Qh(x0, . . . , xh−1, ξ1, . . . , ξh) = max
xh

fT xh − fT [xh−1 − ξh]+ + Eξh+1

[
Qh+1(x0, . . . , xh, ξ1, . . . , ξh+1)

]

subject to

Axh ≤ c−A

h∑

m=1

min{xm−1, ξm}

xh ∈ Z+,

(h = 1, . . . ,H − 1), where [a]+ := max{a, 0} and the max and min operations are interpreted

componentwise. Notice that we use the notation Eξh+1

[
Qh+1(x0, . . . , xh, ξ1, . . . , ξh+1)

]
to indicate

the conditional expectation E
[
Qh+1(x0, . . . , xh, ξ1, . . . , ξh+1) | ξ1, . . . , ξh

]
. For the final stage H we

have

QH(x0, . . . , xH−1, ξ1, . . . , ξH) = −fT xH ,

where xH = [xH−1 − ξH ]+.
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Observe that in the above formulations we use the equality E[min{a, Y }] = a−E[[a− Y ]+], where

a is deterministic and Y is a random variable.

From the discussion above, we see that the multi-stage stochastic program [MSSP] is, in princi-

ple, a better model for the problem under study than [DLP] or [SLP], since it takes the stochastic

and dynamic features of the problem into account. Several methods have been developed for multi-

stage stochastic programs where all stages involve linear problems, see for instance [4, 6, 12]. One

requirement for these algorithms to work is that the expected recourse function be convex (or

concave, for a maximization problem). Moreover, these algorithms were devised for continuous

problems — research on multi-stage integer problems is ongoing. Unfortunately, model [MSSP] de-

scribed above does not fit that framework. In fact, as we show below, even the continuous relaxation

of that problem does not have a concave expected recourse function.

Example 1. Consider a three stage programming problem corresponding to a single-leg, two-class

problem, with the capacity equal to 4. There are two independent time periods. The demands for

the two time periods are deterministic, respectively ξ̂1 = (1, 2) and ξ̂2 = (2, 2). The fares for each

class are respectively f1 = $500 and f2 = $100. It is easy to check that Q1((1, 1), ξ̂1) = 1000 and

Q1((1, 3), ξ̂1) = 400. However, the average of these values is 1400/2 = 700, which is larger than

500, the value of Q1 at the midpoint (1, 2). Therefore, Q1 is not concave.

It is worth noticing that the lack of concavity exists only for problems with three or more stages,

the reason for that being the min operation in the constraint of the problem defining Q1. Also,

it is important to keep in mind that this issue arises only in the formulation we have presented.

For example, DeMiguel and Mishra [10] circumvent that problem by proposing a model which is

“partially non-anticipative”, in the sense that the decision maker has perfect information about the

current stage (but not about future ones); Möller et al. [16], on the other hand, use a different set of

decision variables — cumulative allocations rather then per-stage ones — and obtain a multi-stage

integer linear stochastic program, which without the integrality constraints yields concave functions

(indeed, when the number of stages is two, the model in [16] is just [SLP]). Those models, however,

can still be difficult to solve, especially for a large network with a large number of scenarios; to

avoid that, in section 3 we will discuss an alternative approach to solve the allocation problem.

3 Re-solving SLP model

A natural alternative to the multi-stage approach described in section 2.1 is to revise the booking

policy from time to time by re-solving a simpler model such as [SLP]. While intuitively it can be

argued that such an approach may yield policies that are inferior to the ones given by [MSSP]

— which by construction finds the optimal dynamic seat allocation policy —, we believe that the

re-solving approach is worth studying, for several reasons. First, as discussed before, the solution of
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[MSSP] is likely to be computationally intensive, especially for large networks. Re-solving a problem

such as [SLP], on the other hand, is reasonably fast, since as described earlier each instance of [SLP]

is equivalent to a moderately sized linear integer program. Moreover, it is clear that the complexity

of [MSSP] increases rapidly as the number of stages grow, since the number of decision variables and

constraints becomes larger; the complexity of re-solving, on the other hand, clearly grows linearly

with the number of stages.

We formalize now the re-solving approach. As in the case of the multi-stage model, we partition

the booking time horizon [0, τ ] into segments {0}, (0, t1], (t1, t2], . . . , (tH−1, τ ] with 0 = t0 < t1 <

. . . < tH−1 < tH = τ , and define ξh, h ∈ {1, . . . , H} as the demand during the time interval

(th−1, th]. By ξ̂h we denote a specific realization of the random variable ξh.

We initially (i.e. at time 0) solve the following problem:

max fTE

[
min

{
x,

H∑

m=1

ξm

}]

subject to [SLPR-0]

Ax ≤ c

x ∈ Z+.

Let x0 denote the optimal solution of the above problem. Then, at each time th, h = 1, . . . , H − 1

we solve

max fTE

[
min

{
x,

H∑

m=h+1

ξm

}∣∣∣∣∣ ξ1 = ξ̂1, . . . , ξh = ξ̂h

]

subject to [SLPR-h]

Ax ≤ c−A
h∑

m=1

min{xm−1, ξ̂m}

x ∈ Z+

and denote the optimal solution by xh. Note that the above model makes use of the information

up to time th — this is the reason why the constraints involve the realizations {ξ̂m} instead of the

random variables {ξm}. Notice also that the expectation in the objective function of [SLPR-h] is

calculated with respect to the overall demand from period h+1 on. The idea is that this would be

the problem one would solve if it was assumed that no more re-solving would occur in the future.

The idea of re-solving an optimization model to use the available information is not new. In

the context of stochastic programming, this is sometimes called the rolling forward approach in

the literature, see for instance [2] and [15]. The specific aspects of each problem, however, lead to

different ways to implement the rolling mechanism. For example, in [2] a two-stage model is initially

solved where the realizations at the second stage correspond to all possible scenarios of the original
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problem. That is, such a problem can be enormous and must be solved via some sampling method

(see [18] for a compilation of results). In contrast, in our case the two-stage program [SLPR-0] deals

only with the total demand
∑H

m=1 ξm. This reduces the number of scenarios drastically, especially

when the distribution of
∑H

m=1 ξm can be determined directly. Such is the case, for example, when

the demand for each itinerary-class (j, k) arrives according to a Poisson process — in that case,
∑H

m=1 ξm has Poisson distribution, which then can be truncated as discussed in section 2. This

results in tractable two-stage simple recourse problems that can be solved exactly.

The approach of considering two-stage problems with increasingly small horizons has been used

by Balasubramanian and Grossmann [1] in the context of a multi-period scheduling problem. They

call it the shrinking horizon framework. Their motivation is similar to ours — to provide a practical

scheme for a difficult multi-stage integer problem. Notice however that in our case we have the

additional issue of lack of convexity, as discussed in section 2.1.

The idea of re-solving an optimization model to take advantage of the information accumulated

so far has been a common practice in revenue management applications. As mentioned earlier,

however, Cooper [7] shows a simple counter example where re-solving [DLP] leads to a worse

policy (in terms of expected revenue) than what would be obtained if one had kept the original

policy throughout. As we show next, this does not happen in case [SLP] is re-solved.

Proposition 1. The allocation policy obtained from using models [SLPR-h], h = 0, . . . , H − 1,

yields an expected revenue which is bigger or equal to that given by the allocation policy obtained

from solving [SLPR-0] only.

Proof. It suffices to show that the first re-solving cannot worsen the expected revenue. Let x0 denote

the optimal solution of [SLPR-0]. Then, during the time interval (0, t1], the booking allocation

policy is x0 regardless of whether we are re-solving or not. The difference happens after time t1.

For non-re-solving process, the policy to be used from time t+1 on is x1 := x0−min{x0, ξ̂1} because

the non-re-solving process continues to apply the initial policy. The policy for the re-solving process

is obtained by solving (SLPR-1), i.e.,

max fTE

[
min

{
x,

H∑

m=2

ξm

}∣∣∣∣∣ ξ1 = ξ̂1

]

subject to

Ax ≤ c−A min{x0, ξ̂1}
x ∈ Z+.

Notice that, by definition of x1,

Ax1 = Ax0 −A min{x0, ξ̂1} ≤ c−A min{x0, ξ̂1}

for any possible realization of ξ1. That is, x1 is a feasible solution for the re-solving model, which

means that the policy obtained by re-solving cannot be worse than x1. Since the objective function
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of [SLPR-1] is the expected revenue from time t+1 on, it follows that re-solving cannot yield worse

results than the initial policy.

Proposition 1 shows that, in terms of expected revenue under the corresponding allocation poli-

cies, solving [SLPR-h] successively will keep improving (though perhaps not strictly) the booking

policy. Notice that the re-solving method is somewhat similar to the multi-stage model in the sense

that both yield dynamic booking policies that take the information available so far into account.

As mentioned earlier, it is intuitive that in general [MSSP] gives a better solution. The proposition

below formalizes that result.

Proposition 2. Under the same partition setting, the allocation policy from multi-stage model

[MSSP] yields an expected revenue which is bigger or equal to that given by the allocation policy

obtained from solving [SLPR-h] successively.

Proof. Let Ωh be the set of all possible sample paths of (ξ1, . . . , ξh). A feasible solution for problem

[MSSP] has the form

x0 ×
H∏

h=1

∏

ξ̂1,...,ξ̂h∈Ωh

xh(ξ̂1, . . . , ξ̂h), (2)

where
∏

indicates the cartesian product and each component xh(ξ̂1, . . . , ξ̂h) satisfies

Axh(ξ̂1, . . . , ξ̂h) ≤ c−A
h∑

m=1

min{xm−1(ξ̂1, . . . , ξ̂m−1), ξ̂m}. (3)

On the other hand, consider model [SLPR-h] under a specific realization ξ̄1, . . . , ξ̄h in the scenario

tree, and denote its optimal solution by x̄h(ξ̄1, . . . , ξ̄h). Consider the vector formed by the cartesian

product of such solutions for all realizations and all stages, i.e.,

x̄0 ×
H∏

h=1

∏

ξ̄1,...,ξ̄h∈Ωh

x̄h(ξ̄1, . . . , ξ̄h),

It is clear that the resulting vector has the form (2). Moreover, since the [SLPR-h] problem has the

constraints Axh ≤ c−A
∑h

m=1 min{xm−1, ξ̄m}, it follows that x̄h(ξ̄1, . . . , ξ̄h) satisfies (3). Therefore,

the combined solution from the [SLPR-h] models is actually a feasible solution in [MSSP].

It is important to notice that Proposition 2 is valid under the same partition into stages.

Indeed, the flexibility of the re-solving approach allows for the inclusion of additional re-solving

points without much burden — in other words, the complexity grows linearly with the number of

stages, which in general is not true for the multi-stage model. It is natural then to compare the

MSSP model and the re-solving SLP model with a refined partition. As the example below shows,

including even one extra re-solving point may yield better results than solving the multi-stage

model.
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Example 2. Consider a single-leg problem with two independent booking classes, 1 and 2, with

f1 = $300, f2 = $200. The capacity is equal to 15, and the booking time horizon has three time

periods, 1, 2, 3. During period 1, the distribution of demand for classes 1 and 2 is

ξ1
1 =

{
0 with probability 1

2

1 with probability 1
2

, ξ1
2 = 0 with probability one.

Likewise, the distribution of demand during period 2 is

ξ2
1 =

{
3 with probability 1

2

7 with probability 1
2

, ξ2
2 =

{
3 with probability 1

2

5 with probability 1
2

and

ξ3
1 =

{
5 with probability 1

2

7 with probability 1
2

, ξ3
2 =

{
4 with probability 1

2

8 with probability 1
2

during period 3.

Because of the limited scale of this problem, the multi-stage model can be solved by enumeration.

Suppose we solve a three-stage problem with the second and third stages defined respectively as

time intervals (0, 1] and (1, 3]. It is easy to check that the optimal solution from this model is

x0 = (15, 0)T , x1
1 = (10, 5)T (when ξ1

1 = 0 happens) and x1
1 = (10, 4)T (when ξ1

1 = 1 happens). The

expected total revenue is $3900.

For the re-solving SLP approach, x0 = (9, 6)T is the first stage decision. Although this solution

does not coincide with that from the MSSP model, it turns out that, once we re-solve at time 1,

we obtain the same expected revenue of $3900 resulting from [MSSP]. When we include an extra

re-solving point at time 2, the expected total revenue becomes $4000, which is $100, or 2.56%

higher than that of MSSP model. For a large network, the improvement would be significant.

This example suggests that applying the re-solving procedure can be more beneficial (in terms of

expected revenue under the allocation policy) than solving a more complicated multi-stage model.

Another type of comparison between the MSSP model and its re-solving counterpart can be

made when one has perfect information. The proposition and corollary below show that, in that

case, re-solving is in fact optimal. Although the direct applicability of these results is limited (as

the true problem is stochastic), the proofs illustrate the relationship between the two approaches.

Proposition 3. Under perfect information, the policies given by models [SLPR-0] and [MSSP] are

equivalent, in the sense that they yield the same expected revenue.

Proof. Suppose there is perfect information, i.e. there is only one sample path, which we denote

by (ξ̄1, . . . , ξ̄H). Each decision xh is made with knowledge of the whole vector (ξ̄1, . . . , ξ̄H). Then,

11



[MSSP] is written as

max
H∑

h=1

fT min{xh−1, ξ̄h}

subject to (4)

Ax0 ≤ c

Ax1 ≤ c−A min{x0, ξ̄1} (5)

Ax2 ≤ c−A min{x0, ξ̄1} −A min{x1, ξ̄2} (6)
...

AxH−1 ≤ c−A
H−1∑

h=1

min{xh−1, ξ̄h} (7)

x ∈ Z+.

It is clear from the above formulation that, if x̃ := (x̃0, . . . , x̃H−1) is an optimal solution for (4),

then so is (min{x̃0, ξ̄1}, . . . ,min{x̃H−1, ξ̄H}). Since the region defined by each constraint (5)-(7)

contains the region defined by the next inequality (recall that A has only non-negative entries), it

follows that the above problem can be simplified to

max fT
H∑

h=1

xh−1

subject to (8)

A
H∑

h=1

xh−1 ≤ c

xh−1 ≤ ξ̄h h = 1, . . . ,H

x ∈ Z+.

Consider now the problem

max fT y

subject to (9)

Ay ≤ c

y ≤
H∑

h=1

ξ̄h

y ∈ Z+.

Notice that (9) is precisely problem [SLPR-0] under perfect information. Thus, to show the property

stated in the proposition, it suffices to prove that the policies derived from (8) and (9) are equivalent.
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To do so, define Cy := {x feasible in (8) :
∑H

h=1 xh−1 = y}. Let F be a mapping from {Cy : y ∈
Rnp} into the feasible region of (9), defined as F (Cy) = y. Consider now the mapping G that

represents the application of the policy obtained from [SLPR-0]. We can express G as a mapping

from the feasible region of (9) into RH×np, defined as follows. For each pair (j, k), let ajk ≤ H be

the largest number such that yjk ≥
∑ajk

h=1 ξ̄h
jk. Then, we define G as

Gh−1(y)jk :=





ξ̄h
jk 1 ≤ h ≤ ajk

yjk −
∑h−1

m=1 ξ̄m
jk h = ajk + 1

0 ajk + 2 ≤ h ≤ H.

Notice that from the above definition we have 0 ≤ Gh−1(y)jk ≤ ξ̄h
jk for all h = 1, . . . , H. Moreover,

H∑

h=1

Gh−1(y)jk =
ajk∑

h=1

ξ̄h
jk + yjk −

ajk∑

m=1

ξ̄m
jk +

H∑

h=ajk+2

0 = yjk.

It follows that G(y) := (G0(y), . . . , GH−1(y)) is feasible for (8) and, in addition,
∑H

h=1 Gh−1(y) = y.

That is, G(y) ∈ Cy. By viewing Cy as an equivalence class, we see that G is actually the inverse

of F , i.e., F is a one-to-one mapping. Now, since F preserves the objective function value, we

conclude that the policies from (8) and (9) are equivalent.

Propositions 1, 2 and 3 together yield the following result.

Corollary 1. Under the same partition into stages and perfect information, the policies given by

models [SLPR-h], h = 0, . . . , H − 1 and [MSSP] are equivalent.

4 Bid-price methods

The policies discussed in the previous sections are of allocation type — i.e., accept customers from a

certain class until the corresponding allocations are used up. Another well-known type of policies is

given by bid prices. In the context of airline booking, this means each leg has an incremental price.

A booking request corresponds to seat occupation in one or more legs; the sum of the incremental

prices for those legs is called bid price for this request. Then, the request is accepted only if its

fare is bigger or equal to that amount. Notice that this method automatically provides a form of

“nesting” even in a network environment, since by construction it cannot happen that a low-fare

customer is accepted while a high-fare request is rejected.

A common way to determine bid prices is through the dual variables of the allocation problems

discussed in section 2. Williamson [25] studies the case where the bid prices are the dual variables of

[DLP]. This method is quite simple and easy to use. However, as pointed out in [21], it may behave

poorly. A natural alternative is to look at the dual multipliers of [SLP]. A third method, proposed
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by Talluri and van Ryzin [21], calculates the dual multipliers of [SLP] under perfect information

and averages the resulting values over a number of samples. Another approach is described in Higle

and Sen [13], where the dual multipliers are calculated from a different stochastic programming

problem (a leg-based seat allocation formulation). We refer to [20] for other approaches to compute

bid prices.

It is clear from the structure of the bid-price policy that its form is too rigid — depending on the

values of the bid prices, entire classes may be rejected. In practice, the bid prices are re-calculated

on a regular basis in order to take into account new information about the demand, thus providing

a more flexible policy. When the bid prices are obtained from dual multipliers of a mathematical

program, this amounts to re-solving the problem with updated information, which is precisely the

setting of section 3.

In light of the results of section 3, a natural question that arises is whether the expected revenue

under a bid price policy can be guaranteed not to worsen with a re-solving approach. Unfortunately,

the answer is negative, even if the bid prices are calculated from the SLP model. We show below

a small example to illustrate this issue.

Example 3. Consider a one-leg model with two booking classes, the less price-sensitive customers

(class 1) paying $100 and more price-sensitive customers (class 2) paying $60. The capacity is 4.

The demands for those customers are denoted by ξ1, ξ2. Therefore the DLP model is

max {100x1 + 60x2 : x1 + x2 ≤ 4, 0 ≤ xi ≤ E[ξi]}.

For an arbitrary time t ≤ τ , let ξt
k denote the (random) number of arrivals of class k up to time

t, and let η̂t denote the actual number of sold seats up to time t. Therefore, the re-solving DLP

model is

max {100x1 + 60x2 : x1 + x2 ≤ 4− η̂t, 0 ≤ xi ≤ E[ξi − ξt
i ]}.

The tables below show the possible outcomes of the corresponding bid price policy, according

to the values of the various quantities involved in the above problems.

Case 1 E[ξ1] > 4 and E[ξ1 − ξt
1] > 4− η̂t:

Booking Methods Acceptable classes through time t Acceptable classes thereafter

DLP without re-solving 1 1

DLP with re-solving 1 1

Case 2 E[ξ1] ≤ 4 and E[ξ1 − ξt
1] > 4− η̂t:

Booking Methods Acceptable classes through time t Acceptable classes thereafter

DLP without re-solving 1, 2 1, 2

DLP with re-solving 1, 2 1

14



Case 3 E[ξ1] > 4 and E[ξ1 − ξt
1] ≤ 4− η̂t:

Booking Methods Acceptable classes through time t Acceptable classes thereafter

DLP without re-solving 1 1

DLP with re-solving 1 1, 2

Case 4 E[ξ1] ≤ 4 and E[ξ1 − ξt
1] ≤ 4− η̂t:

Booking Methods Acceptable classes through time t Acceptable classes thereafter

DLP without re-solving 1, 2 1, 2

DLP with re-solving 1, 2 1, 2

Suppose now the demand for the whole horizon has the following distribution:

ξ1 =
{

5 with probability 1
2

1 with probability 1
2

, ξ2 =
{

2 with probability 1
2

4 with probability 1
2 .

Moreover, suppose that we can divide the time horizon into two periods such that in the first period

there are two class-2 arrivals only. The capacity is c = 4. Notice that we have E[ξ1] = 3 < 4 and

ξt
1 = 0 w.p.1, so E[ξ1 − ξt

1] = 3.

From the tables above we see that the initial policy determined by the bid prices is to accept

all the requests. Then, after the first period, two seats are occupied, i.e., η̂t = 2, and thus case 2

above applies. It follows that, when re-solving model [DLP] to obtain new bid prices, the policy

becomes only accepting class-1 customers. It is not difficult to verify that the expected revenue for

the second period is $155.95 under non-re-solving policy, and $150 under the re-solving one. Since

the expected revenue for the first period is the same for both policies, it follows that the re-solving

policy behaves worse than the non-resolving one.

Similar results are obtained for the case of bid prices generated from model [SLP] (under the

same demand distribution as above), although the calculations are slightly more complicated. The

solution of the SLP problem is (2, 2)T , which implies that the incremental price for the leg is $60.

Thus, in the first time period two seats are allocated to the class-2 customers, so the remaining

capacity for the second period is 2. When re-solving SLP model again, we get the new allocation

at (2, 0)T which implies that the incremental price for the leg is $100. That is, the re-solving

SLP method changes policy from accepting all customers into accepting only class-1 customers. It

follows that the expected revenue for the second period is the same as in the DLP case — $155.95

for non-re-solving, $150 for re-solving. This shows that re-solving can be worse under the bid-price

policy, even if it is generated from the SLP model.

5 Choosing when to re-solve

An issue that does not seem to have been given attention in the literature is how to choose the times

at which decisions are re-evaluated. The standard practice, both for multi-stage models as well
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as for re-solving approaches, appears to be to review the decisions at equally-spaced time points.

However, there is no reason this must be done so, and one may benefit from a better choice of

those times. In this section we discuss this issue in the context of the re-solving approach laid out

in section 3.

To illustrate, consider a situation where re-solving is applied once, at some time t. That is, we

have an initial allocation x0 and a revised allocation x1, which is obtained from the problem solved

at time t. Using the notation defined earlier, let ξ1 and ξ2 be the vectors of total number of requests

during intervals (0, t] (stage 1) and (t + 1, τ ] (stage 2) respectively. We shall write ξ1(t) and ξ2(t)

to emphasize the dependence of these quantities on t, and similarly for x1. Notice that, under this

allocation policy, the expected revenue from time t on is given by fTE
[
min{x1(t), ξ2(t)}]. Thus,

the improvement from re-solving is given by

fTE
[
min{x1(t), ξ2(t)}]− fTE

[
min{(x0 −min{x0, ξ1(t)}), ξ2(t)}] ≥ 0. (10)

The second term above discounts the revenue resulting from keeping policy x0 from time t on. The

term min{x0, ξ1(t)} gives the number of sold seats up to time t, so x0 minus that quantity is the

number of available seats at time t under the initial policy. Thus, in principle one could determine

the value of t that maximizes the quantity in (10); but doing so, of course, is not practical, as it

requires re-solving the model for each value of t is order to calculate x1(t).

Nevertheless, we can study a heuristic approach to determine appropriate re-solving points. We

assume throughout this section that the arrival process of each itinerary-class is a (possibly non-

homogeneous) Poisson process, so ξ1(t) and ξ2(t) are independent for any given t. Let us consider

a simplified model which is restricted to one leg and where the random variables in the objective

function are replaced with their expectations. At time 0 we solve the problem

max

{
fT min{x,E[ξ]} :

n∑

k=1

xk ≤ c, x ≥ 0

}
(11)

and the solution gives the initial allocation x0. Assume that the classes are ordered such that

f1 ≥ f2 . . . ≥ fn. Then, we can easily solve (11). The solution is

x0 =

(
E[ξ1], . . . ,E[ξq], c−

q∑

k=1

E[ξk], 0, . . . , 0

)
,

where q is the smallest index such that
∑q+1

k=1 E[ξk] > c. For simplicity, assume that
∑q

k=1 E[ξk] = c,

so x0
q+1 = 0.

Now consider the re-solving problem at time t. Let ξ1(t) and ξ2(t) be defined as before, so
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ξ1(t) + ξ2(t) = ξ. Then, the re-solving problem is

max fT min{x,E[ξ2(t)]}
subject to

n∑

k=1

xk ≤ c−
n∑

k=1

min{x0
k, ξ̂

1
k(t)},

x ≥ 0.

Note that the above problem is defined for a particular realization ξ̂1
k(t) of ξ1

k(t). From the value

of x0 calculated above, we can rewrite the problem as

max fT min{x,E[ξ − ξ1(t)]}
subject to (12)

n∑

k=1

xk ≤ c−
q∑

k=1

min{E[ξk], ξ̂1
k(t)},

x ≥ 0.

Again this is easy to solve, and we get

x1(t) =

(
E[ξ1 − ξ1

1(t)], . . . ,E[ξ` − ξ1
` (t)], c−

∑̀

k=1

E[ξk − ξ1
k(t)], 0, . . . , 0

)
,

where ` is the smallest index such that
`+1∑

k=1

E[ξk − ξ1
k(t)] > c−

q∑

k=1

min{E[ξk], ξ̂1
k(t)}.

Again, for simplicity let us discard the “residual”, i.e., assume that x1
`+1(t) = 0. Also, suppose

that ` = q w.p.1. Then, the expected objective function value of problem (12) (calculated over the

possible realizations of ξ1(t)) is given by

ν1(t) = E
[
fT min{x1(t),E[ξ − ξ1(t)]}] =

q∑

k=1

fkE[ξk − ξ1
k(t)].

Next, we calculate the value of re-solving. If we do not re-solve, the allocation at time t is given

by x̄(t) = x0 −min{x0, ξ1(t)}, which given the value of x0 calculated above can be written as

x̄(t) =
([
E[ξ1]− ξ̂1

1(t)
]+

, . . . ,
[
E[ξq]− ξ̂1

q (t)
]+

, 0, . . . , 0
)

.

The value of re-solving is given by the expected improvement in the objective value of problem (12)

when using the optimal solution x1(t) instead of keeping x̄(t). The expected objective value at x̄(t)

is given by

ν̄(t) = E
[
fT min{x̄(t),E[ξ − ξ1(t)]}] =

q∑

k=1

fkE
[
min

{[
E[ξk]− ξ1

k(t)
]+

,E[ξk − ξ1
k(t)]

}]
.
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In order to compare ν1(t) and ν̄(t), define ∆(t) := ν1(t)− ν̄(t). Then, we have

∆(t) =
q∑

k=1

fk

{
E[ξk − ξ1

k(t)]− E
[
min

{[
E[ξk]− ξ1

k(t)
]+

,E[ξk − ξ1
k(t)]

}]}
(13)

To alleviate the notation, define µk := E[ξk], and let Zk := ξ1
k(t) (so λk := EZk ≤ µk). Note that

the second term in (13) can be rewritten as

E
[
min

{
[µk − Zk]

+ , µk − λk

}]
= E [min {µk −min{µk, Zk}, µk − λk}]
= µk − E [max {min{µk, Zk}, λk}] ,

so by substituting the above into the expression for ∆(t) we have

∆(t) =
q∑

k=1

fk (E [max {min{µk, Zk}, λk}]− λk) =
q∑

k=1

fkE
[
[min{µk, Zk} − λk]

+]
. (14)

Note that we can write the expectation inside the sum as

E
[
[min{µk, Zk} − λk]

+]
= E

[
[min{µk, Zk} − λk]

+ I{Zk>µk}
]
+ E

[
[min{µk, Zk} − λk]

+ I{Zk≤µk}
]

= E
[
(µk − λk)I{Zk>µk}

]
+ E

[
[Zk − λk]

+ I{λk≤Zk≤µk}
]

= (µk − λk)P (Zk > µk) + E
[
ZkI{λk≤Zk≤µk}

]− λk P (λk ≤ Zk ≤ µk) .

(15)

For simplicity, let us assume that µk and λk are integers. Then, since Zk has Poisson distribution

(with parameter λk =
∫ t
0 λk(s) ds, where λk(·) is the arrival rate function), it is easy to show that

E
[
ZkI{λk≤Zk≤µk}

]
= λk P (λk − 1 ≤ Zk ≤ µk − 1)

so in (14) we have

∆(t) =
q∑

k=1

fk [(µk − λk)P (Zk > µk) + λk (P (Zk = λk − 1)− P (Zk = µk))] . (16)

Clearly, all terms on the right-hand side of the above equation can be evaluated numerically for a

given value of t, so it is easy to find the re-solving point t that maximizes ∆(t). However, we are

interested in developing a heuristics that allows for multiple re-solving points. To do so, we shall

replace the probabilities in (16) with quantities that are easier to calculate.

Consider the term P (Zk > µk). Using the Markov inequality P (Zk > µk) ≤ EZk/µk, we will

replace that quantity with λk/µk, so the first term inside the brackets in (16) becomes simply

λk − λ2
k/µk. Consider now the term P (Zk = λk − 1). Since Zk is a Poisson random variable with

mean λk, we have

P (Zk = λk − 1) =
e−λkλλk−1

k

(λk − 1)!
.
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Using Sterling’s approximation n! ≈ nne−n
√

2πn and also the approximation [n/(n− 1)]n ≈ e, we

have that

P (Zk = λk − 1) ≈ 1
λk

√
λk − 1

2π
,

and so we see that the second term in (16) is less than or equal to
√

λk−1
2π . It follows that the

contribution of this term is small compared to λk − λ2
k/µk and hence we will discard it. Next,

suppose that we can actually compute different re-solving points for each class. Then, the problem

of maximizing ∆(t) in (14) becomes separable and, together with the above approximations, it

reduces to finding λk that maximizes fk(λk − λ2
k/µk). It is easy to check that the solution to this

problem is λk = µk/2. That is, we want to find tk such that

E[ξ1
k(tk)] = E[ξk]/2. (17)

This suggests that, for the original non-separable problem of maximizing ∆(t) in (16), we choose t

such that ∑

i

fkE[ξ1
k(t)] ≈ 1

2

∑

i

fkE[ξk]. (18)

We can give the following intuitive explanation for (18). From (10) we see that, if ξ2(t) is small

with high probability, the improvement in revenue resulting from re-solving is minimal. That is,

we want to pick a re-solving point t in such a way that the demand from time t on (i.e. ξ2(t)) is

“high enough”. This suggests taking t not too close to τ . On the other hand, if t is too close to

zero, then ξ1(t) is small and x0 is close to x1, so again from (10) we see that the improvement is

minimal. So, it seems sensible to choose t such that E[ξ1(t)] ≈ E[ξ2(t)], i.e., E[ξ1(t)] ≈ E[ξ]/2. We

then weight the terms by the corresponding fares to take revenue into account.

The above heuristics can be generalized to multiple re-solving points. Suppose we decide we

want to re-solve R times. Then the time we pick for the rth re-solving point is t such that

∑

k

fkE[ξk(t)] ≈ r

R + 1

∑

k

fkE[ξk]. (19)

We omit the superscript 1 from ξk(t), which represents class-k demand up to time t. Notice that

ξk = ξk(τ). One way to pick t such that (19) holds is to solve the one-dimensional problem

mint |
∑

k fkE[ξk(t)]− r/(R + 1)
∑

k fkE[ξk]|.
The above procedure is intuitive in the single leg case, since there is a natural ordering of the

classes by fare. However, as mentioned earlier the situation is more complicated when dealing with

a network environment. For example, consider a situation where the fare for a certain itinerary-class

pair that uses legs 1 and 2 is $130, whereas the fare for another itinerary-class pair that uses leg

1 only is $100, and the fare for another itinerary-class pair that uses leg 2 only is $70. Intuitively,

if one expects to see more arrivals of the latter classes, then the second class should be preferred

over the first one when making decisions about leg 1. One way to quantify this is through the
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net contribution of each class. Suppose for example that the bid price associated with each leg is

$40. Then, the net contribution of the first itinerary-class is $130 − $80 = $50, whereas the net

contribution of the second one is $100 − $40 = $60. That is, the second class is more profitable

even though its fare is smaller.

It is clear that, in a single-leg environment, the net contribution is actually the fare level. For

networks, one can apply heuristic procedures to rank the classes based on the net contribution.

Such procedures are proposed in [3] and [9], for example. Borrowing from their ideas, we apply the

follow steps to aggregate the demand vector into a one-dimensional quantity. Let fjk be the fare

level for certain itinerary-class pair (j, k) and let Sjk denote the set of legs which are used for that

itinerary. We use the following algorithm to determine R re-solving points:

Algorithm 1

1. Solve model [SLP] at time 0. Let pi denote the bid price for leg i, obtained from the dual

variables of the continuous relaxation of [SLP].

2. Let qjk be the net contribution of itinerary-class (j, k), calculated as fjk −
∑

i∈Sjk
pi.

3. For each r, r = 1, . . . , R, the rth re-solving point tr is a t that satisfies
∑

j,k

qjkE[ξjk(t)] ≈ r

R + 1

∑

j,k

qjkE[ξjk],

where as before ξjk(t) is the class-k demand for itinerary j up to time t.

It is worth pointing out that, when the arrival processes {ξjk(t)} are homogeneous Poisson

processes, we have E[ξjk(t)] = λjkt for all t and hence the above algorithm yields tr := rτ/(R + 1),

i.e., equally-spaced time points — which seems reasonable given the homogeneity of the arrivals.

As we shall see in the next section, however, in the absence of homogeneity the choice of re-solving

times becomes very important.

6 Numerical results

In this section we describe the results from numerical experiments performed with the policies

discussed above. Although our data set was randomly generated, we tried to mimic real data

as much as possible. To do so we imposed the following features, which according to Weatherford

et al. [24] are characteristic of actual booking processes. They are (1) uncertain number of potential

customers; (2) uncertain mix of high- and low-fare customers; (3) uncertain order of arrivals; and

(4) high-fare customers tend to arrive after the low-fare ones.

The first example is a 10-leg network described in Figure 1 below. We consider all flights

to/from the hub from/to each city, as well as the flights between two cities connecting at the hub.
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Therefore, there are 30 possible itineraries in the network. There are two booking classes for each

flight, with the proportion of 1:3 between high and low fare classes in terms of total requests.

Following [24], we model the booking process by a doubly stochastic non-homogeneous Poisson

Figure 1: Example 1

process (NHPP), where the arrival intensity at time t has gamma distribution. More specifically,

for each itinerary j let λj1(t) and λj2(t) be the arrival intensity of respectively high-fare and low-

fare customers at time t. Denote by αj > 0 the total expected number of requests for itinerary j

over the booking horizon (i.e., for both classes together). Let Gj be a random variable with gamma

distribution with shape parameter αj and scale parameter β′ = 1 (that is, the density function of

Gj is fj(x) = (x/β′)αj−1e−x/β′

β′Γ(αj)
, x ≥ 0).

We define λjk(t), k = 1, 2, as

λjk(t) = βjk(t)×Gj × ψk

where βjk(t) =
1
τ

(
t

τ

)ajk−1 (
1− t

τ

)bjk−1 Γ(ajk + bjk)
Γ(ajk)Γ(bjk)

.

The parameters ψ1, ψ2 are set with the goal of reflecting the proportion of arrivals for high- and

low-fare customers. We take this proportion to be 1:3 in all itineraries, so we set ψ1 = 0.25 and

ψ2 = 0.75. Notice that, for each t, λjk(t) has gamma distribution with shape parameter αj and scale

parameter βjk(t)ψk. In particular, E[λjk(t)] = αjβjk(t)ψk and hence the total expected number of

arrivals for itinerary j is
∫ τ
0 E[λj1(t)] + E[λj2(t)]dt = αjψ1 + αjψ2 = αj , which is consistent with

our definition of αj .

The parameters βjk(t) are selected to reflect the arrival patterns of different classes. High-fare

customers tend to arrive close to the end of the booking horizon, whereas low-fare customers usually

appear early in the booking process. To model that, we set aj1 > bj1 (high-fare customers), and

aj2 < bj2 (low-fare customers). In our example we used ajk, bjk ∈ {2, 6} for all j, k.

From Figure 1 we see that there are 10 one-leg and 20 two-leg itineraries. For two-leg itineraries,

we set the total expected number of requests equal to 100, that is, αj = 100. The high and low

fares are respectively fj1 = $500 and fj2 = $100. For one-leg itineraries, we set the total expected
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number of requests equal to 40, that is, αj = 40, with the high and low fares set as fj1 = $300 and

fj2 = $80. All legs in the network have capacity equal to 400, and the booking horizon has length

τ = 1000 time units.

The second example is depicted in Figure 2. Again, we consider two classes for each itinerary.

Notice that there are 10 one-leg, 12 two-leg, and 8 three-leg itineraries. The expected number of

requests are 60, 150, and 100 respectively. The fare levels for different type of itineraries are set as

($300, $80), ($500, $100), and ($700, $200). The parameters ajk, bjk, ψ1 and ψ2 are the same as in

the first example, as well as the horizon length. The leg capacities are 400 for the arcs connecting

the hubs with the satellite nodes, and 1,000 for the arcs connecting the two hubs.

Figure 2: Example 2

For each of the problems we implemented four basic policies: DLP, SLP, DLP-based bid price

and SLP-based bid price. The linear (integer) programs required to determine the allocations were

solved using the software package XPressMP TM from Dash Optimization (under the Academic

Partnership Program). For each of the policies, we considered the effect of solving it only once

as well as twice and five times over the booking horizon. The re-solving points were calculated

using two methods — the standard approach of equally-spaced points as well as Algorithm 1 from

section 5.

For these examples, finding the appropriate re-solving points according to Algorithm 1 was very

simple, since the demand distributions used in the examples allow us to calculate E[ξjk(t)] exactly.

It turns out that E[ξjk(t)] = αjψkBjk(t/τ), where

Bj1(s) := −6s7 + 7s6

Bj2(s) := −6s7 + 35s6 − 84s5 + 105s4 − 70s3 + 21s2

for all j. Notice that the expected number of arrivals of itinerary-class (j, k) over the whole

horizon is E[ξjk] = E[ξjk(τ)] = αjψkBjk(1) = αjψk. Figure 3 shows the plot of the function

H(t) :=
∑

j,k qjkE[ξjk(t)] for both examples. It is clear that re-solving occurs more often as the

slope of H gets larger; thus, equally-sized intervals are appropriate only when H is linear (which,

as mentioned earlier, happens when the arrival process is a homogeneous Poisson), but this is not
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the case in these examples. The algorithm suggests re-solving more often as the end of the horizon

approaches, which reflects the fact that high-fare customers tend to book later than low-fare ones.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16
x 10

4

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 10

4

Figure 3: Graph of the function H(t) =
∑

j,k qjkE[ξjk(t)] for Examples 1 (left) and 2 (right).

The results in Tables 1-2 show the average revenue for each policy and each example. These

numbers were obtained by building a simulation model whereby we simulate the arrival process and

apply the corresponding booking policies. The accrued revenue is the sum of the fares of accepted

customers, and we compute the average revenue over 1000 replications. Next to each number we

display the half-width of a 95% confidence interval for the expected revenue obtained with the

corresponding allocation policy. In order to facilitate the comparison, the same streams of random

numbers were used in each run, so that all methods see the same arrivals (each replication, of

course, uses a different stream). The re-solving times listed on the third an fifth rows of the tables

were obtained with Algorithm 1.

DLP–alloc. SLP–alloc. DLP–bid SLP–bid

No re-solving 401980 ± 406 415410 ± 598 347690 ± 967 347990 ± 932

Re-solve at t = 500 404520 ± 426 418012 ± 587 379562 ± 915 373760 ± 941

Re-solve at t = 757 407800 ± 433 419298 ± 566 347988 ± 924 348430 ± 911

Re-solve at t = 200, 400, 600, 800 409740 ± 468 419262 ± 594 391768 ± 913 414310 ± 894

Re-solve at t = 587, 712, 797, 875 409138 ± 464 421894 ± 613 360270 ± 897 359900 ± 923

Table 1: Expected revenue under allocation and bid-price policies, Example 1.

The results confirm the findings reported in sections 3 and 4 that the allocation policy based

on model [SLP] is robust, in the sense that re-solving cannot worsen the revenue. Although the

numbers suggest that the same is true for bid prices or DLP-based allocation, we know this is not

necessarily the case, as discussed in sections 3 and 4. Moreover, we see the effect of choosing the

re-solving points more carefully, as the revenue under the allocation policy goes up in that case.
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DLP–alloc. SLP–alloc. DLP–bid SLP–bid

No re-solving 583630 ± 552 595620 ± 726 518470 ± 984 520210 ± 938

Re-solve at t = 500 584610 ± 560 597258 ± 698 554080 ± 862 557150 ± 856

Re-solve at t = 735 588015 ± 614 601156 ± 746 522920 ± 1003 525840 ± 958

Re-solve at t = 200, 400, 600, 800 592387 ± 554 603088 ± 606 578758 ± 987 602890 ± 894

Re-solve at t = 504, 682, 782, 867 594021 ± 536 604859 ± 598 555598 ± 1078 561464 ± 1022

Table 2: Expected revenue under allocation and bid-price policies, Example 2.

For bid-price policies, however, the re-solving times obtained with Algorithm 1 were less effective

than equally-spaced points. This is not entirely surprising, since the rationale behind Algorithm 1

described in section 5 is based on improving revenues under the allocation policy.

Finally, in order to assess the quality of these results we computed the wait-and-see solutions.

These solutions determine the actions that would be taken if all uncertainty was known in ad-

vance. Although this does not yield a practical policy, it does provide an upper bound for the

expected revenue. Table 3 displays the results obtained from sampling scenarios and computing

95% confidence intervals for the wait-and-see value. A comparison of these values with the ones

in Tables 1-2 shows that the best policies in those examples (SLP allocation with re-solving times

from Algorithm 1) yielded revenues of about 97% of the upper bounds, which suggests that those

policies may perform well in practice.

Wait-and-see value

Example 1 432730 ± 593

Example 2 623530 ± 706

Table 3: Wait-and-see values for examples 1 and 2

7 Conclusions

We have discussed the airline booking process based on the origin-destination model. More specif-

ically, we have presented a multi-stage stochastic programming formulation to the seat allocation

problem, which extends the traditional two-stage model proposed in the literature. Our study sug-

gests that solving this multi-stage problem exactly may be difficult, because of the lack of convexity

properties. In order to circumvent that obstacle, we have used an approximation based on solving

a sequence of two-stage stochastic linear integer programs (SLPs) with simple recourse.

Our analysis suggests that the proposed approach is robust, in the sense that solving successive

SLPs can only improve the expected revenue — i.e., it is never better not to re-solve. While
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intuitive, to our knowledge such a property had not been shown in the literature. Moreover, this

gives an advantage of SLPs over the standard deterministic linear program formulation, for which

it is known that re-solving can actually “backfire”. As it turns out, the same phenomenon happens

with some bid-price policies, and we have presented some examples where re-solving worsens the

expected revenue.

We have also shown that, under perfect information, the multi-stage model and the re-solving

approach for the seat allocation problem coincide; this may have some algorithmic implications

(e.g., by applying the progressive hedging algorithm of Rockafellar and Wets [17]), which is a topic

for further research. Note that theoretical comparisons involving bid-prices policies are harder to

obtain, since the revenue accrued with those policies highly depends on the arriving order.

The flexibility of the re-solving approach has allowed us to propose a heuristic method whereby

the re-solving points are chosen with the goal of maximizing the incremental expected revenue; our

numerical results, run for two relatively small-sized models (each with a different network structure)

suggests that the approach is effective.

We must remark that we have not included in our models some of the recent developments

proposed in the literature, such as algorithms that include nesting of classes (see, e.g., [3, 23])

and consumer-choice modeling techniques (see, e.g., [11, 22]). There are two basic reasons for

our decision: first, incorporation of the above features leads to different models which lie outside

of the scope of this paper — for example, the problems in [3, 23] are non-convex problems that

are solved with simulation-based methods, whereas the linear programs in [11, 22] are of different

nature than the ones discussed here. Second, our conversations with people in the airline industry

have shown to us that the basic origin-destination model, particularly the deterministic linear

programming formulation, is widely used in practice; thus, our goal is to provide the practitioners

an easily implementable algorithm that can improve upon what is currently in use. Again, our

theoretical and numerical results show that the methods proposed in this paper have the potential

to accomplish that goal. Nevertheless, we plan to study the applications of those methods under

other settings, particularly when consumer choice is incorporated into the model. Research on that

topic is underway.
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