Hausdorff Dimension of Kuperberg Minimal Sets

Daniel Ingbretson
University of Illinois at Chicago, dingebretson@gmail.com

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

http://ecommons.udayton.edu/topology_conf/9

This Topology + Dynamics and Continuum Theory is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Hausdorff Dimension of Kuperberg Minimal Sets

Daniel Ingebritson

University of Illinois at Chicago

June 28, 2017
Kuperberg’s flow is the flow of a C^∞ aperiodic vector field on a three-manifold called a plug.

This flow preserves a unique minimal set with a fractal structure.

Problem: What is the Hausdorff dimension of this minimal set?
History: Seifert’s conjecture

- Seifert 1950: Does every nonsingular vector field on the three-sphere S^3 have a periodic orbit?
- Wilson 1966: On any three-manifold there exists a nonsingular C^∞ vector field with only 2 periodic orbits.
 - These orbits are contained inside a plug.
 - The plug is inserted to break periodic orbits outside the plug.
- Schweitzer 1974: There exists a C^1 plug with no periodic orbits.
- Kuperberg 1994: Constructed a C^∞ aperiodic plug.
 - Modified Wilson’s construction using self-insertion.
The Wilson Plug

Wilson’s plug is a three-manifold with boundary, supporting a smooth vector field \mathcal{W} defining a flow ϕ_t with three orbit types:

- Large radius:
Wilson’s plug is a three-manifold with boundary, supporting a smooth vector field \mathcal{W} defining a flow ϕ_t with three orbit types:

- Large radius:

- Radius close to 2:
Wilson’s plug is a three-manifold with boundary, supporting a smooth vector field \mathcal{W} defining a flow ϕ_t with three orbit types:

- Large radius:

- Radius close to 2:

- Radius $= 2$:
Wilson’s minimal set

Two periodic orbits
Kuperberg’s plug

The Kuperberg plug is the Wilson plug with self-insertions. The resulting plug K inherits a vector field \mathcal{K} with flow ψ_t.
Dynamics of the Kuperberg flow

Kuperberg (1994)

The C^∞ vector field \mathcal{K} has no closed orbits.
The Kuperberg minimal set

- Ghys (1995): conjectured that K has a unique minimal set \mathcal{M} with topological dimension 2.

- Hurder and Rechtman (2016):
 - $\mathcal{M} \subset K$ is nontrivial.
 - \mathcal{M} is a surface lamination with radial Cantor transversal of Lebesgue measure zero.

- To estimate the Hausdorff dimension of \mathcal{M} we model the transverse Cantor set as the attractor of a conformal graph-directed pseudo-Markov system.
A collection $S = \{\phi_i : X \rightarrow X\}_{i \in I}$ of injective contractions of a compact metric space X is an IFS. For $\omega \in I^n$, denote

$$\phi_\omega = \omega_1 \circ \cdots \circ \omega_n$$

Then $J = \bigcap_{n=1}^{\infty} \bigcup_{\omega \in I^n} \phi_\omega(X)$ is the limit set of S.

Nesting condition: $\phi_{\omega,i}(X) \subset \phi_\omega(X)$.

If $X \subset \mathbb{R}$ and ϕ_i are $C^{1+\alpha}$, then S has bounded distortion.
Iterated Function Systems

A collection $S = \{\phi_i : X \to X\}_{i \in I}$ of injective contractions of a compact metric space X is an IFS. For $\omega \in I^n$, denote

$$\phi_\omega = \omega_1 \circ \cdots \circ \omega_n$$

Then $J = \bigcap_{n=1}^{\infty} \bigcup_{\omega \in I^n} \phi_\omega(X)$ is the limit set of S.

- J is invariant under S.
- If S satisfies the open set condition and the bounded distortion property, then J is a Cantor set.
- Nesting condition: $\phi_{\omega,i}(X) \subset \phi_\omega(X)$.
- If $X \subset \mathbb{R}$ and ϕ_i are $C^{1+\alpha}$, then S has bounded distortion.
Topological Pressure of an IFS

Each IFS $S = \{\phi_i : X \to X\}_{i \in I}$ has an associated topological pressure:

$$P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in I^n} \|\phi'_{\omega}\|^t$$
Each IFS $S = \{\phi_i : X \to X\}_{i \in I}$ has an associated topological pressure:

$$P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in I^n} \|\phi'_\omega\|^t$$

- The limit exists by bounded distortion.
- $P : [0, \infty) \to \mathbb{R}$ is continuous, convex, and strictly decreasing.
Topological Pressure of an IFS

Each IFS $S = \{\phi_i : X \to X\}_{i \in I}$ has an associated topological pressure:

$$P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in I^n} \|\phi'_\omega\|^t$$

- The limit exists by bounded distortion.
- $P : [0, \infty) \to \mathbb{R}$ is continuous, convex, and strictly decreasing.

Theorem (Bowen 1979)

Let J be the limit set of an IFS, and $s = \dim_H(J)$. Then s is the unique solution of $P(s) = 0$.
Dimension theory of limit sets

Thermodynamic formalism:

- Mathematical formulation of equilibrium statistical mechanics developed by Sinai and Ruelle.
- Idea: study space of probability measures on phase space, with good ergodic properties.
- Hausdorff dimension estimates involve probability measures (Frostman’s lemma).
Dimension theory of limit sets

Thermodynamic formalism:

- Mathematical formulation of equilibrium statistical mechanics developed by Sinai and Ruelle.
- Idea: study space of probability measures on phase space, with good ergodic properties.
- Hausdorff dimension estimates involve probability measures (Frostman’s lemma).

Generalizations of Bowen’s theorem:

- Mauldin and Urbański (1996) extended to graph-directed constructions on infinite alphabet.
- Barreira, Pesin and Weiss (1996) developed a non-additive thermodynamic formalism.
There exists a curve γ transverse to the flow so that

$$\mathcal{M} = \bigcup_{-\infty < t < \infty} \psi_t(\gamma).$$

We can decompose \mathcal{M} by level of insertion:

$$\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n$$

Each \mathcal{M}_n forms a propeller winding around the plug.
Level-one propeller \mathcal{M}_1

- Curves are generated the holonomy pseudogroup of the Wilson flow.
- Propeller \mathcal{M}_1 bounds a family of closed regions R_i.
- The pseudogroup contracts R_i in the radial direction.
- Infinite returns of the propeller implies symbolic dynamics on an infinite alphabet.
Level-two propeller P_2

- Curves are generated by composition of Wilson pseudogroup with one insertion.
- Propeller \mathcal{M}_2 bounds a family of closed regions $R_{i,j}$.
- Nesting property: $R_{i,j} \subset R_j$
Pressure for pseudogroups

\[P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in A_n \subset I^n} \|\phi'_\omega\|^t \]
Pressure for pseudogroups

\[P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in A_n \subset I^n} \|\phi'_\omega\|^t \]

- Need to determine the admissible words \(A_n \subset I^n \).
- \(A_n \) is defined by the symbolic dynamics of the pseudogroup.
Pressure for pseudogroups

\[P(t) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\omega \in A_n \subset I^n} \| \phi'_\omega \|^t \]

- Need to determine the admissible words \(A_n \subset I^n \).
- \(A_n \) is defined by the symbolic dynamics of the pseudogroup.
- Necessary to determine growth of derivatives \(\phi'_\omega \) of the holonomy maps.
- Bounds on \(\phi'_\omega \) lead to generalized pressure functions.
- To estimate \(P(t) = 0 \), we find zeros of generalized pressure functions.
Dimension estimates on \mathcal{M}

Theorem (I.)

Let $C \subset [0, 1]$ be the transverse Cantor set of \mathcal{M}.

- There exists a conformal graph-directed pseudo-Markov function system on $[0, 1]$ with limit set C.
- $s = \dim_H(C)$ is the unique root of a dynamically defined pressure function.
- $0.544 \leq \dim_H(C) \leq 0.863$.

Corollary: $2.544 \leq \dim_H(\mathcal{M}) \leq 2.863$.

Question: Can we use similar thermodynamic formalism to find dimension estimates for other codimension-one attractors?
Dimension estimates on \mathcal{M}

Theorem (I.)

Let $C \subset [0, 1]$ be the transverse Cantor set of \mathcal{M}.

- There exists a conformal graph-directed pseudo-Markov function system on $[0, 1]$ with limit set C.
- $s = \dim_H(C)$ is the unique root of a dynamically defined pressure function.
- $0.544 \leq \dim_H(C) \leq 0.863$.

Corollary: $2.544 \leq \dim_H(\mathcal{M}) \leq 2.863$.

Question: Can we use similar thermodynamic formalism to find dimension estimates for other codimension-one attractors?

