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Stochastic Analysis of Horizontal IP Scanning
Derek Leonard, Zhongmei Yao, Xiaoming Wang, and Dmitri Loguinov∗

Department of Computer Science and Engineering
Texas A&M University, College Station, TX 77843 USA

Email: {dleonard, mayyao, xmwang, dmitri}@cse.tamu.edu

Abstract—Intrusion Detection Systems (IDS) have become
ubiquitous in the defense against virus outbreaks, malicious
exploits of OS vulnerabilities, and botnet proliferation. As attack-
ers frequently rely on host scanning for reconnaissance leading
to penetration, IDS is often tasked with detecting scans and
preventing them. However, it is currently unknown how likely an
IDS is to detect a given Internet-wide scan pattern and whether
there exist sufficiently fast scan techniques that can remain
virtually undetectable at large-scale. To address these questions,
we propose a simple analytical model for the window-expiration
rules of popular IDS tools (i.e., Snort and Bro) and utilize a
variation of the Chen-Stein theorem to derive the probability
that they detect some of the commonly used scan permutations.
Using this analysis, we also prove the existence of stealth-optimal
scan patterns, examine their performance, and contrast it with
that of well-known techniques.

I. INTRODUCTION

As the Internet has grown more hostile over time [26],
[38], many networks now deploy Intrusion Detection Systems
(IDS) [5], [35] to deal with the constant pressure of unso-
licited traffic and attempts to exploit various vulnerabilities
at end-hosts [26]. In its most general form, IDS monitors
all inbound/outbound connections to detect such activities
as scanning (e.g., attempts to find open services [1], [10],
[26], [37], [41]), intrusion (e.g., malicious packets that exploit
known vulnerabilities [21], [23], [33]), anomalies (e.g., new
communication patterns indicating infection [7], [14], [36]),
and DoS attacks (i.e., suspicious spikes in traffic/connection
volume [15], [22]). In conjunction with firewalls, IDS can
block offending hosts and raise alarms to alert administrators
to potentially undesirable activity.

To maintain scalability [17], adapt over time, and keep state
from growing to infinity, existing IDS tools [5], [11], [24],
[29], [35] utilize window-based processing of incoming traffic,
which entails keeping per-flow statistics only for a limited
period of time and applying IDS detection algorithms to the
packets accumulated during this window. This makes the IDS
detection process purely regenerative [31] and oblivious to
any attacks that span multiple windows. One activity whose
detection is particularly sensitive to the amount of state in
each window is horizontal scanning, which consists of probing
every Internet host on a given port to see if it is visible outside
the firewall.

To balance accuracy and false-positive rates, an IDS typ-
ically requires some minimum number of packets in the

∗Supported by NSF grant CNS-1017766.

window before triggering an estimator or raising an alarm. As
observed in [38], a worm could utilize so-called stealthy scan
patterns to prevent IDS from reaching this threshold, which
makes such scans equally powerful against all underlying es-
timators. For horizontal stealth scanning studied in this paper,
the main exposed technique [38] is to scan “very slowly,”
potentially dragging out the process over several months.
However, it is unclear whether stealth scanning is possible
at faster rates, in what particular order the IP space should
be probed, and how likely the existing IDS packages are to
detect such approaches. To shed light on this issue, we model
window rules of two popular IDS implementations (i.e., Snort
[35] and Bro [5]), study the rates at which the existing scan
techniques [1], [9], [19], [20], [27], [28], [38] become stealthy,
and explore fundamental IDS limitations under stealth-optimal
scan patterns.

While IDS avoidance in the literature commonly targets
vulnerabilities of known implementations [12], [13], [25],
[30], [34] or concealment of abnormal communication patterns
[6], [39], [43], to our knowledge the performance of generic
window-based IDS and various scan techniques has not been
modeled before. We perform this task below.

II. FORMALIZING SCANNING

In this section, we outline the goals of a large-scale scanner,
introduce three fundamental elements of a scan that determine
its performance, and set forth assumptions on the various
types of IDS. We then discuss stealth-optimal scans and their
properties.

A. Scan Objectives

Assume F = {0, 1, . . . , n} is the IPv4 address space, where
n = 232, and S is the set of all CIDR networks. As discussed
in [38], one of the most effective penetration models used
by an attacker (i.e., the Flash worm) relies on a two-phase
scan/infect approach. The first phase scans F using m source
IPs in some set M (e.g., a subset of the attacker’s botnet)
to build a list of vulnerable targets V . The second phase uses
zombie hosts in another set M′ to attempt infection of V using
a new exploit. Sets M and M′ may overlap if exposure during
the first phase does not reduce the infection performance of
IPs in M during the second phase.

As there is no need for newly infected hosts to scan the
entire Internet, they perform only a limited scan of the local
network (e.g., the corresponding BGP prefix, which is assumed
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Fig. 1. Illustration of permutation/split (m = 3).

to be inside the firewall) and then stop. Due to the short
duration of the infection phase (hours rather than weeks) and
limited local scanning, this attack is difficult to stop once it
starts and infections are hard to detect after phase two is over.

For a given budget m and fixed scan duration T , we assume
the attacker’s goal is to minimize its detection probability at
each CIDR subnet s (i.e., maximize its stealthiness) during the
first phase of the attack. The problem of delivering malicious
payload is implementation/exploit-dependent and outside the
scope of this paper. Due to the static nature of set M, we
are also not concerned with sub-allocating the scan space
dynamically to each newly infected host as commonly studied
in worm propagation [20].

B. Scan Patterns

Our first contribution is systematic classification of the
algorithms involved in scanning. Define an Internet-wide scan
pattern to consist of three principle elements – permutation,
split, and schedule. The existing literature [3], [4], [8], [21],
[23], [27], [28], [33] has glanced over the first two elements,
but without any formalization or analysis. The third one is
novel and is presented here for the first time.

Given a list of items F , a permutation is a one-to-one
mapping function g1 : F → {1, 2, . . . , |F|} that simply
shuffles the elements in F . We often denote the permuted
sequence by F ′ = g1(F). Permuting the IP space is highly
beneficial because it reduces the instantaneous load on target
networks, increases delays between packets entering IDS, and
generally lowers the detection probability. It can also control
randomness and correlation among the destinations in each s.

We define a split as a many-to-one function g2 : F → M
that assigns the elements of list F to scanner IPs. One
can view this as a partition of F into non-overlapping lists
F1, . . . ,Fm, where Fi is given to host i ∈ M. If each of
Fi is an ordered subset of F , we call this arrangement a
block-split. In the context of the Internet, a pre-permutation
scanner [4], [25] first applies partitioning g2 to F and then
permutes each Fi using some algorithm g1 to produce the
final assignment F ′

i = g1(Fi) of source i. A post-permutation
scanner [3], [8], [18], [19], [20], [28], [42], [44] first applies
permutation g1 to F and then partitions list F ′ using g2 into
F ′

1, . . . ,F ′
m. This is schematically shown in Fig. 1, where the

pre-permutation scanner (left side) uses a block-split, while
the post-permutation one (right side) does not.
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Fig. 2. Process Cs
i (t) of IDS-A.

The final issue is to determine how each host i probes its
target set F ′

i so as to complete the scan by a certain time T .
To allow i to periodically send packets faster or slower than
its average rate ri = |F ′

i |/T , define a schedule to be a many-
to-one function g3 : F ′

i → [0, T ] that decides the exact time
instances at which i hits each of its assigned targets. While all
existing scanners draw elements from F ′

i with a constant inter-
probe delay 1/ri, bursty patterns will be discussed shortly.

C. Window-Based IDS

To understand the relationship between detectability of a
scan and its probing rate r, one requires a model of IDS. In
what follows, we present our second contribution that consists
of formalized window-based detection rules of popular IDS
packages [5], [11], [24], [35] and firewall-log analyzers [29].
Since scalability requires that IDS expire state and operate
in windows of finite size [17], other high-performance IDS
designs are also likely to fall under one of the two categories
introduced here.

Our first model, which we call IDS-A, stems from the rules
of Snort [35] and its commercial implementations [11], [24].
For each source IP i ∈ M sending packets into a given subnet
s ∈ S protected by an IDS, define Cs

i (t) to be the count of
unique targets seen by the IDS from i in the interval [0, t].
Since keeping infinite history of hosts contacted by i incurs
substantial RAM/CPU overhead and fails to properly discount
outdated information, IDS-A periodically resets i’s state back
to zero as illustrated in Fig. 2. Here, random process Cs

i (t)
increases by 1 for each new target hit by i, returns to state
0 every ∆s time units, and absorbs in pre-defined threshold
state as ≥ 1 that triggers some internal estimation algorithm,
which we assume always detects the scanner once invoked1.

Our second model, which we call IDS-B, is derived from the
techniques used by Bro [5] and certain firewall-log analyzers
[29]. In this method, Cs

i (t) represents the number of unique
unresponsive targets hit by i in the interval [0, t]. Unlike IDS-
A, this model expires i’s state only if it does not probe any new
unresponsive targets for ∆s time units. Assuming the worst-
case scenario where none of the targets respond, this logic can
be described by Fig. 3, where the expiration timer of i resets
to ∆s upon each state transition. This represents the best-case
detection scenario for the estimator (e.g., TRW [10], CBCRL
[32]) that runs on top of the underlying packet-capture device.

For the same parameter set, IDS-B is stricter than IDS-
A in the sense that any scanner detected by the latter is

1Note that deriving the probability that the triggered estimator detects
the scan depends on numerous factors (e.g., fraction of internal IPs with
legitimate servers, prior history of inbound/outbound traffic, and specific
detection algorithms) and is outside the scope of the paper.
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Fig. 3. Process Cs
i (t) of IDS-B.

always detected by the former. Similarly, a scanner avoiding
IDS-B always avoids IDS-A. However, IDS-B achieves this
improvement at the expense of maintaining a separate timer
for each i and stochastically higher overhead (i.e., longer lists
of seen targets) in steady-state. Default parameters (∆s, as)
of deployed open-source and commercial IDS-A/B are sum-
marized in Table I.

D. Stealth

Our next contribution is to introduce the concepts of de-
tectability and stealthiness of a scan. Let I ⊆ S be the set of
all IDS-equipped networks, where each element of I is a full
CIDR block (often written in the /x notation). Then, we start
with the following classification.

Definition 1: A network s ∈ I is called size-trivial if
m(as−1) ≥ |s|, unavoidable if as = 1, and normal otherwise.

Size-trivial subnets can be covered with fewer than as
packets per source IP, which means they pose no threat of
detection if the scanner can probe them while perfectly load-
balancing between its IPs in M. In contrast, unavoidable
networks raise an alarm on the very first probe (e.g., darknets,
personal firewalls) and thus cannot be avoided in practice
by any scanner. Define IST , IU , IN to be pair-wise non-
overlapping sets of respectively size-trivial, unavoidable, and
normal networks in I.

Assume r = n/T is the average scanning rate. Then, for
each source IP i ∈ M, let

τ si (r) = inf{t > 0 : Cs
i (t) = as|Cs

i (0) = 1} (1)

be the amount of time it takes s to detect i, which is simply
the first hitting time of Cs

i (t) onto state as after the IDS sees
the initial packet from i. Let As

i (r) be an indicator variable
of detection event τsi (r) < T and As(r) =

∑
i∈M As

i (r) be
the number of source IPs detected by subnet s ∈ I in [0, T ].
Then, ρs(r) = P (As(r) ≥ 1) is the probability that network
s detects the scan at rate r.

Assume X is a pattern that scans all IPs in F . Then,
define the stealth-cover time (SCT) T s

X of a normal subnet
s ∈ IN to be the minimum scan duration T that allows X
to avoid detection at s. Recalling that r = n/T , observe that
T s
X = inf{t ≥ 0 : ρs(n/t) = 0}. Note that the concept of

SCT applies only to normal subnets since size-trivial networks
can be scanned without detection in T s

X = 0 and unavoidable
networks require T s

X = ∞, neither of which is helpful in
establishing the performance of scanning algorithms.

Definition 2: A scan pattern X is called k-stealthier in s ∈
IN than Y if it exhibits k times smaller SCT, i.e., T s

X = T s
Y /k.

It is called IP-scalable if it is m-stealthier in all s ∈ IN with
m source IPs than with one.

TABLE I
PARAMETERS OF COMMON IDS

Type Name ∆s (sec) as
IDS-A Snort [35] 60 5

Juniper [11] 120 50
NIKSUN [24] 300 200

IDS-B Bro [5] 600 20
Bro TRW [10] 1800 4
Psad [29] 3600 5

The concept of k-stealthier is used later in the paper to
compare the relative performance of different scan patterns. IP-
scalability, on the other hand, determines whether a particular
scan pattern can reduce its scan duration T proportional to the
number of participating IPs without becoming more detectable.
Interestingly, some of the methods discussed below do not
benefit from larger m and are not IP-scalable.

Our final definition relates to stealth optimality. It is usually
safe to assume that the scanner remains oblivious to individual
IDS values (∆s, as) and CIDR subnet boundaries in set I.
However, from the analysis of common IDS implementations
(e.g., Bro-TRW [10] requires at least 4 samples for its estima-
tor), one may possess a uniform lower bound β on parameter
as. In that case, we call the scanner β-aware if 2 ≤ β ≤ as
holds simultaneously for all normal subnets s ∈ IN and
no larger bound is known. If β = 2, we call the algorithm
unaware since it benefits from no additional knowledge.

Definition 3: For a given m, a β-aware scan pattern X
is called STealth-OPtimal (STOP) if for both IDS-A/B it
1) achieves ρs(r) = 0 in all size-trivial networks; and 2)
minimizes the SCT of all normal subnets among all β-aware
patterns, i.e., ∀s ∈ IN : T s

X = minY T s
Y .

III. ANALYSIS OF EXISTING METHODS

Our goal in this section is to analyze two popular methods
for scanning the Internet – sequential [1], [9], [19] and uniform
[20], [27], [28], [38]. Our contribution here is not only to
derive the detection probability ρs(r) and cover time T s

X for
both IDS-A/B, but also to develop a novel unifying modeling
framework that applies to both pre and post-permutation splits.

A. Sequential

Our first studied method, which we call sequential, does not
permute the IP space (i.e., F ′ = F), uses a block-split that
partitions F into m equal-size chunks, and sends packets from
each i with constant spacing δ = 1/ri = Tm/n. Note that
both pre/post permutation splits are equivalent for this method
and each subnet s (smaller in size than n/m and not falling
on the boundary between adjacent source IPs) is scanned by
a single i ∈ M assigned to it.

The sequential permutation is guaranteed to avoid IDS-
A if and only if each source allows no more than β − 1
inter-packet gaps within any interval [t, t + ∆s), which is
equivalent to δ(β − 1) ≥ ∆s. For IDS-B, this condition is
much more conservative since none of the inter-packet delays
δ can be smaller than ∆s. Combining the two cases, we have
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the sequential SCT as

T s
Q =

∆sn

mζ
, where ζ =

{
β − 1 IDS-A
1 IDS-B

. (2)

Notice from (2) that sequential scanning is IP-scalable and
(β − 1)-stealthier against IDS-A than IDS-B. This pattern
is invisible to all networks with fewer hosts than the IDS
threshold (i.e., |s| < as), but this is far from optimal since
IP-load-balancing can do much better, i.e., automatically avoid
detection at all size-trivial networks whose |s| ≤ m(as − 1).
This difference is quite significant for large m.

In terms of probing rates, sequential scans hit each s at

max
( n

mT
,
|s|
T

)
(3)

packets per second (pps). Depending on the scan duration T ,
this rate may become quite noticeable in comparison to the
background traffic and may lead to easy detection. For T = 24
hours, the first term of (3) is 49.7/m Kpps, regardless of the
target subnet size. However, if both the botnet and s are large
(i.e., m|s| ≈ n), the sequential scan rate might not be too far
from the optimal |s|/T , which is possibly one of the reasons
for its widespread use in the Internet [1].

B. Uniform Pattern

The main drawback to the sequential permutation is that it
does not explore other subnets before hitting the same s with
repeat packets. Uniform scanning improves upon this basic
algorithm by spreading packets between random subsets of the
Internet. We call a permutation function g1 on list F uniform if
the probability that each i ∈ F moves into position j ∈ [1, |F|]
is 1/|F|. All existing uniform scanners use block-split and
constant inter-packet delays δ = Tm/n.

Consider a particular subnet s with |s| IPs that need to
be scanned in [0, T ]. For pre-permutation, the uniform shuffle
randomly scatters these |s| targets throughout F ′

i , where i is
the host permanently assigned to scanning s and F ′

i is its list of
targets. For post-permutation, the same IPs are now scattered
in a much larger set F ′. This is illustrated in Fig. 4, where
the IPs in s are marked with solid circles.

Assuming n ≫ 1, the shuffle can be viewed as occurring
in time rather than inside a discrete set. This transformation
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(d) T = 250 days

Fig. 5. Comparison of post-permutation IDS-A model (5) to simulations
(default parameters |s| = 28,∆s = 60 sec, as = 4, and m = 1).

simplifies understanding of the derivations below and does
not impact the accuracy of analysis. Specifically, imagine that
source IPs scan the Internet one after the other (rather than
concurrently) as shown at the bottom of Fig. 4 with four
intervals of size T following each other back-to-back. This can
be done because IDS does not correlate traffic from different
source IPs. Then, the time instances when s sees probes from
M is distributed uniformly in the interval [0, ωT ], where

ω =

{
1 pre-permutation
m post-permutation

. (4)

C. Uniform Against IDS-A

We start by analyzing how the uniform pattern delivers
packets to individual networks and develop a simple model
for the detection probability in IDS-A. We later extend this
result to IDS-B.

Theorem 1: For T ≫ ∆s, the probability that a normal
subnet s ∈ IN with IDS-A detects a uniform scanner is

ρsA(r) ≈ 1−
(as−1∑

j=0

(
|s|
j

)
qj(1− q)|s|−j

)1/q

, (5)

where q = ∆s/ωT .
Fig. 5 compares simulations to (5) as four of the main

parameters of the model change. Numerical results indicate
that (5) is accurate to within 1% as long as T ≥ 100∆s. For
T = 24, this translates into ∆s ≤ 14.4 minutes. Part (b) shows
one example where T = 10∆s is insufficiently large, which
results in some mild discrepancy for values of as ∈ [30, 35].

From the analysis of (5), observe that ρs(r) is a function
of product ωT , which means that increasing ω by a factor of
m allows reduction of T by the same factor without changing

4



the detectability of the scanner. Thus, uniform scanning is IP-
scalable against IDS-A if and only if it uses post-permutation
split. For pre-permutation split (i.e., ω = 1), the detection
probability stays constant regardless of m and the scanner’s
stealthiness does not benefit from IP diversity.

D. Uniform Against IDS-B
For IDS-B, our first step is to understand inter-probe delays

{Y s
k }k seen by s from the attacker in our continuous model in

Fig. 4. Note that the model allows some of these delays to span
the border of multiple source IPs, which we deal with later in
the section by requiring that |s|/m be sufficiently large.

Theorem 2: Inter-probe delays Y s
1 , . . . , Y

s
|s|−1 are identi-

cally distributed random variables with E[Y s
k ] = ωT/|s| and

the following CDF tail

P (Y s
k ≥ y) =

(
1− y

ωT

)|s|
, 0 ≤ y ≤ ωT. (6)

Proof: First, notice that the uniform permutation is equiv-
alent to randomly distributing |s| points on a ring of length
ωT . Since there are |s| inter-probe gaps on the ring, their
mean is simply E[Y s

k ] = ωT/|s|. Second, the probability that
a given address from s falls in the interval [t, t+y) ⊆ [0, ωT ]
is y/ωT . Then, the probability that none of the addresses from
s land into [t, t+ y) is P (Y s

k ≥ y) = (1− y/ωT )|s|.
We omit simulations showing that (6) is very accurate.

Instead, we define χs = P (Y s
k < ∆s) to be the probability that

the uniform permutation sends two probes to s with spacing
smaller than ∆s and proceed to the next result.

Theorem 3: For (|s|−as)(1−χs)/m → ∞, the probability
that IDS-B at a normal subnet s ∈ IN detects a uniform
scanner is asymptotically

ρsB(r) ≈ 1− e−(|s|−as+1)(1−χs)χ
as−1
s . (7)

Proof: Define Js
k to be an indicator variable of event

Y s
k < ∆s. Then, P (Js

k = 1) = 1 − P (Js
k = 0) = χs. Since

IDS-B needs as− 1 consecutive 1s in set {Js
k}k to arrive into

state as, define

Xs
k =

{
1 Js

k = Js
k+1 = . . . = Js

k+as−2 = 1

0 otherwise
(8)

to be an indicator of a detection event occurring at time k +
as−2. Denoting by l = |s|−as+1 the size of set {Xs

k}k, we
have that Xs =

∑l
k=1 X

s
k is the total number of detections in

[0, ωT ] and ρs(r) = P (Xs ≥ 1).
Before deriving this probability, note that we need to ana-

lyze only those consecutive runs of 1s in sequence {Js
k}k that

follow a 0 and start no later than position l. Indeed, supposing
that this set contains Z zeroes, Xs is non-zero if and only if
any of the Z runs of 1s that immediately follow a zero has
length of at least as − 1. All other runs provide redundant
information and can be removed from consideration.

Define Vj to be the value of Xs
k following the j-th zero in

set {Js
k}lk=1. We then obtain

Xs =
Z∑

j=1

Vj . (9)
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Fig. 6. Comparison of post-permutation IDS-B model (7) to simulations
(default parameters |s| = 28,∆s = 60 sec, as = 4, and m = 1).

From the Chen-Stein theorem [2] and treating set {Js
k}k

as approximately iid, variable Xs converges to the Poisson
distribution with rate λ = E[Xs] = E[Z]E[V s

1 ] as E[Z] →
∞. Noticing that E[Z] = l(1 − χs) and E[V s

1 ] = χas−1
s , we

get λ = l(1−χs)χ
as−1
s , which immediately leads to ρs(r) ≈

1− e−λ in (7).
We should make two observations about this derivation.

First, for small |s| and large as, the dependency in set {Js
k}k

may be strong enough for ρs(r) to disagree with the model
(which arises because

∑
k Y

s
k ≤ ωT and set {Y s

k }k is not
iid); however, in the limit (7) is exact. Second, although
some delays Y s

k may span between source IPs, condition
(|s| − as)(1− χs)/m → ∞ ensures that each IP gets enough
0s in {Js

k}k to invoke the Chen-Stein theorem and keeps the
overall result asymptotically accurate.

Fig. 6 compares simulations to (7) under the same default
conditions as in Fig. 5. Results show that T,m, and |s| do not
influence the accuracy of the model if threshold as is small
compared to |s| (i.e., the error is below 0.1% for as = 4 and
subnet sizes as small as 28). However, significantly larger as
create too much dependency among consecutive delays {Y s

k }k
leading up to detection and result in a more serious mismatch
with the model, as shown in part (b) of the figure. Despite this
discrepancy, the model can be used to upper-bound ρsB(r) and
compute scanning rates that guarantee a certain level of stealth.

As with IDS-A, uniform scanners are IP-scalable against
IDS-B if and only if they use post-permutation split, which
can be inferred from the ωT term in (6).

E. Uniform Cover Time

We next examine the time needed for the uniform permuta-
tion to cover a particular subnet. In order to determine this
metric, we first relax the definition of SCT since uniform
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scanners can never achieve ρs(r) = 0 with finite T . For a
pattern X , define the ϵ-SCT T s

X(ϵ) of a normal subnet s ∈ IN
to be the minimum duration T in which X can reduce the
detection probability at s below ϵ, i.e., T s

X(ϵ) = inf{t ≥ 0 :
ρs(n/t) ≤ ϵ}. We similarly relax the definition of k-stealthier
and IP-scalable to operate in terms of ϵ-SCT instead of SCT.

This leads to the following approximation.
Theorem 4: Define c = 1/(β − 1). Then, for ϵ → 0 and

|s| ≫ β, the ϵ-SCT of a β-aware uniform permutation is
asymptotically

T s
U (ϵ) ≈

α|s|∆s

ω

{
eη1(β!)−c IDS-A
eη2η−1

3 IDS-B
, (10)

where

α =
( |s|
− log(1− ϵ)

)c

, η1 = W (−c(β!)c/α), (11)

η2 = W (−c/α), η3 =
∞∑
j=0

(αeη2)−j

j + 1
, (12)

and W (.) is Lambert’s function.
Proof: Since ρs(r) = ϵ is asymptotically small, one

can make a number of approximations that greatly simplify
inversion of (5) and (7). For small x, we use Taylor expansions
(1 − x)y ≈ e−xy, 1 − e−x ≈ x, and log(1 − x) ≈ −x. We
also neglect β in comparison to |s|, i.e., |s| − β ≈ |s|.

Without a-priori knowledge of as, a uniform scanner must
assume that counter Cs

i (t) reaching β triggers detection for
both IDS-A/B. This means (5) and (7) must undergo inversion
with as replaced by β. For IDS-A and constant |s|, observe
that ϵ → 0 implies q → 0 and the leading term of ϕs

bin is

ϕs
bin ≈

(
|s|
β

)
qβ(1− q)|s| ≈

(
|s|
β

)
eβ log q−|s|q. (13)

Recalling that ρsA(r) ≈ 1− (1− ϕs
bin)

1/q = ϵ, we have

log(1− ϵ) ≈ log(1− ϕs
bin)

q
≈ −ϕs

bin

q
. (14)

Using (13) in (14) and taking the log of both sides, we get

log
(−β! log(1− ϵ)

|s|β
)
≈ (β − 1) log q − |s|q. (15)

This equation is of the general form c = b log q+aq, whose
solution using Lambert’s W (.) function is given by

q = exp
[
−W

(aec/b
b

)
+

c

b

]
. (16)

Applying this result to (15) and recalling that q = ∆s/ωT ,
we arrive at the first line of (10).

For IDS-B, observe that (7) can be written as

− log(1− ϵ) ≈ |s|(1− χs)χ
β−1
s . (17)

Since χs → 0, we have log(1− χs) ≈ −χs and

log
(− log(1− ϵ)

|s|

)
≈ −χs + (β − 1) logχs, (18)
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Fig. 7. Relative error between the binary-search SCT and its closed-form
approximations (|s| = 216,∆s = 60 sec, m = 1).

which again has shape c = aχs+b logχs. Solving (18) for χs,
we get χs = e−η2/α, where η2 and α are given in (11)-(12).
Expanding χs = 1 − (1 − q)|s| and applying the log to both
sides, we have

log(1− e−η2

α )

|s|
≈ log(1− q) ≈ −q =

−∆s

ωT
. (19)

Substituting − log(1 − z) = z(1 + z/2 + z2/3 + . . .) with
z = e−η2/α into (19), we get the second line of (10).

Fig. 7 shows the relative error between approximations (10)
and the corresponding ϵ-SCT found using binary search on
models (5), (7). For β = 2, the latter is so close to the former
that their relative difference is initially less than 10−5, which
falls below Matlab’s precision for binary search and explains
why it does not improve as ϵ → 0. The other two curves
in each subfigure show monotonic decay as ϵ decreases, with
the IDS-B approximation generally better agreeing with the
original than IDS-A. This arises from the extremely crude
approximation to the binomial distribution in (13). For larger
β, the error is generally more pronounced and decays slower
since the magnitude of the omitted terms is higher; however,
in all cases in the figure it stays below 2.4%.

IV. OPTIMAL SCAN PATTERN

Our contribution in this section is to prove the existence
of stealth-optimal scanners and analyze their model-based
performance in comparison to uniform/sequential.

A. Local Pattern
To understand optimal patterns, we next derive a lower

bound on minY T s
Y and show that there exists a local (i.e.,

as seen by each s) arrival pattern of packets that achieves
optimality under both IDS-A/B. Later in the section, we
develop a scanner that implements this pattern globally (i.e.,
simultaneously in all CIDR subnets).

Theorem 5: The SCT of s ∈ IN is lower-bounded by

min
Y

T s
Y ≥ |s|∆s

m(β − 1)
. (20)

To show that STOP patterns exist, suppose each source i
shapes its traffic to s into bursts of β − 1 packets separated
by an intra-IP gap

δsintra =
Tm(β − 1)

|s|
. (21)
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Fig. 8. Stealthy β-aware probing seen by s.

As illustrated in Fig. 8, this pattern initially raises target
count Cs

i (t) to β − 1 and then follows it up with the
proportionally-stretched gap in (21). Detection is avoided for
IDS-B if and only if δsintra > ∆s. As discussed earlier, IDS-
B is stricter than IDS-A, which means that the scanner also
automatically avoids IDS-A. Combining the two cases and
solving δsintra > ∆s for T , this pattern exhibits the same
SCT for both types of IDS

T s
O =

|s|∆s

m(β − 1)
, (22)

which is optimal as it equals the lower bound in (20).
Examining (22), notice that STOP patterns are not only IP-

scalable, but also (β− 1)-stealthier than any unaware pattern.
Furthermore, the optimal SCT is a linear function of subnet
size |s| and all IDS parameters, unlike the uniform permutation
whose SCT sometimes scales quadratically with |s|, which we
establish later in this section during comparison analysis.

B. Global Pattern

In order to show the existence of global STOP scanners,
we design a novel bursty schedule for GIW/RR, which is
an Internet-wide scanning framework developed in [16] that
relies on Globally IP-Wide (GIW) permutations and Round-
Robin (RR) split. Due to limited space, our explanation of the
relevant concepts from [16] is very brief.

Define d = 32−⌊log2(m(β−1))⌋ to be the number of left-
most bits in the IP address (which we call the depth) at which
subnets become size-trivial. In other words, subnets smaller
or equal to /d can never detect the scanner if it perfectly
load-balances across its m source IPs. The main challenge in
achieving STOP scanning is to ensure that target IPs arrive in
bursts of β − 1 at subnets above depth d and are randomized
according to GIW when viewed at subnets below d. Employing
the Alternating Gateway Tree (AGT) of [16, Section 3.2], this
can be accomplished by traversing the tree β − 2 times and
flipping node directions only at depth no smaller than d. The
last, i.e., (β − 1)-st, traversal flips all 32 nodes to ensure that
the next burst proceeds according to GIW.

Since AGTs are inefficient [16], the above algorithm must
be implemented in practice using β − 1 Reversed Linear
Congruential Generators (RLCGs) maintained by each source
IP [16, Section 3.2]. Specifically, assume that the main RLCG
is in position k in its GIW permutation {zk}k and that the
scanner needs to generate the next β − 1 targets y0, . . . , yβ−2

in a burst. The first target y0 is simply zk. Since the remaining
β − 2 destinations do not change the top d levels of the tree,

Algorithm 1 STOP at each scanner source IP
1: d = 32− ⌊log2(m(β − 1))⌋ ◃ Size-trivial depth
2: start = rand() ◃ Initial seed in [0, 232 − 1]
3: totalB = 0 ◃ Total bursts generated
4: while start != EOS do ◃ While not end-of-sequence
5: for j = 0 to β − 2 do
6: LCG[j].Init(start) ◃ Set start value of LCG
7: LCG[j].Skip(j2d) ◃ Jump forward
8: end for
9: for k = 1 to 2d do ◃ Iterate through 2d bursts

10: IP = totalB mod m ◃ Assigned source IP
11: totalB++ ◃ Count burst number
12: for j = 0 to β − 2 do
13: x = LCG[j].Next() ◃ Get next LCG value
14: if (x != EOS) ∧ (IP is ours) then
15: y = ReverseBits(x) ◃ Obtain RLCG
16: if y is valid then ◃ Falls in scanning space?
17: probe(y) ◃ Hit destination
18: end if
19: end if
20: end for
21: Sleep(T (β − 1)/n) ◃ Wait for next burst
22: end for
23: start = x ◃ Next burst follows last hit target
24: end while

they can be found in the permutation where {zk}k returns
to the same subnet at level d. This is equivalent to skipping
forward by 2d elements each time. This leads to

yj = zk+j2d , j = 0, 1, . . . , β − 2. (23)

The entire process is summarized in Algorithm 1. After
deciding the size-trivial depth and the starting IP in Lines
1 − 2, the main loop in Line 4 runs through bursts of β − 1
packets until the random number generator (i.e., the LCG)
wraps back to the original seed and returns a special EOS
(end-of-sequence) IP address. To avoid re-generating the entire
sequence for each burst, the scanner operates with β−1 LCGs,
each pointing to a different part of the original sequence. Their
initialization and advancement is shown in Lines 6− 7.

For each burst k, RR split decides in Line 10 which local
IP will transmit the entire burst. Decisions about which targets
to hit are made in Lines 13−14 based on the current position
of the underlying LCG and whether the burst is assigned to
this particular source IP. Reversing the bits of the LCG in
Line 15 and checking the result against the scanning space
(e.g., IANA-allocated or BGP blocks) in Line 16 completes
the main portion of the algorithm.

C. Comparison

We finish this section by analyzing the relative performance
of the various algorithms. As ϵ → 0, the numerous constants
in (10) disappear. Specifically, α becomes large and η1 →
0, η2 → 0, η3 → 1, which leads to

T s
U (ϵ) ≈

|s|1+c∆s

ωγϵc
, where γ =

{
(β!)c IDS-A
1 IDS-B

. (24)

First, observe that uniform is stealthier against IDS-A by
a factor of (β!)c than against IDS-B. This ratio is always no
smaller than 2 and is approximately (β/e)1+c for β ≫ 1.
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While for sequential this ratio is always β − 1 and for STOP
it is 1, the uniform permutation splits these two extremes one-
third of the way (i.e., at β/e ≈ 0.37β) as β → ∞.

Second, notice that T s
U (ϵ) is proportional to |s|1+c, which

may scale quite aggressively as |s| becomes large (e.g.,
quadratically for β = 2). Because of this, sequential is actually
stealthier than uniform for any s with |s| > n0, where

n0 =
(nγϵc

ζ

) β−1
β

, (25)

which has not been previously documented and is quite
counter-intuitive. For β = 2, this translates into n0 =

√
γnϵ.

Assuming the desired detection probability ϵ = 10−3 (i.e., on
average, one in 1, 000 subnets detects the scan), sequential
is stealthier than uniform against IDS-A in any network with
more than 2, 930 IPs and against IDS-B with more than 2, 072
IPs (i.e., these roughly map to /20 and /21, respectively).
However, as β increases, (25) quickly rises as well. For β = 4,
the corresponding thresholds are 14.1M (IDS-A) and 9.9M
(IDS-B), which correspond to /8 or larger networks.

Third, even though for some scan patterns two sets of IDS-A
parameters are equivalent if ratio ∆s/(as−1) (i.e., the average
allowed gap between packets) remains constant, this is not
the case against the uniform permutation. Lowering ∆s while
keeping the ratio constant actually increases the uniform cover
time and makes IDS-A perform better at detecting the scanner.
Thus, for example, combination (15, 2) is much stricter against
uniform scanners than Snort’s default (60, 5) although both
allow on average 1 scan packet per 15-second interval.

Fourth, comparing (22) with (2), notice that STOP is n(β−
1)/ζ|s| times stealthier than sequential in each s. Given a /16
subnet with Bro TRW’s default β = 4, this translates into
an improvement by a factor of 64K against IDS-A and 196K
against IDS-B. This is equivalent to a reduction of T from
1 year to 8 minutes for IDS-A and 2.6 minutes for IDS-B,
while keeping the detection probability the same. For a fixed
T , STOP’s inbound rate at each subset s is max(n/m|s|, 1)
times smaller than sequential’s. Using T = 24 hours and a
modest m = 10, this results in 0.76 pps at /16 subnets and one
probe every 337 seconds at /24 subnets, which is a reduction
by a factor of 6.5K and 1.67M, respectively, over sequential.

Finally, notice from (22) and (24) that the stealth-optimal
pattern is

π(ϵ) =
T s
U (ϵ)

T s
O

=
|s|c(β − 1)

γϵc
(26)

times stealthier than uniform. This ratio is plotted in Fig. 9 for
two subnet sizes. In both subfigures, (26) for IDS-A starts at
|s|/2ϵ for β = 2 and converges toward e as β → ∞. For IDS-
B, it starts at double the IDS-A value and never drops below its
global minimum π0 = e log(|s|/ϵ) achieved at β0 = π0/e+1.
This shows that regardless of β, the STOP pattern is at least
π0-stealthier against IDS-B than uniform. For the subfigures
(a)-(b), these minimums are 34 and 49.

However, for small β the uniform pattern performs much
worse, allowing π(ϵ) to reach 256K in Fig. 9(a) and 65M in

10
0

10
1

10
210

0

10
2

10
4

10
6

threshold β

ra
tio

 u
ni

fo
rm

/o
pt

im
al

 

 

IDS−B
IDS−A

(a) |s| = 28

10
0

10
1

10
2

10
310

0

10
2

10
4

10
6

10
8

threshold β

ra
tio

 u
ni

fo
rm

/o
pt

im
al

 

 

IDS−B
IDS−A

(b) |s| = 216

Fig. 9. Ratio π(ϵ) for ϵ = 10−3.

Fig. 9(b). For β = 4 and the same ϵ = 10−3, STOP scanners in
/16 subnets are 419-stealthier than uniform when facing IDS-
A and 1, 209-stealthier when facing IDS-B. This is equivalent
to a reduction in T from 1 year to 21 hours in the former case
and to 7 hours in the latter.

D. Discussion
One of the most peculiar results obtained in this paper is

that all studied post-permutation scanners can linearly increase
stealthiness with the number of source IPs. This leads to an
intriguing idea of hijacking unused addresses from the same
subnet when the infected device is not located behind a NAT2.
To avoid possible detection from IP-address conflicts (which
are reported to users and possibly administrators), worms can
monitor ARP broadcasts and DHCP leases to silently drop IPs
as soon as their legitimate owners join the network. In such
scenarios, j stolen IPs by each infected host allow the scan
to become not only j-stealthier (i.e., increase the speed by a
factor of j for the same level of detection), but also much
harder to map to the correct hardware without administrator
access to ARP packets and MAC-layer addresses.

We finish the paper with practical implications. Assuming
T = 24 hours and networks no larger than a /16, STOP
can avoid the open-source version of Snort [35] using just
m = 12 IPs, Bro [5] using 24 IPs, and Bro TRW [5] using
455 IPs, assuming their default settings. With a 12K-node
botnet, where each host hijacks 10 local IPs using ARP, a
stealth-optimal scanner can cover the Internet in one day and
remain completely undetected in all /8 networks operating any
Snort/Bro/TRW device with default parameters. This happens
because none of the IDS are allowed to reach the threshold
that trigger underlying detectors, which renders their accuracy
irrelevant. While dropping threshold as or increasing interval
∆s is possible, this may lead to unmanageably high rates of
false-alarms [40], reduced administrator sensitivity, and lower
operating efficiency of IDS.

Defenses against IP hijacking and methods for detecting
distributed STOP scanners will be studied in future work.

V. RELATED WORK

The first and most common direction for evading IDS
involves sending malicious packets that do not match the

2NAT status of a host can be easily determined through public web servers
such as http://whatsmyip.org and http://ipchicken.com.
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signature database [13], [25], [30], [34]. Public tools such
as nmap [25] rely on incorrect reconstruction of the packet
at the IDS (e.g., using IP-level fragmentation [30], incorrect
checksums, TTL tricks [34]), as well as the ability of the
attacker to hide his/her identity and/or packet contents (e.g.,
using source-address spoofing, confusing IP options and flags
[30], [34], and polymorphic packet contents [13]).

The second direction relies on concealing abnormal commu-
nication in ways that bypass IDS anomaly detectors [6], [39],
[43]. Attackers can mimic benign traffic [6], [39] or modify
scan rates [43] to avoid appearing like a propagating worm.

The third direction, which is the topic of this paper, works
against pattern-based detectors by designing scan algorithms
that do not allow IDS to reach its detection thresholds. We are
aware of only one effort in this area, in which [12] alternates
between known alive hosts in the target network and the
remaining unexplored space to manipulate Bro TRW [10].

VI. CONCLUSION

This paper introduced a novel formalization of scanner algo-
rithms and IDS detection rules related to horizontal scanning.
We thoroughly investigated the detection probability of previ-
ous scan patterns and brought awareness to the existence of
low-overhead algorithms for stealth-optimal scanning, which
can remain undetected at much faster rates compared to the
known approaches.
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