A New Class of Dendrites Having Unique Second Symmetric Product

David Maya
Universidad Autonoma del Estado de Mexico, dmayae@outlook.com

José G. Anaya
Universidad Autonoma del Estado de Mexico

Fernando Orozco Zitli
Universidad Autonoma del Estado de Mexico

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

This Topology + Dynamics and Continuum Theory is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
32nd Summer Conference on Topology and its Applications
A new class of dendrites having unique second symmetric product

David Maya Escudero
José G. Anaya O. and Fernando Orozco Z.

Facultad de Ciencias, Universidad Autónoma del Estado de México

June, 2017
A *continuum* is a nonempty compact connected metric space.
The second symmetric product of a continuum X, $\mathcal{F}_2(X)$, is the hyperspace of all nonempty subsets of X having at most two elements.

The hyperspace $\mathcal{F}_2(X)$ is a continuum with Hausdorff metric.
A continuum X has unique second symmetric product provided that each continuum Y such that $\mathcal{F}_2(Y)$ is homeomorphic to $\mathcal{F}_2(X)$ must be homeomorphic to X.
Problem. Find condition on a continuum X, so that X has unique second symmetric product.
A locally connected continuum contains no simple closed curve is called *dendrite*.
Each element in following class of continua has unique second symmetric product.

- Dendrites whose set of end points is closed.
- Almost meshed dendrites.
- Meshed dendrites.
Each element in following class of continua has unique second symmetric product.
- Dendrites whose set of end points is closed.
- Almost meshed dendrites.
- Meshed dendrites.
- New class of dendrites.
A connected topological space X is said to be \textit{unicoherent} provided that whenever A and B are connected closed subsets of X such that $X = A \cup B$, then $A \cap B$ is connected.
A point p in a unicoherent topological space Y makes a hole in Y, if $Y - \{p\}$ is not unicoherent.
Theorem (Anaya, Maya, Orozco-Zitli (2016))

Let X be a unicoherent locally connected continuum and $p, q \in X$. Then $\{p, q\}$ makes a hole in $\mathcal{F}_2(X)$ if and only if either $p = q$ and $X - \{p\}$ has at least three components or $p \neq q$ and both $X - \{p\}$ and $X - \{q\}$ are not connected.
\[\mathcal{MH}(X) = \{ A \in \mathcal{F}_2(X) : A \text{ makes a hole in } \mathcal{F}_2(X) \} . \]

Corollary.

If \(X \) is a dendrite, then \(\mathcal{MH}(X) \)
\[\mathcal{MH}(X) = \{ A \in \mathcal{F}_2(X) : A \text{ makes a hole in } \mathcal{F}_2(X) \} \].

Corollary.

If \(X \) is a dendrite, then \(\mathcal{MH}(X) = \{ A \in \mathcal{F}_2(X) - \mathcal{F}_1(X) : A \cap E(X) = \emptyset \} \cup \mathcal{F}_1(R(X)) \).
\[\mathcal{NMH}(X) = \{ A \in \mathcal{F}_2(X) : A \text{ does not make a hole in } \mathcal{F}_2(X) \} \].

Corollary.

If \(X \) is a dendrite, then \(\mathcal{NMH}(X) \).
\[\mathcal{NMH}(X) = \{ A \in \mathcal{F}_2(X) : A \text{ does not make a hole in } \mathcal{F}_2(X) \} \].

Corollary.

If \(X \) is a dendrite, then \(\mathcal{NMH}(X) = \mathcal{F}_1(O(X)) \cup \{ A \in \mathcal{F}_2(X) : A \cap E(X) \neq \emptyset \} \).
Theorem

If X and Y are dendrites such that $CR(X) = \cap\{A \in \mathcal{C}(X) : R(X) \subseteq A\}$ and there exists a homeomorphism $h : F_2(X) \rightarrow F_2(Y)$ satisfying that $h(F_1(R_N(X))) = F_1(R_N(Y))$, then X and Y are homeomorphic.
\[h : \mathcal{F}_2(X) \to \mathcal{F}_2(Y) \text{ such that } h(\mathcal{F}_1(R_N(X))) = \mathcal{F}_1(R_N(Y)). \]
\[\varphi : R_N(X) \to R_N(Y) \] such that \(h(\{p\}) = \{\varphi(p)\} \).
\[h(\mathcal{F}_1(\text{cl}_X R_N(X))) = \mathcal{F}_1(\text{cl}_Y R_N(Y)). \]
\[\hat{\varphi} : cl_X R_N(X) \to cl_Y R_N(Y) \text{ such that } h(\{p\}) = \{\hat{\varphi}(p)\} \]
J is component of $X - cl_X R_N(X)$ such that $J \cap E(X) = \emptyset$.
\[E(\text{cl}_X J) = \{p, q\} \subseteq \text{cl}_X R_N(X) \text{ and} \]
$\mathcal{F}_2(X)$
$\mathcal{F}_2(X)$

p

q
$\mathcal{F}_2(X)$

$\{p\}$ $\mathcal{F}_2(\text{cl}_X J)$ $\{q\}$
$\mathcal{J} = F_1(\text{cl}_X J)$ is the unique arc in $\mathcal{F}_2(X)$ such that $E(\mathcal{J}) = \{\{p\}, \{q\}\}$ and $\mathcal{J} - E(\mathcal{J}) \subseteq \mathcal{NMH}(X)$.
$h(\mathcal{J})$ is an arc in $\mathcal{F}_2(Y)$ such that
$E(h(\mathcal{J})) = \{h(\{p\}), h(\{q\})\}$ and
$h(\mathcal{J}) - E(h(\mathcal{J})) \subseteq \mathcal{NMH}(Y)$.
$a, b \in \text{cl}_Y R_N(Y)$ satisfying $h(\{p\}) = \{a\}$ and $h(\{q\}) = \{b\}$.
Then the unique component L of $Y - cl_Y R_N(Y)$ such that $E(cl_Y L) = \{a, b\}$ satisfies that $\mathcal{L} = F_1(cl_X L)$ is the unique arc in $\mathcal{F}_2(X)$ such that $E(\mathcal{L}) = \{\{a\}, \{b\}\}$ and $\mathcal{L} - E(\mathcal{L}) \subseteq \mathcal{N}\mathcal{M}\mathcal{H}(L)$.
Then the unique component L of $Y - cl_Y R_N(Y)$ such that $E(cl_Y L) = \{a, b\}$ satisfies that $\mathcal{L} = F_1(cl_X L)$ is the unique arc in $\mathcal{F}_2(X)$ such that $E(\mathcal{L}) = \{\{a\}, \{b\}\}$ and $\mathcal{L} - E(\mathcal{L}) \subseteq \mathcal{NMH}(L)$. So, $h(\mathcal{J}) = \mathcal{L}$.
$$h(\mathcal{F}_1(CR(X))) = \mathcal{F}_1(CR(Y))).$$
\[h(\mathcal{F}_1(CR(X))) = \mathcal{F}_1(CR(Y)). \]

\[\bar{\varphi} : CR(X) \to CR(Y) \text{ such that } h(\{x\}) = \{\bar{\varphi}(x)\}. \]
Theorem (Illanes, 2002)

If X is a dendrite and $Z \in C(X)$ is such that $CR(X) \subseteq Z$ and each component of $X - CR(X)$ intersects Z, then Z is homeomorphic to X.
K is component of $X - CR(X)$,
\[\{p\} = CR(X) \cap (cl_X K) = (cl_X R_N(X)) \cap (cl_X K) \text{ and } K \cap E(X) = \{e\}. \]
$\mathcal{F}_2(X)$
$\mathcal{F}_2(X)$
\[\mathcal{F}_2(X) \]

\[\{p\} \]

\[\mathcal{F}_2(\text{cl}_X K) \]
$\mathcal{K} = \mathcal{F}_1(\text{cl}_X K) \cup \{ A \in \mathcal{F}_2(\text{cl}_X K) : e \in A \}$ is the unique arc in $\mathcal{F}_2(X)$ such that $E(\mathcal{K}) = \{ \{p\}, \{e, p\} \}$, $\mathcal{K} - E(\mathcal{K}) \subseteq \mathcal{NMH}(X)$ and $\mathcal{K} - E(\mathcal{K})$ does not contain ramification points of $\mathcal{NMH}(X)$.
$h(K)$ is the unique arc in $F_2(Y)$ such that
$E(h(K)) = \{h(\{p\}), h(\{e, p\})\}$, $h(K) - E(h(K)) \subseteq \mathcal{MH}(Y)$ and
$h(K) - E(h(K))$ does not contain ramification points of $\mathcal{MH}(Y)$.
If $a \in cl_Y R_N(Y)$ such that $h(\{p\}) = \{a\}$, then there exists a component G of $X - CR(X)$ such that $a \in cl_Y G$ and if $v \in (cl_Y G) \cap E(Y)$, then $h(\mathcal{K}) \subseteq \mathcal{F}_1(cl_Y G) \cup \{B \in \mathcal{F}_2(cl_Y G) : v \in B\} = \mathcal{G}$.

\[\]
$h(\mathcal{F}_1(\text{cl}_X K)) \cap \mathcal{F}_1(\text{cl}_Y G)$ is an arc contained in $\mathcal{F}_1(\text{cl}_X G)$ such that $\{a\} \in E(h(\mathcal{F}_1(\text{cl}_X K)) \cap \mathcal{F}_1(\text{cl}_Y G))$.
\(h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y G) \) is an arc contained in \(\mathcal{F}_1(cl_X G) \) such that \(\{a\} \in E(h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y G)) \). Let \(Y_K \in \mathcal{C}(cl_X G) \) such that \(\mathcal{F}_1(Y_K) = h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y K) \).
$h(\mathcal{F}_1(\text{cl}_X K)) \cap \mathcal{F}_1(\text{cl}_Y G)$ is an arc contained in $\mathcal{F}_1(\text{cl}_X G)$ such that $\{a\} \in E(h(\mathcal{F}_1(\text{cl}_X K)) \cap \mathcal{F}_1(\text{cl}_Y G))$. Let $Y_K \in \mathcal{C}(\text{cl}_X G)$ such that $\mathcal{F}_1(Y_K) = h(\mathcal{F}_1(\text{cl}_X K)) \cap \mathcal{F}_1(\text{cl}_Y K)$. $Y_Z = CR(Y) \cup \bigcup \{Y_K : K \text{ is component of } X - CR(X)\}$.
\[h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y G) \] is an arc contained in \(\mathcal{F}_1(cl_X G) \) such that \(\{a\} \in E(h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y G)) \). Let \(Y_K \in \mathcal{C}(cl_X G) \) such that \(\mathcal{F}_1(Y_K) = h(\mathcal{F}_1(cl_X K)) \cap \mathcal{F}_1(cl_Y K) \). \(Y_Z = CR(Y) \cup \bigcup \{Y_K : K \text{ is component of } X - CR(X)\} \).

Thus, \(Y_Z \) and \(X \) are homeomorphic.
F is a component of $Y - CR(Y)$ such that $a \in cl_Y F$.
\[X_F \in \mathcal{C}(cl_X I) \text{ such that } \mathcal{F}_1(Y_F) = h^{-1}(\mathcal{F}_1(cl_Y F)) \cap \mathcal{F}_1(cl_X I). \]
$X_F \in \mathcal{C}(cl_X I)$ such that $\mathcal{F}_1(Y_F) = h^{-1}(\mathcal{F}_1(cl_Y F)) \cap \mathcal{F}_1(cl_X I)$.

$X_Z = CR(X) \cup \bigcup \{X_F : F \text{ is a component of } Y - CR(Y)\}$.
$X_F \in \mathcal{C}(cl_X I)$ such that $\mathcal{F}_1(Y_F) = h^{-1}(\mathcal{F}_1(cl_Y F)) \cap \mathcal{F}_1(cl_X I)$.

$X_Z = CR(X) \cup \bigcup \{X_F : F \text{ is a component of } Y - CR(Y)\}$.

X_Z is homeomorphic to Y and X.
$X_F \in \mathcal{C}(cl_X I)$ such that $\mathcal{F}_1(Y_F) = h^{-1}(\mathcal{F}_1(cl_Y F)) \cap \mathcal{F}_1(cl_X I)$.

$X_Z = CR(X) \cup \bigcup \{X_F : F \text{ is a component of } Y - CR(Y)\}$.

X_Z is homeomorphic to Y and X.
Problem. \(h(\mathcal{F}_1(R_N)) = \mathcal{F}_1(R_N(Y)) \).
The *multicoherence degree* of a connected topological space Y, $r(Y)$, is defined by

$$\sup \left\{ b_0(L \cap K) : \begin{array}{l}
L \text{ and } K \text{ are connected closed subset of } Y \\
\text{and } Y = L \cup K
\end{array} \right\} - 1.$$
The *multicoherence degree* of a connected topological space Y, $r(Y)$, is defined by

$$
\sup \left\{ b_0(L \cap K) : \begin{array}{l}
L \text{ and } K \text{ are connected closed subset of } Y \\
\text{and } Y = L \cup K
\end{array} \right\} - 1.
$$

$r(Y) = 0$ if and only if Y is *unicoherent*.
Theorem

If X is a dendrite and $p \in R_N(X)$ is such that $\text{ord}(p, X) = n$, then

$$r(\mathcal{F}_2(X) - \{\{p\}\}) = \frac{(n - 1)(n - 2)}{2}.$$
Theorem

If \(X \) is a dendrite and \(p, q \in R_N(X) \cup O(X) \) are such that \(p \neq q \), \(\text{ord}(p, X) = n \) and \(\text{ord}(q, X) = m \), then

\[
r(F_2(X) - \{\{p, q\}\}) = (n - 1)(m - 1).
\]
For a dendrite X, set
\[\Omega_X = \{ \text{ord}(p, X) : p \in R_N(X) \} \]
For a dendrite X, set
$\Omega_X = \{ \text{ord}(p, X) : p \in R_N(X) \}$

Lemma

If X and Y are dendrites such that there exists an homeomorphism $h : F_2(X) \to F_2(Y)$ and $\Omega_X \subseteq \{5, 6, \ldots\}$, then $\Omega_Y \subseteq \{5, 6, \ldots\}$.
Theorem

Let X and Y be dendrites. If $|\Omega_X| = 1$, $\Omega_X \subseteq \{5, 6, \ldots\}$ and $h : F_2(X) \to F_2(Y)$ is a homeomorphism, then $h(F_1(R_N(X))) = F_1(R_N(Y))$.
Theorem

Let X and Y be dendrites. If $h : \mathcal{F}_2 \to \mathcal{F}_2(Y)$ be a homeomorphism, $\Omega_X \subseteq \{5, 6 \ldots\}$ and

1. $\Omega_X \cap \left\{ \frac{(j-1)(j-2)}{2} + 1 : j \geq 5 \right\} = \emptyset,$

2. $\{(n - 1)(m - 1) : n, m \in \Omega_X\} \cap \left\{ \frac{(j-1)(j-2)}{2} : j \geq 5 \right\} = \emptyset,$

then $h(\mathcal{F}_1(R_N(X))) = \mathcal{F}_1(R_N(Y)).$
$F_2(X) \rightarrow F_2(Y)$ is a homeomorphism.
$h : \mathcal{F}_2(X) \rightarrow \mathcal{F}_2(Y)$ is a homeomorphism
\(a \in \mathbb{R}^N(Y) \Rightarrow \{a\} \in MH(Y) \).

\[\text{ord}(a, Y) = m \geq 5 \Rightarrow r(F_2(Y) - \{\{a\}\}) = (m - 2)(m - 1)^2. \]

\(w, z \in X \) such that \(h(\{w, z\}) = \{a\} \Rightarrow \{w, z\} \in MH(X) \).
\(a \in R_N(Y)\)
\[a \in R_N(Y) \Rightarrow \{a\} \in \mathcal{M}\mathcal{H}(Y).\]
\(a \in R_N(Y) \Rightarrow \{a\} \in \mathcal{MH}(Y)\).

\(\text{ord}(a, Y) = m \geq 5 \Rightarrow r(\mathcal{F}_2(Y) - \{\{a\}\}) = \frac{(m-2)(m-1)}{2}\).
\(a \in R_N(Y) \Rightarrow \{a\} \in \mathcal{MH}(Y). \)

\(\text{ord}(a, Y) = m \geq 5 \Rightarrow r(\mathcal{F}_2(Y) - \{\{a\}\}) = \frac{(m-2)(m-1)}{2}. \)

\(w, z \in X \text{ such that } h(\{w, z\}) = \{a\} \Rightarrow \{w, z\} \in \mathcal{MH}(X) \)
\[w, z \in O(X), w \neq z \Rightarrow r(F_2(X) - \{w, z\}) = 1. \]

\[(m - 1)(m - 2)^2 = 1 \Rightarrow m = 3. \]
$w, z \in O(X), w \neq z \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = 1.$
\[w, z \in O(X), w \neq z \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = 1. \]
\[\Rightarrow \frac{(m-1)(m-2)}{2} = 1 \Rightarrow m = 3. \]
\[w \in \mathbb{R}^N(X), \ z \in O(X) \Rightarrow r(F_2(X) - \{w, z\}) = \text{ord}(w, X) - 1. \]

\[(m - 1)(m - 2)^2 + 1 = \text{ord}(w, X) \in \Omega_X. \]

(2) \[\Omega_X \cap \{ (j - 1)(j - 2)^2 + 1 : j \geq 5 \} = \emptyset. \]
$w \in R_N(X), z \in O(X) \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = \text{ord}(w, X) - 1.$
\(w \in R_N(X), z \in O(X) \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = \text{ord}(w, X) - 1. \)

\(\Rightarrow \frac{(m-1)(m-2)}{2} + 1 = \text{ord}(w, X) \in \Omega_X. \)
\[w \in R_N(X), z \in O(X) \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = \text{ord}(w, X) - 1. \]
\[\Rightarrow \frac{(m-1)(m-2)}{2} + 1 = \text{ord}(w, X) \in \Omega_X. \]
(2) \[\Omega_X \cap \left\{ \frac{(j-1)(j-2)}{2} + 1 : j \geq 5 \right\} = \emptyset. \]
\[
\forall w, z \in \mathbb{R}^N (X) \land w \neq z \Rightarrow r (F^2 (X) - \{w, z\}) = (\text{ord}(w, X) - 1)(\text{ord}(z, X) - 1)
\]

\[
\Rightarrow r (F^2 (Y) - \{a\}) = (m - 2)(m - 1)
\]

\[
2 \in \{(n - 1)(m - 1) : n, m \in \Omega_X\}
\]

\[
\{(n - 1)(m - 1) : n, m \in \Omega_X\} \cap \{(j - 1)(j - 2) : j \geq 5\} = \emptyset
\]
\[w, z \in R_N(X), w \neq z \]
\[w, z \in R_N(X), w \neq z \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = (\text{ord}(w, X) - 1)(\text{ord}(z, X) - 1) \]
\(w, z \in R_N(X), w \neq z \Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = (\text{ord}(w, X) - 1)(\text{ord}(z, X) - 1) \)

\(\Rightarrow r(\mathcal{F}_2(Y) - \{\{a\}\}) = \frac{(m-2)(m-1)}{2} \in \{(n-1)(m-1) : n, m \in \Omega_X\} \).
\(w, z \in R_N(X), w \neq z \)
\[\Rightarrow r(\mathcal{F}_2(X) - \{\{w, z\}\}) = (\text{ord}(w, X) - 1)(\text{ord}(z, X) - 1) \]
\[\Rightarrow r(\mathcal{F}_2(Y) - \{\{a\}\}) = \frac{(m-2)(m-1)}{2} \in \{(n-1)(m-1) : n, m \in \Omega_X\}. \]

(1) \(\{(n-1)(m-1) : n, m \in \Omega_X\} \cap \left\{ \frac{(j-1)(j-2)}{2} : j \geq 5 \right\} = \emptyset. \)
$w = z \in R_N(X)$
\(\text{ord}(z, X) = n \Rightarrow r(\mathcal{F}_2(X) - \{\{z\}\}) = \frac{(n-1)(n-2)}{2} \)
\[ord(z, X) = n \Rightarrow r(\mathcal{F}_2(X) - \{\{z\}\}) = \frac{(n-1)(n-2)}{2} \]
\[r(\mathcal{F}_2(Y) - \{\{a\}\}) = \frac{(m-1)(m-2)}{2} \]
ord(\(z, X\)) = n \Rightarrow r(\(\mathcal{F}_2(X) - \{\{z\}\}\)) = \frac{(n-1)(n-2)}{2}

r(\(\mathcal{F}_2(Y) - \{\{a\}\}\)) = \frac{(m-1)(m-2)}{2}

\Rightarrow \frac{(n-1)(n-2)}{2} = \frac{(m-1)(m-2)}{2} \Rightarrow m = n
\[\mathcal{F}_1(R_N(Y)) \subseteq h(\mathcal{F}_1(R_N(X))) \]
Theorem

Let \(X \) be a dendrite. If \(CR(X) = \cap \{ Z \in C(X) : R_N(X) \subseteq Z \} \), \(\Omega_X \subseteq \{5, 6, \ldots\} \) and either

1. \[\Omega_X \cap \left\{ \frac{(j-1)(j-2)}{2} + 1 : j \geq 5 \right\} = \emptyset, \]

2. \[\{(n - 1)(m - 1) : n, m \in \Omega_X\} \cap \left\{ \frac{(j-1)(j-2)}{2} : j \geq 5 \right\} = \emptyset, \]

then \(X \) has unique second symmetric product.
Thank you!