








Figure 1. Most frequently counted terms in the lens-regenerating iris. The fifteen most frequently counted terms of biologic process (A),
cellular component (B), and molecular function (C) are shown. The total number of these most frequently counted terms was 5,356, 3,259,
and 4,152, respectively. In the figure, ATP is adenosine triphosphate and GTP is guanosine triphosphate
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absence could be due to the stage of the iris that was isolated.
The iris was at the dedifferentiation stage. It is possible that
pathways that are important for lens differentiation, such as
fibroblast growth factor or sonic hedgehog, are simply not
active at that stage [17,18]. Alternatively, it is possible that
certain factors were not cloned in our experiment.

It appears that a wide variety of cancer-related genes were
expressed during dedifferentiation (Table 3). A total of 27
cancer-related genes were found in the ESTs, especially a
large number of Ras-related genes and tumor necrosis factor-
related genes. The expression of cancer-related genes might
be related to the initiation of proliferation during
dedifferentiation. Additionally, as c-Myc is one of four factors
(cellular myelocytomatosis oncogene, octamer-binding
transcription factor 4, sex determining region Y box 2 and
kruppel-like factor 4) to reprogram somatic cells to
pluripotent stem cells [19], there is a possibility that cancer-
related genes play a role in reprogramming during

dedifferentiation. In addition to cancer-related genes, eight
apoptosis-related genes were found in the EST list (Table 2).
The expression of cancer- and apoptosis-related genes could
be one of the hallmarks during dedifferentiation in newt
regeneration.

Candidate genes that regulate reprogramming during
dedifferentiation: From our list of the lens-regenerating iris
ESTs, possible candidate genes for participating in nuclear
regulation during newt dedifferentiation were identified
(Table 4). Epigenetic regulation, a range of heritable
chromatin modifications, including histone modifications,
DNA methylation, and chromatin remodeling, play a pivotal
role in the control of differentiation and maintenance of
cellular identity. It is therefore expected that epigenetic
regulation plays an important role during newt
dedifferentiation.

Histone acetylation is generally related to transcriptional
activation and mediated by histone acetyltransferase. In the

TABLE 2. APOPTOSIS RELATED GENES EXPRESSED DURING DEDIFFERENTIATION.

Annotation of sequence
Apoptosis-inducing mitochondrion-associated 1
BCL2-like 13
BCL2-associated agonist of cell death
Programmed cell death 2
Programmed cell death 4
Programmed cell death 5
Programmed cell death 6
Programmed cell death 6 interacting protein

All the sequences shown have e-value less than 3.5E-17.

TABLE 3. CANCER-RELATED GENES FOUND IN IRIS DURING DEDIFFERENTIATION.

Annotation of sequence Annotation of sequence
Ras Tumor necrosis factor
Kras Tumor necrosis factor alpha
Ras associated protein RAB1 Tumor necrosis factor alpha-induced protein 6
Ras homolog gene family, member T1 Tumor necrosis factor receptor associated factor 2
Ras homolog gene member a Tumor necrosis factor receptor member 1b
Ras p21 protein activator 4 isoform 1 Tumor necrosis factor receptor member 14
Ras related GTP-binding protein B  
Ras related nuclear protein Tumor protein
 Tumor protein d52
Retinoblastoma Tumor protein d52-like 2
Retinoblastoma binding protein 4 isoform 1  
 Others
Jun Fat tumor supressor, homolog 1
c-jun Feline sarcoma oncogene
Jun-B oncogene Fyn oncogene related to yes*
 Glioma tumor suppressor candidate region gene 2
p53 Large tumor supressor, homolog 1
Tumor protein p53 Leydig cell tumor 10 kDa protein
p53-associated parkin-like cytoplasmic protein Tumor translationally-controlled 1

All the sequences shown have e-value less than 8.2E-16.
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ESTs, there were two types of histone acetyltransferases,
cyclic adenosine monophosphate response element-biding
protein binding protein/p300 [20] and MYST3 [21], as well
as two deacetylases, histone deacetylase 2 and 5 (HDAC2,
HDAC5; Table 4) [22]. The balance between histone
acetyltransferase and deacetylase might be strictly regulated
during newt dedifferentiation.

To form heterochromatin, heterochromatin protein 1 is
recruited to methylated histone H3K9 [23,24]. It has been
demonstrated that the Jumonji domain-containing 2a
(JMJD2A) is a histone demethylase against histone H3K9 and
H3K36 and antagonizes heterochromatin formation via
histone H3K9 [25]. It is thought that JMJD1B is a H3K9
histone demethylase because JMJD1B has a JmjC domain
[26]. Interestingly, JMJD2A and JMJD1B were found in the
ESTs (Table 4). This might indicate that these histone
demethylases eliminate heterochromatin during
dedifferentiation.

DNA methylation is a covalent modification of DNA and
confers a heritable gene repression during and after
development [27,28]. DNA (cytosine-5-)-methyltransferase 1
[28] and putative DNA methyltransferase Williams Beuren
syndrome chromosome region 22 [29] were found in the ESTs
(Table 4).

The high mobility group protein is a nonhistone
chromatin protein. In vitro experiments have demonstrated
that high mobility group protein box 2 (HMGB2)
nonspecifically binds and bends DNA. It is suggested that
HMGB2 facilitates cooperative interactions between cis-
acting proteins by promoting DNA flexibility [30]. Like
HMGB2, HMGB3 contains DNA-binding HMG box domains
and is thought to be able to alter DNA structure [31]. Thus,
HMGB2 and HMGB3 might promote genome-wide DNA

flexing, which allows new sets of gene expression during
dedifferentiation.

The oocyte has an ability to reprogram the somatic
nucleus, which was demonstrated by the nuclear transfer into
an oocyte [35]. Interestingly, most of the nuclear genes
identified as candidates to regulate newt dedifferentiation
were found in ovary ESTs as well (14,429 reads) but not in
intact limb ESTs (1,098 reads; Table 4). Functional analysis
of these genes might provide an advanced understanding of
cellular plasticity, with possible future applications in
regenerative therapies.
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TABLE 4. CANDIDATE GENES WHICH REGULATE REPROGRAMMING DURING DEDIFFERENTIATION.

Annotation of sequence Annotation of sequence
Histone acetyltransferase Non-histone chromosomal protein
CREB binding protein / p300* High-mobility group protein box 2*
Histone acetyltransferase MYST3* High-mobility group protein box 3
  
Histone deacetylase Nucleolar protein
Histone deacetylase 2* Nucleostemin*
Histone deacetylase 5*  
 Transcriptional factor/repressor
Histone demethylase Nf-kappaB*
Jumonji domain containing 1b COUP transcription factor 1*
Jumonji domain containing 2a* REST/RE1-silencing transcription factor*
  
DNA methyltransferase  
DNA (cytosine-5-)-methyltransferase 1*  
Williams beuren syndrome chromosome region 22*  

All the sequences shown have e-value less than 1.0E-35. The asterisk indicates genes commonly found in ovary ESTs but not
in intact limb ESTs [unpublished data].
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Transcriptional factors, nuclear factor-κB [32], and
chicken ovalbumin upstream promoter transcription factor 1
[33] were found. Repressor element 1 silencing transcriptional
factor (REST) binds to repressor element 1 and recruits a wide
variety of chromatin modification enzymes, such as the
histone deacetylases HDAC1 and HDAC2, histone H3K9
methylases G9a and SUV39H1, and a histone H3K4
demethylase lysine-specific demethylase 1 (LSD1) directly or
indirectly with the CoREST complex or the mammalian
switch independent 3 (mSin3) complex [34]. Interestingly,
REST/RE1-silencing transcription factor and HDAC2 were
found in the ESTs, suggesting cooperation of these molecules
during dedifferentiation.
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