6-2017

Entropy in Topological Groups, Part 2

Dikran Dikranjan

University of Udine, dikran.dikranjan@uniud.it

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the Geometry and Topology Commons, Other Mathematics Commons, and the Special Functions Commons

eCommons Citation

http://ecommons.udayton.edu/topology_conf/4

This Workshop is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Entropy in Topological Groups

Dikran Dikranjan

Workshop at
Summer Topology Conference
Dayton, Ohio (USA),
June 28, 2017
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{\text{top}}(\phi) = h_{\text{alg}}(\hat{\phi}).$$

(P)

Peters [1979] proved (P) when G is compact metrizable and ϕ is a continuous automorphism (Peters [Pac.J.Math. 1980] LCA groups).

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (P) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);
(b) G is compact (generalizes Peters).

Question

Does (P) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups). Virili '13
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{\text{top}}(\phi) = h_{\text{alg}}(\hat{\phi}). \quad (\dagger)$$

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (\dagger) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);
(b) G is compact (generalizes Peters).

Question

Does (\dagger) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili '13
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{\text{top}}(\phi) = h_{\text{alg}}(\hat{\phi}).$$ \hspace{1cm} (†)

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (†) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);
(b) G is compact (generalizes Peters).

Question

Does (†) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili '13
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{\text{top}}(\phi) = h_{\text{alg}}(\hat{\phi}). \quad (\dagger)$$

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (\dagger) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);

(b) G is compact (generalizes Peters).

Question

Does (\dagger) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili '13
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{\text{top}}(\phi) = h_{\text{alg}}(\hat{\phi}). \quad (\dagger)$$

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (\dagger) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);
(b) G is compact (generalizes Peters).

Question

Does (\dagger) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili '13
Weiss [1976] Let $\phi : K \to K$ a continuous endomorphism of a totally disconnected compact abelian group K. If $\hat{\phi} : \hat{K} \to \hat{K}$ is the Pontryagin dual of ϕ. Then

$$h_{top}(\phi) = h_{alg}(\hat{\phi}). \quad (\dagger)$$

Theorem (Giordano Bruno - DD)

Let $\phi : G \to G$ be a continuous endomorphism of a LCA group G. Then (\dagger) holds if one of the following condition is fulfilled:

(a) G is totally disconnected (generalizes Weiss);
(b) G is compact (generalizes Peters).

Question

Does (\dagger) hold true for every LCA group G?

Yes, for automorphisms (for actions of amenable groups), Virili '13
Let X be a set and $\lambda : X \to X$ a selfmap. For a finite subset D of X and $n \in \mathbb{N}_+$ the n-th λ-trajectory of D is

$$T_n(\lambda, D) = D \cup \lambda(D) \cup \cdots \cup \lambda^{n-1}(D),$$

while the λ-trajectory ([positive] orbit) of D under λ is

$$T(\lambda, D) = \bigcup_{n \in \mathbb{N}} \lambda^n(D) = \bigcup_{n \in \mathbb{N}_+} T_n(\lambda, D).$$

This is the smallest λ-invariant subset of X containing D. One can define similarly the inverse n-th λ-trajectory of D by

$$T_n^*(\lambda, D) = D \cup \lambda^{-1}(D) \cup \cdots \cup \lambda^{-n+1}(D).$$
Let X be a set and $\lambda : X \to X$ a selfmap. For a finite subset D of X and $n \in \mathbb{N}_+$ the n-th λ-trajectory of D is

$$\mathcal{T}_n(\lambda, D) = D \cup \lambda(D) \cup \cdots \cup \lambda^{n-1}(D),$$

while the λ-trajectory ([positive] orbit) of D under λ is

$$\mathcal{T}(\lambda, D) = \bigcup_{n \in \mathbb{N}} \lambda^n(D) = \bigcup_{n \in \mathbb{N}_+} \mathcal{T}_n(\lambda, D).$$

This is the smallest λ-invariant subset of X containing D. One can define similarly the inverse n-th λ-trajectory of D by

$$\mathcal{T}^*_n(\lambda, D) = D \cup \lambda^{-1}(D) \cup \cdots \cup \lambda^{-n+1}(D).$$
Let X be a set and $\lambda : X \to X$ a selfmap. For a finite subset D of X and $n \in \mathbb{N}_+$ the n-th λ-trajectory of D is

$$\mathcal{T}_n(\lambda, D) = D \cup \lambda(D) \cup \cdots \cup \lambda^{n-1}(D),$$

while the λ-trajectory ([positive] orbit) of D under λ is

$$\mathcal{T}(\lambda, D) = \bigcup_{n \in \mathbb{N}} \lambda^n(D) = \bigcup_{n \in \mathbb{N}_+} \mathcal{T}_n(\lambda, D).$$

This is the smallest λ-invariant subset of X containing D. One can define similarly the inverse n-th λ-trajectory of D by

$$\mathcal{T}^*_n(\lambda, D) = D \cup \lambda^{-1}(D) \cup \cdots \cup \lambda^{-n+1}(D)$$
Let X be a set and $\lambda : X \to X$ a selfmap. For a finite subset D of X and $n \in \mathbb{N}_+$ the n-th λ-trajectory of D is

$$\mathcal{T}_n(\lambda, D) = D \cup \lambda(D) \cup \cdots \cup \lambda^{n-1}(D),$$

while the λ-trajectory ([positive] orbit) of D under λ is

$$\mathcal{T}(\lambda, D) = \bigcup_{n \in \mathbb{N}} \lambda^n(D) = \bigcup_{n \in \mathbb{N}_+} \mathcal{T}_n(\lambda, D).$$

This is the smallest λ-invariant subset of X containig D.

One can define similarly the inverse n-th λ-trajectory of D by

$$\mathcal{T}^*_n(\lambda, D) = D \cup \lambda^{-1}(D) \cup \cdots \cup \lambda^{-n+1}(D).$$
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^<\omega \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h_c^*(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}_n^*(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$.

Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) if $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda \restriction \bigoplus_X K) = h_c^*(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{I}_n(\lambda, D)|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{<\omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{I}_n^*(\lambda, D)$ in place of $\mathcal{I}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$.

Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) If $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda | \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is
\[h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|. \]

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{<\omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}^*_n(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) if $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda \mid \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is
\[h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|. \]

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{<\omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}_n^*(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) if $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda \mid \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{<\omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}_n^*(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{\text{top}}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) If $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{\text{alg}}(\sigma_\lambda \mid \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{\leq \omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}^*_n(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) If $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda \upharpoonright \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \to X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{|\mathcal{T}_n(\lambda, D)|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{ h_c(\lambda, D) : D \in [X]^{<\omega} \}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \to X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\mathcal{T}^*_n(\lambda, D)$ in place of $\mathcal{T}_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \to X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \to K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \to K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) if $\lambda : X \to X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{alg}(\sigma_\lambda \restriction \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Let X be a set and $\lambda : X \rightarrow X$ a selfmap.

(a) For a finite subset D of X the (covariant) combinatorial entropy of λ with respect to D is

$$h_c(\lambda, D) = \lim_{n \to \infty} \frac{\|\Xi_n(\lambda, D)\|}{n} \leq |D|.$$

(b) The number $h_c(\lambda) = \sup \{h_c(\lambda, D) : D \in [X]<\omega\}$ is the (covariant) combinatorial entropy of λ.

If $\lambda : X \rightarrow X$ is finitely many-to-one, the (contravariant) combinatorial entropy $h^*_c(\lambda)$ of λ can be defined similarly, by making use of $\Xi^*_n(\lambda, D)$ in place of $\Xi_n(\lambda, D)$.

Example (Generalized shifts)

Let K be a finite group (set) and $\lambda : X \rightarrow X$ be a selfmap, $X \neq \emptyset$. Define the generalized shift $\sigma_\lambda : K^X \rightarrow K^X$ by $\sigma_\lambda(g) = g \circ \lambda$ for $g : X \rightarrow K$.

(a) $h_{top}(\sigma_\lambda) = h_c(\lambda) \log |K|$ (this remains true also for compositions $\psi \circ \sigma_\lambda$ or $\sigma_\lambda \circ \psi$, where $\psi = (\psi_i) \in \text{Sym}(K)^I$).

(b) If $\lambda : X \rightarrow X$ is finitely many-to-one, then the direct sum $\bigoplus_X K$ is σ_λ-invariant in K^X and $h_{\text{alg}}(\sigma_\lambda \upharpoonright \bigoplus_X K) = h^*_c(\lambda) \log |K|$.
Call a compact group *strictly reductive* if it is isomorphic to a cartesian product of simple compact groups.

Theorem (Countable Layer Theorem, Hofmann-Morris)

Any compact profinite group G has a canonical countable descending sequence $G = \Omega_0(G) \supseteq \ldots \supseteq \Omega_n(G) \supseteq \ldots$ of closed characteristic subgroups of G such that:

1. $\bigcap_{n=1}^{\infty} \Omega_n(G) = \{e\}$,
2. each layer $L_n = \Omega_{n-1}(G)/\Omega_n(G)$ is a strictly reductive group.

The computation of the topological entropy of an automorphism $f : G \to G$ of a compact profinite group G can be reduced to the case of a strictly reductive compact group L. Indeed, f induces an automorphism $f_n : L_n \to L_n$ of the strictly reductive group L_n and $h_{\text{top}}(f) = \sum_{n=1}^{\infty} h_{\text{top}}(f_n)$, as $G = \varprojlim G/\Omega_n(G)$ and the induced automorphism \overline{f} of $G/\Omega_n(G)$ has $h_{\text{top}}(\overline{f}) = \sum_{k=1}^{n} h_{\text{top}}(f_k)$.
Call a compact group *strictly reductive* if it is isomorphic to a cartesian product of simple compact groups.

Theorem (Countable Layer Theorem, Hofmann-Morris)

Any compact profinite group G has a canonical countable descending sequence

$$G = \Omega_0(G) \supseteq \ldots \supseteq \Omega_n(G) \supseteq \ldots$$

of closed characteristic subgroups of G such that:

1. $\bigcap_{n=1}^{\infty} \Omega_n(G) = \{e\}$,
2. each layer $L_n = \Omega_{n-1}(G)/\Omega_n(G)$ is a strictly reductive group.

The computation of the topological entropy of an automorphism $f : G \rightarrow G$ of a compact profinite group G can be reduced to the case of a strictly reductive compact group L. Indeed, f induces an automorphism $f_n : L_n \rightarrow L_n$ of the strictly reductive group L_n and $h_{top}(f) = \sum_{n=1}^{\infty} h_{top}(f_n)$, as $G = \varprojlim G/\Omega_n(G)$ and the induced automorphism \bar{f} of $G/\Omega_n(G)$ has $h_{top}(\bar{f}) = \sum_{k=1}^{n} h_{top}(f_k)$.
Call a compact group \textit{strictly reductive} if it is isomorphic to a cartesian product of simple compact groups.

\begin{theorem}[Countable Layer Theorem, Hofmann-Morris]
Any compact profinite group G has a canonical countable descending sequence
\[G = \Omega_0(G) \supseteq \ldots \supseteq \Omega_n(G) \supseteq \ldots \]
of closed characteristic subgroups of G such that:
(1) $\bigcap_{n=1}^{\infty} \Omega_n(G) = \{e\}$,
(2) each layer $L_n = \Omega_{n-1}(G)/\Omega_n(G)$ is a strictly reductive group.
\end{theorem}

The computation of the topological entropy of an automorphism $f : G \to G$ of a compact profinite group G can be reduced to the case of a strictly reductive compact group L. Indeed, f induces an automorphism $f_n : L_n \to L_n$ of the strictly reductive group L_n and $h_{top}(f) = \sum_{n=1}^{\infty} h_{top}(f_n)$, as $G = \varprojlim G/\Omega_n(G)$ and the induced automorphism \bar{f} of $G/\Omega_n(G)$ has $h_{top}(\bar{f}) = \sum_{k=1}^{n} h_{top}(f_k)$.
An automorphism \(f \) of a compact group \(L \) induces automorphisms of \(L' \) and \(L/L' \), so by using AT (when \(L' = \overline{L}' \)), one can assume wlog that either \(L = L' \) or \(L \) is abelian when computing \(h_{\text{top}}(f) \).

A strictly reductive compact group with \(L = L' \) has the form \(\prod_{j \in J} K_j \), where \(K_j = F^l_j \), for some simple finite non-abelian group \(F_j \) and \(l_j \neq \emptyset \neq J \). Then \(f \) induces automorphisms \(f_j \) of \(K_j \) so that \(h_{\text{top}}(f) = \sum_{j \in J} h_{\text{top}}(f_j) \). Each \(f_j \) induces a bijection \(\lambda_j \) of \(l_j \), so that \(\psi_j := \sigma^{-1}_{\lambda_j} \circ f_j \) acts coordinatewise on \(F^l_j \). Thus,

\[
h_{\text{top}}(f_j) = h_{\text{top}}(\sigma_{\lambda_j} \circ \psi_j) = h_{\text{top}}(\sigma_{\lambda_j}) = h_c(\lambda_j) \log |F_j|.
\]

In case \(L \) is abelian, it has the form \(L = \prod_{p \in \pi} K_p \), where \(K_p = \mathbb{Z}_p^{\kappa_p} \) for some set \(\pi \) of primes. Now each \(f_p : K_p \rightarrow K_p \) is conjugated to a direct product of generalized shifts of \(\mathbb{Z}_p^{\kappa_p} \).

Note that in both cases these generalized shifts are just products of periodic automorphisms and Bernoulli automorphisms.
An automorphism f of a compact group L induces automorphisms of L' and L/L', so by using AT (when $L' = \bar{L}'$), one can assume wlog that either $L = L'$ or L is abelian when computing $h_{top}(f)$.

A strictly reductive compact group with $L = L'$ has the form $\prod_{j \in J} K_j$, where $K_j = F_j^{I_j}$, for some simple finite non-abelian group F_j and $I_j \neq \emptyset \neq J$. Then f induces automorphisms f_j of K_j so that $h_{top}(f) = \sum_{j \in J} h_{top}(f_j)$. Each f_j induces a bijection λ_j of I_j, so that $\psi_j := \sigma_{\lambda_j}^{-1} \circ f_j$ acts coordinatewise on $F_j^{I_j}$. Thus,

$$h_{top}(f_j) = h_{top}(\sigma_{\lambda_j} \circ \psi_j) = h_{top}(\sigma_{\lambda_j}) = h_c(\lambda_j) \log |F_j|.$$

In case L is abelian, it has the form $L = \prod_{p \in \pi} K_p$, where $K_p = \mathbb{Z}_p^{\kappa_p}$ for some set π of primes. Now each $f_p : K_p \to K_p$ is conjugated to a direct product of generalized shifts of $\mathbb{Z}_p^{\kappa_p}$. Note that in both cases these generalized shifts are just products of periodic automorphsims and Bernoulli automorphsims.
An automorphism f of a compact group L induces automorphisms of L' and L/L', so by using AT (when $L' = \bar{L}'$), one can assume wlog that either $L = L'$ or L is abelian when computing $h_{top}(f)$.

A strictly reductive compact group with $L = L'$ has the form $\prod_{j \in J} K_j$, where $K_j = F_j^{l_j}$, for some simple finite non-abelian group F_j and $l_j \neq \emptyset \neq J$. Then f induces automorphisms f_j of K_j so that $h_{top}(f) = \sum_{j \in J} h_{top}(f_j)$. Each f_j induces a bijection λ_j of l_j, so that $\psi_j := \sigma^{-1}_{\lambda_j} \circ f_j$ acts coordinatewise on $F_j^{l_j}$. Thus,

$$h_{top}(f_j) = h_{top}(\sigma_{\lambda_j} \circ \psi_j) = h_{top}(\sigma_{\lambda_j}) = h_c(\lambda_j) \log |F_j|.$$

In case L is abelian, it has the form $L = \prod_{p \in \pi} K_p$, where $K_p = \mathbb{Z}_p^{\kappa_p}$ for some set π of primes. Now each $f_p : K_p \to K_p$ is conjugated to a direct product of generalized shifts of $\mathbb{Z}_p^{\kappa_p}$. Note that in both cases these generalized shifts are just products of periodic automorphisms and Bernoulli automorphisms.
An automorphism f of a compact group L induces automorphisms of L' and L/L', so by using AT (when $L' = \overline{L}'$), one can assume wlog that either $L = L'$ or L is abelian when computing $h_{top}(f)$. A strictly reductive compact group with $L = L'$ has the form
\[\prod_{j \in J} K_j, \]
where $K_j = F_j^{l_j}$, for some simple finite non-abelian group F_j and $l_j \neq \emptyset \neq J$. Then f induces automorphisms f_j of K_j so that
\[h_{top}(f) = \sum_{j \in J} h_{top}(f_j). \]
Each f_j induces a bijection λ_j of I_j, so that $\psi_j := \sigma_{\lambda_j}^{-1} \circ f_j$ acts coordinatewise on $F_j^{l_j}$. Thus,
\[h_{top}(f_j) = h_{top}(\sigma_{\lambda_j} \circ \psi_j) = h_{top}(\sigma_{\lambda_j}) = h_c(\lambda_j) \log |F_j|. \]

In case L is abelian, it has the form $L = \prod_{p \in \pi} K_p$, where $K_p = \mathbb{Z}_p^{\kappa_p}$ for some set π of primes. Now each $f_p : K_p \to K_p$ is conjugated to a direct product of generalized shifts of $\mathbb{Z}_p^{\kappa_p}$. Note that in both cases these generalized shifts are just products of periodic automorphisms and Bernoulli automorphisms.
An automorphism \(f \) of a compact group \(L \) induces automorphisms of \(L' \) and \(L/L' \), so by using AT (when \(L' = \overline{L}' \)), one can assume wlog that either \(L = L' \) or \(L \) is abelian when computing \(h_{\text{top}}(f) \).

A strictly reductive compact group with \(L = L' \) has the form \(\prod_{j \in J} K_j \), where \(K_j = F^l_j \), for some simple finite non-abelian group \(F_j \) and \(l_j \neq \emptyset \neq J \). Then \(f \) induces automorphisms \(f_j \) of \(K_j \) so that \(h_{\text{top}}(f) = \sum_{j \in J} h_{\text{top}}(f_j) \). Each \(f_j \) induces a bijection \(\lambda_j \) of \(l_j \), so that \(\psi_j := \sigma^{-1}_j \circ f_j \) acts coordinatewise on \(F^l_j \). Thus,

\[
h_{\text{top}}(f_j) = h_{\text{top}}(\sigma_j \circ \psi_j) = h_{\text{top}}(\sigma_j) = h_c(\lambda_j) \log |F_j|.
\]

In case \(L \) is abelian, it has the form \(L = \prod_{p \in \pi} K_p \), where \(K_p = \mathbb{Z}^\kappa_p \) for some set \(\pi \) of primes. Now each \(f_p : K_p \rightarrow K_p \) is conjugated to a direct product of generalized shifts of \(\mathbb{Z}^\kappa_p \).

Note that in both cases these generalized shifts are just products of periodic automorphisms and Bernoulli automorphisms.
Similarly, one can compute $h_{\text{top}}(f)$ when G is a compact connected group. As mentioned above, we can reduce to the cases when G is abelian or $G' = G$ (note that G' is closed and connected). The abelian case can be reduced, via the Bridge theorem, to the computation of $h_{\text{alg}}(\hat{f})$.

Since $Z(G)$ is characteristic, the computation of $h_{\text{top}}(f)$ can be reduced, due to AT, to the case when G is center-free, as $Z(G/Z(G)) = \{e\}$. In such a case the group G is, again, strictly reductive, i.e., $G = \prod_{i \in I} F_i^j$, where F_i are pairwise non-isomorphic compact connected simple Lie groups with trivial center.

As above, f_j induces a bijection λ_j of l_j, so that $\psi_j := g_{\lambda_j}^{-1} \circ f_j$ acts coordinatewise on F_j^l. Now $h_{\text{top}}(f)$ is computed as above, but here one has a dichotomy:

- either $h_{\text{top}}(f) = 0$ (if all $h_{\lambda_j}(f) = 0$), or
- $h_{\text{top}}(f) = \infty$ otherwise (i.e., some λ_j has infinite orbits).
Similarly, one can compute $h_{top}(f)$ when G is a compact connected group. As mentioned above, we can reduce to the cases when G is abelian or $G' = G$ (note that G' is closed and connected). The abelian case can be reduced, via the Bridge theorem, to the computation of $h_{alg}(\hat{f})$. Since $Z(G)$ is characteristic, the computation of $h_{top}(f)$ can be reduced, due to AT, to the case when G is center-free, as $Z(G/Z(G)) = \{e\}$. In such a case the group G is, again, strictly reductive, i.e., $G = \prod_{i \in I} F_i^{l_j}$, where F_i are pairwise non-isomorphic compact connected simple Lie groups with trivial center.

As above, f_j induces a bijection λ_j of l_j, so that $\psi_j := g^{-1}_{\lambda_j} \circ f_j$ acts coordinatewise on $F_j^{l_j}$. Now $h_{top}(f)$ is computed as above, but here one has a dichotomy:

- either $h_{top}(f) = 0$ (if all $h_{\lambda_j}(f) = 0$), or
- $h_{top}(f) = \infty$ otherwise (i.e., some λ_j has infinite orbits).
Similarly, one can compute $h_{\text{top}}(f)$ when G is a compact connected group. As mentioned above, we can reduce to the cases when G is abelian or $G' = G$ (note that G' is closed and connected). The abelian case can be reduced, via the Bridge theorem, to the computation of $h_{\text{alg}}(\hat{f})$.

Since $Z(G)$ is characteristic, the computation of $h_{\text{top}}(f)$ can be reduced, due to AT, to the case when G is center-free, as $Z(G/Z(G)) = \{e\}$. In such a case the group G is, again, strictly reductive, i.e., $G = \prod_{i \in I} F_i^{l_i}$, where F_i are pairwise non-isomorphic compact connected simple Lie groups with trivial center.

As above, f_j induces a bijection λ_j of l_j, so that $\psi_j := g_{\lambda_j}^{-1} \circ f_j$ acts coordinatewise on $F_j^{l_j}$. Now $h_{\text{top}}(f)$ is computed as above, but here one has a dichotomy:

- either $h_{\text{top}}(f) = 0$ (if all $h_{\lambda_j}(f) = 0$), or
- $h_{\text{top}}(f) = \infty$ otherwise (i.e., some λ_j has infinite orbits).
Similarly, one can compute $h_{\text{top}}(f)$ when G is a compact connected group. As mentioned above, we can reduce to the cases when G is abelian or $G' = G$ (note that G' is closed and connected). The abelian case can be reduced, via the Bridge theorem, to the computation of $h_{\text{alg}}(\hat{f})$.

Since $Z(G)$ is characteristic, the computation of $h_{\text{top}}(f)$ can be reduced, due to AT, to the case when G is center-free, as $Z(G/Z(G)) = \{e\}$. In such a case the group G is, again, strictly reductive, i.e., $G = \prod_{i \in I} F_{i}^{I_j}$, where F_i are pairwise non-isomorphic compact connected simple Lie groups with trivial center.

As above, f_j induces a bijection λ_j of I_j, so that $\psi_j := g_{\lambda_j}^{-1} \circ f_j$ acts coordinatewise on $F_{j}^{I_j}$. Now $h_{\text{top}}(f)$ is computed as above, but here one has a dichotomy:

- either $h_{\text{top}}(f) = 0$ (if all $h_{\lambda_j}(f) = 0$), or
- $h_{\text{top}}(f) = \infty$ otherwise (i.e., some λ_j has infinite orbits).
A *normed semigroup* is a commutative semigroup \((S, +)\) provided with a map \((\text{norm})\) \(v \colon S \to \mathbb{R}_{\geq 0} = \{r \in \mathbb{R} : r \geq 0\}\) satisfying

\[v(x + y) \leq v(x) + v(y) \]

for all \(x, y \in S\).

The category \(\mathcal{G}\) of normed semigroups has as morphisms all *contractive* semigroup homomorphism \(f : (S, v) \to (S_1, v_1)\) (i.e., \(\phi(x + y) = \phi(x) + \phi(y)\) and \(v_1(\phi(x)) \leq v(x)\) hold for every \(x, y \in S\)).

For \((S, v) \in \mathcal{G}\) we say that the norm is *\(s\)-monotone*, if

\[\max\{v(x), v(y)\} \leq v(x + y) \leq v(x) + v(y) \]

for all \(x, y \in S\).
Definition

A **normed semigroup** is a commutative semigroup \((S, +)\) provided with a map \((\text{norm})\) \(\nu : S \to \mathbb{R}_{\geq 0} = \{ r \in \mathbb{R} : r \geq 0 \}\) satisfying

\[
\nu(x + y) \leq \nu(x) + \nu(y)
\]

for all \(x, y \in S\).

The category \(\mathcal{S}\) of normed semigroups has as morphisms all **contractive** semigroup homomorphism \(f : (S, \nu) \to (S_1, \nu_1)\) (i.e., \(\phi(x + y) = \phi(x) + \phi(y)\) and \(\nu_1(\phi(x)) \leq \nu(x)\) hold for every \(x, y \in S\)).

For \((S, \nu) \in \mathcal{S}\) we say that the norm is **s-monotone**, if

\[
\max\{\nu(x), \nu(y)\} \leq \nu(x + y) \leq \nu(x) + \nu(y) \quad \text{for all } x, y \in S.
\]
Definition

A **normed semigroup** is a commutative semigroup \((S, +)\) provided with a map (\textit{norm}) \(v : S \to \mathbb{R}_{\geq 0} = \{ r \in \mathbb{R} : r \geq 0 \}\) satisfying

\[v(x + y) \leq v(x) + v(y) \]

for all \(x, y \in S\).

The category \(\mathcal{S}\) of normed semigroups has as morphisms all **contractive** semigroup homomorphism \(f : (S, v) \to (S_1, v_1)\) (i.e., \(\phi(x + y) = \phi(x) + \phi(y)\) and \(v_1(\phi(x)) \leq v(x)\) hold for every \(x, y \in S\)).

For \((S, v) \in \mathcal{S}\) we say that the norm is **s-monotone**, if

\[\max\{v(x), v(y)\} \leq v(x + y) \leq v(x) + v(y) \quad \text{for all } x, y \in S. \]
Definition

A **normed semigroup** is a commutative semigroup \((S, +)\) provided with a map (\textit{norm}) \(v : S \rightarrow \mathbb{R}_{\geq 0} = \{r \in \mathbb{R} : r \geq 0\}\) satisfying

\[v(x + y) \leq v(x) + v(y) \]

for all \(x, y \in S\).

The category \(\mathcal{S}\) of normed semigroups has as morphisms all **contractive** semigroup homomorphism \(f : (S, v) \rightarrow (S_1, v_1)\) (i.e., \(\phi(x + y) = \phi(x) + \phi(y)\) and \(v_1(\phi(x)) \leq v(x)\) hold for every \(x, y \in S\)).

For \((S, v) \in \mathcal{S}\) we say that the norm is **\(s\)-monotone**, if

\[\max\{v(x), v(y)\} \leq v(x + y) \leq v(x) + v(y) \quad \text{for all } x, y \in S. \]
For \((S, \nu) \in \mathcal{G}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \textit{n-th trajectory of} \(x\) \textit{under} \(\phi\)

\[T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x)\] and \(c_n(\phi, x) = \nu(T_n(\phi, x))\). Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

\(\text{Let } \phi : S \to S \text{ be an endomorphism in } \mathcal{G}. \text{ Then for every } x \in S \text{ the limit } h_{\mathcal{G}}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n} \text{ exists and satisfies } h_{\mathcal{G}}(\phi, x) \leq \nu(x).\)

The existence of the limit is ensured by Fekete Lemma.

Definition

\(\text{Let } \phi : S \to S \text{ be an endomorphism in } \mathcal{G}. \text{ The } \textbf{semigroup entropy}\ \text{of} \ \phi \text{ is}\)

\[h_{\mathcal{G}}(\phi) = \sup_{x \in S} h_{\mathcal{G}}(\phi, x).\]
For \((S, v) \in \mathcal{G}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x\) \textit{under } \phi

\[T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x) \text{ and } c_n(\phi, x) = v(T_n(\phi, x)). \]

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot v(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). Then for every \(x \in S\) the limit \(h_\mathcal{G}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) exists and satisfies \(h_\mathcal{G}(\phi, x) \leq v(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). The \textit{semigroup entropy} of \(\phi\) is

\[h_\mathcal{G}(\phi) = \sup_{x \in S} h_\mathcal{G}(\phi, x). \]
For \((S, \nu) \in \mathcal{G}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x \) under \(\phi\)

\[T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x) \]

and \(c_n(\phi, x) = \nu(T_n(\phi, x)).\)

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). Then for every \(x \in S\) the limit \(h_S(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) exists and satisfies \(h_S(\phi, x) \leq \nu(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). The semigroup entropy of \(\phi\) is

\[h_S(\phi) = \sup_{x \in S} h_S(\phi, x). \]
For \((S, \nu) \in \mathcal{S}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x\) under \(\phi\)

\[T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x) \]
and \(c_n(\phi, x) = \nu(T_n(\phi, x))\).

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{S}\). Then for every \(x \in S\) the limit \(h_{\mathcal{S}}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) exists and satisfies \(h_{\mathcal{S}}(\phi, x) \leq \nu(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{S}\). The semigroup entropy of \(\phi\) is

\[h_{\mathcal{S}}(\phi) = \sup_{x \in S} h_{\mathcal{S}}(\phi, x). \]
For \((S, \nu) \in \mathcal{G}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x\) under \(\phi\)

\[
T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x) \quad \text{and} \quad c_n(\phi, x) = \nu(T_n(\phi, x)).
\]

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). Then for every \(x \in S\) the limit \(h_{\mathcal{G}}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) exists and satisfies \(h_{\mathcal{G}}(\phi, x) \leq \nu(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{G}\). The semigroup entropy of \(\phi\) is

\[
h_{\mathcal{G}}(\phi) = \sup_{x \in S} h_{\mathcal{G}}(\phi, x).
\]
For \((S, \nu) \in \mathcal{S}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x\) \textit{under} \(\phi\)

\[
T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x)
\]

and \(c_n(\phi, x) = \nu(T_n(\phi, x))\).

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

\textit{Let} \(\phi : S \rightarrow S\) \textit{be an endomorphism in} \(\mathcal{S}\). \textit{Then for every} \(x \in S\) \textit{the limit} \(h_{\mathcal{S}}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) \textit{exists and satisfies} \(h_{\mathcal{S}}(\phi, x) \leq \nu(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

\textit{Let} \(\phi : S \rightarrow S\) \textit{be an endomorphism in} \(\mathcal{S}\). \textit{The semigroup entropy of} \(\phi\) \textit{is}

\[
h_{\mathcal{S}}(\phi) = \sup_{x \in S} h_{\mathcal{S}}(\phi, x).
\]
For \((S, \nu) \in \mathcal{S}, x \in S\) and \(n \in \mathbb{N}_+\) consider the \(n\)-th trajectory of \(x\) under \(\phi\)

\[
T_n(\phi, x) = x + \phi(x) + \ldots + \phi^{n-1}(x) \quad \text{and} \quad c_n(\phi, x) = \nu(T_n(\phi, x)).
\]

Then \((c_n(\phi, x))\) is subadditive and \(c_n \leq n \cdot \nu(x)\), so the growth of the function \(n \mapsto c_n(\phi, x)\) is at most linear.

Theorem

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{S}\). Then for every \(x \in S\) the limit \(h_{\mathcal{S}}(\phi, x) := \lim_n \frac{c_n(\phi, x)}{n}\) exists and satisfies \(h_{\mathcal{S}}(\phi, x) \leq \nu(x)\).

The existence of the limit is ensured by Fekete Lemma.

Definition

Let \(\phi : S \to S\) be an endomorphism in \(\mathcal{S}\). The **semigroup entropy** of \(\phi\) is

\[
h_{\mathcal{S}}(\phi) = \sup_{x \in S} h_{\mathcal{S}}(\phi, x).
\]
Lemma (\(h_{\mathcal{G}}\) is monotone under taking quotients)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(\mathcal{G}\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{\mathcal{G}}(\phi) \leq h_{\mathcal{G}}(\psi)\).

Corollary (\(h_{\mathcal{G}}\) is invariant under conjugation)

If \(\phi : S \to S\) is an endomorphism in \(\mathcal{G}\) and \(\alpha : T \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi) = h_{\mathcal{G}}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_{\mathcal{G}}\) is invariant under inversion)

If \(\phi : S \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi^{-1}) = h_{\mathcal{G}}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, v)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_{\mathcal{G}}(\phi^k) \leq k \cdot h_{\mathcal{G}}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(v\) is \(s\)-monotone.
Lemma (\(h_{\mathcal{S}}\) is monotone under taking quotients)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(\mathcal{S}\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{\mathcal{S}}(\phi) \leq h_{\mathcal{S}}(\psi)\).

Corollary (\(h_{\mathcal{S}}\) is invariant under conjugation)

If \(\phi : S \to S\) is an endomorphism in \(\mathcal{S}\) and \(\alpha : T \to S\) is an isomorphism in \(\mathcal{S}\), then \(h_{\mathcal{S}}(\phi) = h_{\mathcal{S}}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_{\mathcal{S}}\) is invariant under inversion)

If \(\phi : S \to S\) is an isomorphism in \(\mathcal{S}\), then \(h_{\mathcal{S}}(\phi^{-1}) = h_{\mathcal{S}}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, \nu)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_{\mathcal{S}}(\phi^k) \leq k \cdot h_{\mathcal{S}}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is s-monotone.
Lemma (\(h_\mathcal{G}\) is monotone under taking quotients)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(\mathcal{G}\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_\mathcal{G}(\phi) \leq h_\mathcal{G}(\psi)\).

Corollary (\(h_\mathcal{G}\) is invariant under conjugation)

If \(\phi : S \to S\) is an endomorphism in \(\mathcal{G}\) and \(\alpha : T \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_\mathcal{G}(\phi) = h_\mathcal{G}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_\mathcal{G}\) is invariant under inversion)

If \(\phi : S \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_\mathcal{G}(\phi^{-1}) = h_\mathcal{G}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, \nu)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_\mathcal{G}(\phi^k) \leq k \cdot h_\mathcal{G}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is s-monotone.
Lemma (\(h_{\mathcal{G}}\) is monotone under taking quotients)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(\mathcal{G}\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{\mathcal{G}}(\phi) \leq h_{\mathcal{G}}(\psi)\).

Corollary (\(h_{\mathcal{G}}\) is invariant under conjugation)

If \(\phi : S \to S\) is an endomorphism in \(\mathcal{G}\) and \(\alpha : T \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi) = h_{\mathcal{G}}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_{\mathcal{G}}\) is invariant under inversion)

If \(\phi : S \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi^{-1}) = h_{\mathcal{G}}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, v)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_{\mathcal{G}}(\phi^k) \leq k \cdot h_{\mathcal{G}}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(v\) is \(s\)-monotone.
Lemma (\(h_{\mathcal{G}}\) is monotone under taking quotients)

If \(\phi: S \to S\) and \(\psi: T \to T\) are endomorphisms in \(\mathcal{G}\) and \(\alpha: T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{\mathcal{G}}(\phi) \leq h_{\mathcal{G}}(\psi)\).

Corollary (\(h_{\mathcal{G}}\) is invariant under conjugation)

If \(\phi: S \to S\) is an endomorphism in \(\mathcal{G}\) and \(\alpha: T \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi) = h_{\mathcal{G}}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_{\mathcal{G}}\) is invariant under inversion)

If \(\phi: S \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi^{-1}) = h_{\mathcal{G}}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, \nu)\) be a normed semigroup and \(\phi: S \to S\) an endomorphism. Then \(h_{\mathcal{G}}(\phi^k) \leq k \cdot h_{\mathcal{G}}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is \(s\)-monotone.
Lemma \((h_{G} is monotone under taking quotients)\)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(G\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{G}(\phi) \leq h_{G}(\psi)\).

Corollary \((h_{G} is invariant under conjugation)\)

If \(\phi : S \to S\) is an endomorphism in \(G\) and \(\alpha : T \to S\) is an isomorphism in \(G\), then \(h_{G}(\phi) = h_{G}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma \((h_{G} is invariant under inversion)\)

If \(\phi : S \to S\) is an isomorphism in \(G\), then \(h_{G}(\phi^{-1}) = h_{G}(\phi)\).

Lemma \((Logarithmic Law)\)

Let \((S, \nu)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_{G}(\phi^{k}) \leq k \cdot h_{G}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is s-monotone.
Lemma \((h_\mathbb{G} \text{ is monotone under taking quotients})\)

If \(\phi : S \rightarrow S\) and \(\psi : T \rightarrow T\) are endomorphisms in \(\mathbb{G}\) and \(\alpha : T \rightarrow S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_\mathbb{G}(\phi) \leq h_\mathbb{G}(\psi)\).

Corollary \((h_\mathbb{G} \text{ is invariant under conjugation})\)

If \(\phi : S \rightarrow S\) is an endomorphism in \(\mathbb{G}\) and \(\alpha : T \rightarrow S\) is an isomorphism in \(\mathbb{G}\), then \(h_\mathbb{G}(\phi) = h_\mathbb{G}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma \((h_\mathbb{G} \text{ is invariant under inversion})\)

If \(\phi : S \rightarrow S\) is an isomorphism in \(\mathbb{G}\), then \(h_\mathbb{G}(\phi^{-1}) = h_\mathbb{G}(\phi)\).

Lemma \((\text{Logarithmic Law})\)

Let \((S, \nu)\) be a normed semigroup and \(\phi : S \rightarrow S\) an endomorphism. Then \(h_\mathbb{G}(\phi^k) \leq k \cdot h_\mathbb{G}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is \(s\)-monotone.
Lemma (*h_S* is monotone under taking quotients)

If φ : S → S and ψ : T → T are endomorphisms in S and α : T → S is a surjective homomorphism between normed semigroups such that α ◦ ψ = φ ◦ α, then h_S(φ) ≤ h_S(ψ).

Corollary (*h_S* is invariant under conjugation)

If φ : S → S is an endomorphism in S and α : T → S is an isomorphism in S, then h_S(φ) = h_S(α ◦ φ ◦ α^{-1}).

Lemma (*h_S* is invariant under inversion)

If φ : S → S is an isomorphism in S, then h_S(φ^{-1}) = h_S(φ).

Lemma (Logarithmic Law)

Let (S, υ) be a normed semigroup and φ : S → S an endomorphism. Then h_S(φ^k) ≤ k · h_S(φ) for every k ∈ ℤ. Furthermore equality holds if υ is s-monotone.
Lemma (\(h_{\mathcal{G}}\) is monotone under taking quotients)

If \(\phi : S \to S\) and \(\psi : T \to T\) are endomorphisms in \(\mathcal{G}\) and \(\alpha : T \to S\) is a surjective homomorphism between normed semigroups such that \(\alpha \circ \psi = \phi \circ \alpha\), then \(h_{\mathcal{G}}(\phi) \leq h_{\mathcal{G}}(\psi)\).

Corollary (\(h_{\mathcal{G}}\) is invariant under conjugation)

If \(\phi : S \to S\) is an endomorphism in \(\mathcal{G}\) and \(\alpha : T \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi) = h_{\mathcal{G}}(\alpha \circ \phi \circ \alpha^{-1})\).

Lemma (\(h_{\mathcal{G}}\) is invariant under inversion)

If \(\phi : S \to S\) is an isomorphism in \(\mathcal{G}\), then \(h_{\mathcal{G}}(\phi^{-1}) = h_{\mathcal{G}}(\phi)\).

Lemma (Logarithmic Law)

Let \((S, \nu)\) be a normed semigroup and \(\phi : S \to S\) an endomorphism. Then \(h_{\mathcal{G}}(\phi^k) \leq k \cdot h_{\mathcal{G}}(\phi)\) for every \(k \in \mathbb{N}\). Furthermore equality holds if \(\nu\) is \(s\)-monotone.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \vee, \mathcal{E})$, where \vee is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e, if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \vee \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \vee \mathcal{U} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$)

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \vee \mathcal{V}) = \phi^{-1}(\mathcal{U}) \vee \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \vee, \mathcal{E})$, where \vee is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e, if for every $\mathcal{V} \in \mathcal{V}$ there exists $\mathcal{U} \in \mathcal{U}$ such that $\mathcal{V} \subseteq \mathcal{U}$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \vee \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \vee \mathcal{U} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$)

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \vee \mathcal{V}) = \phi^{-1}(\mathcal{U}) \vee \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \lor, \mathcal{E})$, where \lor is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $U \prec V$ on $\text{cov}(C)$ (V refines U, i.e, if for every $V \in V$ there exists $U \in U$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $U \lor U \neq U$ (so $\text{cov}(C)$ is not a semilattice), yet $U \lor U \sim U$ (where $U \sim V$ means $U \prec V$ abd $V \prec U$).

For a continuous map $\phi : X \to Y$ and $U \in \text{cov}(Y)$ let

$$\phi^{-1}(U) = \{\phi^{-1}(U) : U \in U\}.$$

The assignment $U \mapsto \phi^{-1}(U)$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(U \lor V) = \phi^{-1}(U) \lor \phi^{-1}(V)$). This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \vee, \mathcal{E})$, where \vee is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e. if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \vee \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \vee \mathcal{U} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$).

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \vee \mathcal{V}) = \phi^{-1}(\mathcal{U}) \vee \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \vee, \mathcal{E})$, where \vee is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e., if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \vee \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \vee \mathcal{V} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$).

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \vee \mathcal{V}) = \phi^{-1}(\mathcal{U}) \vee \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \lor, \mathcal{E})$, where \lor is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e, if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \lor \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \lor \mathcal{U} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$).

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \lor \mathcal{V}) = \phi^{-1}(\mathcal{U}) \lor \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
For a topological space X the family $\text{cov}(X)$ of all open covers of X is a commutative monoid $(\text{cov}(X), \lor, \mathcal{E})$, where \lor is defined as before and $\mathcal{E} = \{X\}$ is the trivial cover.

One has a natural a preorder $\mathcal{U} \prec \mathcal{V}$ on $\text{cov}(C)$ (\mathcal{V} refines \mathcal{U}, i.e, if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subseteq U$), that is not an order. It has bottom element \mathcal{E}. In general, $\mathcal{U} \lor \mathcal{U} \neq \mathcal{U}$ (so $\text{cov}(C)$ is not a semilattice), yet $\mathcal{U} \lor \mathcal{U} \sim \mathcal{U}$ (where $\mathcal{U} \sim \mathcal{V}$ means $\mathcal{U} \prec \mathcal{V}$ abd $\mathcal{V} \prec \mathcal{U}$)

For a continuous map $\phi : X \to Y$ and $\mathcal{U} \in \text{cov}(Y)$ let

$$\phi^{-1}(\mathcal{U}) = \{\phi^{-1}(U) : U \in \mathcal{U}\}.$$

The assignment $\mathcal{U} \mapsto \phi^{-1}(\mathcal{U})$ gives a semigroup homomorphism $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ (as $\phi^{-1}(\mathcal{U} \lor \mathcal{V}) = \phi^{-1}(\mathcal{U}) \lor \phi^{-1}(\mathcal{V})$).

This defines a contravariant functor cov from the category of all topological spaces to the category of commutative semigroups.
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory CTop of compact spaces. For $X \in \text{CTop}$, $\mathcal{U} \in \text{cov}(X)$ let $\nu(\mathcal{U}) = N(\mathcal{U})$.

Lemma

For a compact space X, $(\text{cov}(X), \lor, \nu)$ is an normed semigroup. For every continuous map $\phi : X \to Y$ of compact spaces the inequality $\nu(\phi^{-1}(\mathcal{W})) \leq \nu(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ is a morphism in \mathcal{G}, so that the assignement $X \mapsto \text{cov}(X)$ defines a contravariant functor $\text{cov} : \text{CTop} \to \mathcal{G}$, that sends embeddings in CTop to surjective morphisms in \mathcal{G} and sends surjective maps in CTop to embeddings in \mathcal{G}.
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory CTop of compact spaces. For $X \in \text{CTop}$, $\mathcal{U} \in \text{cov}(X)$ let $v(\mathcal{U}) = N(\mathcal{U})$.

Lemma

For a compact space X, $(\text{cov}(X), \lor, v)$ is a normed semigroup. For every continuous map $\phi : X \rightarrow Y$ of compact spaces the inequality $v(\phi^{-1}(\mathcal{W})) \leq v(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \rightarrow \text{cov}(X)$ is a morphism in \mathcal{S}, so that the assignment $X \mapsto \text{cov}(X)$ defines a contravariant functor

$$\text{cov} : \text{CTop} \rightarrow \mathcal{S},$$

that sends embeddings in CTop to surjective morphisms in \mathcal{S} and sends surjective maps in CTop to embeddings in \mathcal{S}.
To get a norm on the semigroup \(\text{cov}(X) \) we restrict this functor to the subcategory \(\text{CTop} \) of compact spaces. For \(X \in \text{CTop} \), \(U \in \text{cov}(X) \) let \(v(U) = N(U) \).

Lemma

For a compact space \(X \), \((\text{cov}(X), \lor, v) \) is an normed semigroup. For every continuous map \(\phi : X \to Y \) of compact spaces the inequality \(v(\phi^{-1}(W)) \leq v(W) \) holds for every \(W \in \text{cov}(Y) \).

By the lemma \(\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X) \) is a morphism in \(\mathcal{G} \), so that the assignement \(X \mapsto \text{cov}(X) \) defines a contravariant functor \(\text{cov} : \text{CTop} \to \mathcal{G} \),

that sends embeddings in \(\text{CTop} \) to surjective morphisms in \(\mathcal{G} \) and sends surjective maps in \(\text{CTop} \) to embeddings in \(\mathcal{G} \).
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory CTop of compact spaces. For $X \in \text{CTop}$, $U \in \text{cov}(X)$ let $v(U) = N(U)$.

Lemma

For a compact space X, $(\text{cov}(X), \lor, v)$ is an normed semigroup. For every continuous map $\phi : X \to Y$ of compact spaces the inequality $v(\phi^{-1}(\mathcal{W})) \leq v(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ is a morphism in \mathcal{G}, so that the assignment $X \mapsto \text{cov}(X)$ defines a contravariant functor $\text{cov} : \text{CTop} \to \mathcal{G}$, that sends embeddings in CTop to surjective morphisms in \mathcal{G} and sends surjective maps in CTop to embeddings in \mathcal{G}.
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory CTop of compact spaces. For $X \in \text{CTop}$, $\mathcal{U} \in \text{cov}(X)$ let $v(\mathcal{U}) = N(\mathcal{U})$.

Lemma

For a compact space X, $(\text{cov}(X), \vee, v)$ is an normed semigroup. For every continuous map $\phi : X \rightarrow Y$ of compact spaces the inequality $v(\phi^{-1}(\mathcal{W})) \leq v(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \rightarrow \text{cov}(X)$ is a morphism in \mathcal{G}, so that the assignement $X \mapsto \text{cov}(X)$ defines a contravariant functor $\text{cov} : \text{CTop} \rightarrow \mathcal{G}$, that sends embeddings in CTop to surjective morphisms in \mathcal{G} and sends surjective maps in CTop to embeddings in \mathcal{G}.
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory CTop of \textit{compact spaces}. For $X \in \text{CTop}$, $\mathcal{U} \in \text{cov}(X)$ let $v(\mathcal{U}) = N(\mathcal{U})$.

\textbf{Lemma}

\textit{For a compact space X, $(\text{cov}(X), \lor, v)$ is an normed semigroup. For every continuous map $\phi : X \rightarrow Y$ of compact spaces the inequality $v(\phi^{-1}(\mathcal{W})) \leq v(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.}

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \rightarrow \text{cov}(X)$ is a morphism in \mathcal{G}, so that the assignement $X \mapsto \text{cov}(X)$ defines a contravariant functor $\text{cov} : \text{CTop} \rightarrow \mathcal{G}$, that sends embeddings in CTop to surjective morphisms in \mathcal{G} and sends surjective maps in CTop to embeddings in \mathcal{G}.
To get a norm on the semigroup $\text{cov}(X)$ we restrict this functor to the subcategory \mathbf{CTop} of compact spaces. For $X \in \mathbf{CTop}$, $\mathcal{U} \in \text{cov}(X)$ let $v(\mathcal{U}) = N(\mathcal{U})$.

Lemma

For a compact space X, $(\text{cov}(X), \lor, v)$ is an normed semigroup. For every continuous map $\phi : X \to Y$ of compact spaces the inequality $v(\phi^{-1}(\mathcal{W})) \leq v(\mathcal{W})$ holds for every $\mathcal{W} \in \text{cov}(Y)$.

By the lemma $\text{cov}(\phi) : \text{cov}(Y) \to \text{cov}(X)$ is a morphism in \mathcal{G}, so that the assignement $X \mapsto \text{cov}(X)$ defines a contravariant functor $\text{cov} : \mathbf{CTop} \to \mathcal{G}$,

that sends embeddings in \mathbf{CTop} to surjective morphisms in \mathcal{G} and sends surjective maps in \mathbf{CTop} to embeddings in \mathcal{G}.
Let $F : \mathcal{X} \to \mathcal{G}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{G}}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_{\mathcal{X}}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logaritmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$, for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{S}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{S}}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$. for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{S}$ a functor. Define the entropy function \mathcal{h}_F in the category \mathcal{X} by

$$\mathcal{h}_F(\phi) = h_\mathcal{S}(F \phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy \mathcal{h}_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $\mathcal{h}_F(\phi) = \mathcal{h}_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $\mathcal{h}_F(\phi^{-1}) = \mathcal{h}_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $\mathcal{h}_F(\phi^k) = k \cdot \mathcal{h}_F(\phi)$. for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \rightarrow \mathcal{S}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{S}}(F \phi),$$

for an endomorphism $\phi : X \rightarrow X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \rightarrow X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$. for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{G}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{G}}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$, for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{S}$ a functor. Define the entropy function \mathcal{h}_F in the category \mathcal{X} by

$$\mathcal{h}_F(\phi) = h_{\mathcal{S}}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_{\mathcal{X}}(X)$, the entropy \mathcal{h}_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $\mathcal{h}_F(\phi) = \mathcal{h}_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $\mathcal{h}_F(\phi^{-1}) = \mathcal{h}_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $\mathcal{h}_F(\phi^k) = k \cdot \mathcal{h}_F(\phi)$, for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \rightarrow \mathcal{S}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{S}}(F\phi),$$

for an endomorphism $\phi : X \rightarrow X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \rightarrow X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$, for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{S}$ a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_\mathcal{S}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$, for all $k \in \mathbb{N}$.
Let $F : \mathcal{X} \to \mathcal{S}$ be a functor. Define the entropy function h_F in the category \mathcal{X} by

$$h_F(\phi) = h_{\mathcal{S}}(F\phi),$$

for an endomorphism $\phi : X \to X$ in \mathcal{X}. The functor F preserves commutative squares and isomorphisms. So, with $X, Y \in \mathcal{X}$ and $\phi \in \text{End}_\mathcal{X}(X)$, the entropy h_F will satisfy:

[Invariance under conjugation] If $\alpha : Y \to X$ is an isomorphism, then $h_F(\phi) = h_F(\alpha^{-1} \circ \phi \circ \alpha)$.

[Invariance under inversion] $h_F(\phi^{-1}) = h_F(\phi)$, if ϕ is an isomorphism.

[Logarithmic law] If the norm of the semigroup $F(X)$ is s-monotone, then $h_F(\phi^k) = k \cdot h_F(\phi)$, for all $k \in \mathbb{N}$.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi |_Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi |_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.

Further properties of h_F depend on properties of the functor F.

We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{G} or to surjective maps in \mathcal{G}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi \mid Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{G} or to embeddings in \mathcal{G}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi \mid X_i)$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of \mathfrak{h}_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{G} or to surjective maps in \mathcal{G}, then \mathfrak{h}_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $\mathfrak{h}_F(\phi \mid Y) \leq \mathfrak{h}_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{G} or to embeddings in \mathcal{G}, then \mathfrak{h}_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $\mathfrak{h}_F(\phi) = \sup \mathfrak{h}_F(\phi \mid X_i)$ whenever $X = \lim \ X_i$ and each X_i is a ϕ-invariant subobject of X. \
Further properties of \mathfrak{h}_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then \mathfrak{h}_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $\mathfrak{h}_F(\phi \upharpoonright Y) \leq \mathfrak{h}_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then \mathfrak{h}_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $\mathfrak{h}_F(\phi) = \sup_{X_i} \mathfrak{h}_F(\phi \upharpoonright X_i)$ whenever $X = \lim_{\to} X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of \mathcal{h}_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{G} or to surjective maps in \mathcal{G}, then \mathcal{h}_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $\mathcal{h}_F(\phi \upharpoonright Y) \leq \mathcal{h}_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{G} or to embeddings in \mathcal{G}, then \mathcal{h}_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $\mathcal{h}_F(\phi) = \sup \mathcal{h}_F(\phi \upharpoonright X_i)$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi|_Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi|_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi|_Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi|_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi \upharpoonright Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi|_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi \restriction Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi \mid X_i)$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi↾_Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi|_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.
Further properties of h_F depend on properties of the functor F. We start by monotonicity under taking invariant subobjects or factor flows.

[Monotonicity under taking invariant subobjects] If F sends subobject embeddings in \mathcal{X} to embeddings in \mathcal{S} or to surjective maps in \mathcal{S}, then h_F is monotone under taking invariant subobjects (i.e., if Y is a ϕ-invariant subobject of X, then $h_F(\phi \upharpoonright Y) \leq h_F(\phi)$).

[Monotonicity under taking quotients] If F sends quotients in \mathcal{X} to surjective maps in \mathcal{S} or to embeddings in \mathcal{S}, then h_F is monotone under taking quotients.

[“Continuity” under direct limits] If F is covariant and sends direct limits to direct limits, then $h_F(\phi) = \sup h_F(\phi|_{X_i})$ whenever $X = \lim X_i$ and each X_i is a ϕ-invariant subobject of X.

Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \text{CTop} \to S$ the entropy $h_{\text{cov}} : \text{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,
- takes factors in CTop to embeddings in S,
- takes embeddings in CTop to surjective morphisms in S, and
- takes inverse limits in CTop to direct limits in S,

the topological entropy h_{top}
- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(\text{id}_X) = 0$),
- satisfies the weak Addition Theorem:
 \[h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2). \]
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $cov : CTop \to S$ the entropy $h_{cov} : CTop \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in $CTop$ to embeddings in S,
- takes embeddings in $CTop$ to surjective morphisms in S, and
- takes inverse limits in $CTop$ to direct limits in S

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{top}(id_X) = 0$),
- satisfies the weak Addition Theorem:

$$h_{top}(\phi_1 \times \phi_2) = h_{top}(\phi_1) + h_{top}(\phi_2).$$
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \mathcal{CTop} \to \mathcal{S}$ the entropy $h_{\text{cov}} : \mathcal{CTop} \to \mathbb{R}_{+}$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in \mathcal{CTop} to embeddings in \mathcal{S},
- takes embeddings in \mathcal{CTop} to surjective morphisms in \mathcal{S}, and
- takes inverse limits in \mathcal{CTop} to direct limits in \mathcal{S}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem:
 \[h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2). \]
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \text{CTop} \to \mathcal{G}$ the entropy $h_{\text{cov}} : \text{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in CTop to embeddings in \mathcal{G},
- takes embeddings in CTop to surjective morphisms in \mathcal{G}, and
- takes inverse limits in CTop to direct limits in \mathcal{G}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem: $h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2)$.
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \mathbf{CTop} \to \mathcal{G}$ the entropy $h_{\text{cov}} : \mathbf{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in \mathbf{CTop} to embeddings in \mathcal{G},
- takes embeddings in \mathbf{CTop} to surjective morphisms in \mathcal{G}, and
- takes inverse limits in \mathbf{CTop} to direct limits in \mathcal{G}

the topological entropy h_{top} is monotone w.r.t. taking factors or restrictions to invariant subspaces,

- is continuous w.r.t. inverse limits;

- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),

- satisfies the weak Addition Theorem:

$$h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2).$$
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \text{CTop} \to \mathcal{G}$ the entropy $h_{\text{cov}} : \text{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al. Since the functor cov,

- takes factors in CTop to embeddings in \mathcal{G},
- takes embeddings in CTop to surjective morphisms in \mathcal{G}, and
- takes inverse limits in CTop to direct limits in \mathcal{G}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem:
 $h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2)$.
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \mathbf{CTop} \to \mathcal{S}$ the entropy $h_{\text{cov}} : \mathbf{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in \mathbf{CTop} to embeddings in \mathcal{S},
- takes embeddings in \mathbf{CTop} to surjective morphisms in \mathcal{S}, and
- takes inverse limits in \mathbf{CTop} to direct limits in \mathcal{S}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem:

$$h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2).$$
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \text{CTop} \to \mathcal{S}$ the entropy $h_{\text{cov}} : \text{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al. Since the functor cov,

- takes factors in CTop to embeddings in \mathcal{S},
- takes embeddings in CTop to surjective morphisms in \mathcal{S}, and
- takes inverse limits in CTop to direct limits in \mathcal{S}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem:

 $$h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2).$$
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\mathcal{C}ov : \mathcal{CTop} \rightarrow \mathcal{S}$ the entropy $h_{cov} : \mathcal{CTop} \rightarrow \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor $\mathcal{C}ov$,

- takes factors in \mathcal{CTop} to embeddings in \mathcal{S},
- takes embeddings in \mathcal{CTop} to surjective morphisms in \mathcal{S}, and
- takes inverse limits in \mathcal{CTop} to direct limits in \mathcal{S}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{top}(id_X) = 0$),
- satisfies the weak Addition Theorem: $h_{top}(\phi_1 \times \phi_2) = h_{top}(\phi_1) + h_{top}(\phi_2)$.

Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $\text{cov} : \text{CTop} \to \mathbb{S}$ the entropy $h_{\text{cov}} : \text{CTop} \to \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in CTop to embeddings in \mathbb{S},
- takes embeddings in CTop to surjective morphisms in \mathbb{S}, and
- takes inverse limits in CTop to direct limits in \mathbb{S},

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{\text{top}}(id_X) = 0$),
- satisfies the weak Addition Theorem:
 \[h_{\text{top}}(\phi_1 \times \phi_2) = h_{\text{top}}(\phi_1) + h_{\text{top}}(\phi_2). \]
Obtaining the topological entropy h_{top} as h_{cov}

For the contravariant functor $cov : CTop \rightarrow \mathcal{G}$ the entropy $h_{cov} : CTop \rightarrow \mathbb{R}_+$ coincides with the topological entropy h_{top} defined by Adler et al.

Since the functor cov,

- takes factors in $CTop$ to embeddings in \mathcal{G},
- takes embeddings in $CTop$ to surjective morphisms in \mathcal{G}, and
- takes inverse limits in $CTop$ to direct limits in \mathcal{G}

the topological entropy h_{top}

- is monotone w.r.t. taking factors or restrictions to invariant subspaces,
- is continuous w.r.t. inverse limits;
- satisfies the invariance under conjugation and inversions and the logarithmic laws (in particular, always $h_{top}(id_X) = 0$),
- satisfies the weak Addition Theorem: $h_{top}(\phi_1 \times \phi_2) = h_{top}(\phi_1) + h_{top}(\phi_2)$.
Entropy in Topological Groups

The general scheme for obtaining the entropies and their properties

The category MesSp of probability measure spaces

For a measure space (X, \mathcal{B}, μ) let $\mathcal{P}(X)$ be the family of all measurable partitions $\xi = \{A_1, A_2, \ldots, A_k\}$ of X. For $\xi, \eta \in \mathcal{P}(X)$ let $\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}$. Then $(\mathcal{P}(X), \vee)$ becomes a semilattice (as $\xi \vee \xi = \xi$) with zero (the cover $\xi_0 = \{X\}$). For $\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)$ of X define the entropy of ξ by

$$v(\xi) = -\sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad (\text{Shannon entropy})$$

This is a monotone norm making $\mathcal{P}(X)$ a normed semilattice with 0. For a measure preserving $T : X \to Y$ and $\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)$ let $T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}$. Since T is measure preserving, one has $T^{-1}(\xi) \in \mathcal{P}(X)$ and $\mu(T^{-1}(A_i)) = \mu(A_i)$ for all i. Hence, $v(T^{-1}(\xi)) = v(\xi)$. The assignment $X \mapsto \mathcal{P}(X)$ defines a contravariant functor

$$\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.$$
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
\nu(\xi) = - \sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \to Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(\nu(T^{-1}(\xi)) = \nu(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.
\]
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
\nu(\xi) = -\sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \to Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(\nu(T^{-1}(\xi)) = \nu(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor \(\mathcal{P} : \text{MesSp} \to \mathcal{L}\).
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
v(\xi) = - \sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \to Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(v(T^{-1}(\xi)) = v(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.\]
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
\nu(\xi) = - \sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \to Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(\nu(T^{-1}(\xi)) = \nu(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.
\]
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \lor \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \lor)\) becomes a semilattice (as \(\xi \lor \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
\nu(\xi) = -\sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with \(0\). For a measure preserving \(T : X \rightarrow Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(\nu(T^{-1}(\xi)) = \nu(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \rightarrow \mathcal{L}.
\]
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
v(\xi) = -\sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \to Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(v(T^{-1}(\xi)) = v(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.
\]
For a measure space \((X, \mathcal{B}, \mu) \) let \(\mathcal{P}(X) \) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\} \) of \(X \). For \(\xi, \eta \in \mathcal{P}(X) \) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\} \). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi \)) with zero (the cover \(\xi_0 = \{X\} \)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X) \) of \(X \) define the entropy of \(\xi \) by

\[
\nu(\xi) = -\sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X) \) a normed semilattice with 0. For a measure preserving \(T : X \to Y \) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y) \) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k} \). Since \(T \) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X) \) and \(\mu(T^{-1}(A_i)) = \mu(A_i) \) for all \(i \). Hence, \(\nu(T^{-1}(\xi)) = \nu(\xi) \). The assignment \(X \mapsto \mathcal{P}(X) \) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.
\]
For a measure space \((X, \mathcal{B}, \mu)\) let \(\mathcal{P}(X)\) be the family of all measurable partitions \(\xi = \{A_1, A_2, \ldots, A_k\}\) of \(X\). For \(\xi, \eta \in \mathcal{P}(X)\) let \(\xi \vee \eta = \{U \cap V : U \in \xi, V \in \eta\}\). Then \((\mathcal{P}(X), \vee)\) becomes a semilattice (as \(\xi \vee \xi = \xi\)) with zero (the cover \(\xi_0 = \{X\}\)). For \(\xi = \{A_1, A_2, \ldots, A_k\} \in \mathcal{P}(X)\) of \(X\) define the entropy of \(\xi\) by

\[
v(\xi) = - \sum_{i=1}^{k} \mu(A_k) \log \mu(A_k) \quad \text{(Shannon entropy)}
\]

This is a monotone norm making \(\mathcal{P}(X)\) a normed semilattice with 0. For a measure preserving \(T : X \rightarrow Y\) and \(\xi = \{A_i\}_{i=1}^{k} \in \mathcal{P}(Y)\) let \(T^{-1}(\xi) = \{T^{-1}(A_i)\}_{i=1}^{k}\). Since \(T\) is measure preserving, one has \(T^{-1}(\xi) \in \mathcal{P}(X)\) and \(\mu(T^{-1}(A_i)) = \mu(A_i)\) for all \(i\). Hence, \(v(T^{-1}(\xi)) = v(\xi)\). The assignment \(X \mapsto \mathcal{P}(X)\) defines a contravariant functor

\[
\mathcal{P} : \text{MesSp} \longrightarrow \mathcal{L}.
\]
Obtaining the measure entropy \(h_{mes} \) as \(h_P \)

For the contravariant functor \(\mathcal{P} : \text{MesSp} \to \mathcal{L} \) the entropy
\(h_P = h_S \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}_+ \) coincides with measure-theoretic
entropy \(h_m \) defined by Kolmogorov and Sinai in ergodic theory in
the fifties.
This is why, similarly to \(h_{top} \), also the measure-theoretic entropy
\(h_{mes} \) is monotone w.r.t. taking quotients or restrictions to
invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let \(X \) be a compact topological group, let \(\mu \) be its Haar measure
and let \(\phi : G \to G \) be continuous endomorphism.

(a) [Halmos] \(\phi \) is measure preserving iff \(\phi \) is surjective.

(b) [Aoki] if \(\phi \) is surjective, then \(h_{mes}(\phi) = h_{top}(\phi) \).

(c) [variational principle] if \(X \) is a compact space and \(f : X \to X \) a
continuous map, then
\[
 h_{top}(\phi) = \sup \{ h_{mes}(\phi \mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.
\]
The general scheme for obtaining the entropies and their properties

The category MesSp of probability measure spaces

Obtaining the measure entropy h_{mes} as h_Ψ

For the contravariant functor $\Psi : \text{MesSp} \to \mathcal{L}$ the entropy $h_\Psi = h_\mathcal{O} \circ \Psi : \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational priciple] if X is a compact space and $f : X \to X$ a continuous map, then $h_{top}(\phi) = \sup\{h_{mes}(\phi \mu) : \mu$ is an f-invariant measure on $X\}$.
Obtaining the measure entropy h_{mes} as $h_{\mathcal{P}}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_{\mathcal{S}} \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational principle] if X is a compact space and $f : X \to X$ a continuous map, then

$$h_{top}(\phi) = \sup \{ h_{mes}(\phi \mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.$$
Obtaining the measure entropy h_{mes} as $h_{\mathcal{P}}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_{\mathcal{S}} \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational principle] if X is a compact space and $f : X \to X$ a continuous map, then $h_{top}(\phi) = \sup \{ h_{mes}(\phi_{\mu}) : \mu \text{ is an } f\text{-invariant measure on } X \}$.
Obtaining the measure entropy h_{mes} as $\mathcal{h}_\mathcal{P}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_{\mathcal{S}} \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}^+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational principle] if X is a compact space and $f : X \to X$ a continuous map, then

$$h_{top}(\phi) = \sup \{ h_{mes}(\phi \mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.$$
Obtaining the measure entropy h_{mes} as $h_{\mathcal{P}}$

For the contravariant functor $\mathcal{P}: \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_{\mathcal{G}} \circ \mathcal{P}: \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi: G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational priciple] if X is a compact space and $f: X \to X$ a continuous map, then

$$h_{top}(\phi) = \sup \{ h_{mes}(\phi \mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.$$
Obtaining the measure entropy h_{mes} as $h_{\mathcal{P}}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_{\mathcal{G}} \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}^+$ coincides with measure-theoretic entropy h_{m} defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational priciple] if X is a compact space and $f : X \to X$ a continuous map, then $h_{top}(\phi) = \sup \{h_{mes}(\phi \mu) : \mu$ is an f-invariant measure on $X\}$.
Obtaining the measure entropy h_{mes} as $h_\mathcal{P}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{C}$ the entropy $h_\mathcal{P} = h_\otimes \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational principle] if X is a compact space and $f : X \to X$ a continuous map, then

$$h_{top}(\phi) = \sup \{h_{mes}(\phi \mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.$$
Obtaining the measure entropy h_{mes} as $h_{\mathcal{P}}$

For the contravariant functor $\mathcal{P} : \text{MesSp} \to \mathcal{L}$ the entropy $h_{\mathcal{P}} = h_\mathcal{S} \circ \mathcal{P} : \text{MesSp} \to \mathbb{R}_+$ coincides with measure-theoretic entropy h_m defined by Kolmogorov and Sinai in ergodic theory in the fifties.

This is why, similarly to h_{top}, also the measure-theoretic entropy h_{mes} is monotone w.r.t. taking quotients or restrictions to invariant subspaces, is continuous w.r.t. inverse limits, etc.

Example (measure entropy vs topological entropy)

Let X be a compact topological group, let μ be its Haar measure and let $\phi : G \to G$ be continuous endomorphism.

(a) [Halmos] ϕ is measure preserving iff ϕ is surjective.

(b) [Aoki] if ϕ is surjective, then $h_{mes}(\phi) = h_{top}(\phi)$.

(c) [variational principle] if X is a compact space and $f : X \to X$ a continuous map, then

$$h_{top}(\phi) = \sup \{ h_{mes}(\phi_\mu) : \mu \text{ is an } f\text{-invariant measure on } X \}.$$
Example (Adler, Konrad and McAndrew's algebraic entropy ent)

Let G be an Abelian group and let $(\mathcal{F}(G), +)$ be the semilattice of all finite subgroups of G. Letting $\nu(F) = \log |F|$ for $F \in \mathcal{F}(G)$, makes $\mathcal{F}(G)$ a normed semilattice with a monotone norm. For every homomorphism $\phi : G \to H$ of Abelian groups the map $\mathcal{F}(\phi) : \mathcal{F}(G) \to \mathcal{F}(H)$ defined by $\mathcal{F}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{F}(G)$ is a morphism in \mathcal{S}. The assignments $G \mapsto \mathcal{F}(G)$, $\phi \mapsto \mathcal{F}(\phi)$ define a covariant functor

$$
\mathcal{F} : \mathbf{AbGrp} \longrightarrow \mathcal{S}.
$$

The entropy $h_\mathcal{F} = h_\mathcal{S} \circ \mathcal{F}$ coincides with the algebraic entropy ent defined by Adler, Konrad and McAndrew. So ent satisfies the invariance under conjugation and inversions as well as the logarithmic law. Since \mathcal{F} sends monomorphisms to embeddings, ent is also monotone w.r.t. taking invariant subgroups (not w.r.t. taking factors).
Example (Adler, Konrad and McAndrew’s algebraic entropy ent)

Let G be an Abelian group and let $(\mathcal{F}(G), +)$ be the semilattice of all finite subgroups of G. Letting $\nu(F) = \log |F|$ for $F \in \mathcal{F}(G)$, makes $\mathcal{F}(G)$ a normed semilattice with a monotone norm.

For every homomorphism $\phi : G \rightarrow H$ of Abelian groups the map $\mathcal{F}(\phi) : \mathcal{F}(G) \rightarrow \mathcal{F}(H)$ defined by $\mathcal{F}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{F}(G)$ is a morphism in \mathcal{S}. The assignments $G \mapsto \mathcal{F}(G)$, $\phi \mapsto \mathcal{F}(\phi)$ define a covariant functor

$$\mathcal{F} : \text{AbGrp} \longrightarrow \mathcal{S}.$$

The entropy $h_{\mathcal{F}} = h_{\mathcal{S}} \circ \mathcal{F}$ coincides with the algebraic entropy ent defined by Adler, Konrad and McAndrew. So ent satisfies the invariance under conjugation and inversions as well as the logarithmic law. Since \mathcal{F} sends monomorphisms to embeddings, ent is also monotone w.r.t. taking invariant subgroups (not w.r.t. taking factors).
Let G be an Abelian group and let $(\mathcal{F}(G), +)$ be the semilattice of all finite subgroups of G. Letting $v(F) = \log |F|$ for $F \in \mathcal{F}(G)$, makes $\mathcal{F}(G)$ a normed semilattice with a monotone norm.

For every homomorphism $\phi : G \rightarrow H$ of Abelian groups the map $\mathcal{F}(\phi) : \mathcal{F}(G) \rightarrow \mathcal{F}(H)$ defined by $\mathcal{F}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{F}(G)$ is a morphism in \mathfrak{G}. The assignments $G \mapsto \mathcal{F}(G)$, $\phi \mapsto \mathcal{F}(\phi)$ define a covariant functor

$$\mathcal{F} : \text{AbGrp} \longrightarrow \mathfrak{G}.$$

The entropy $h_{\mathcal{F}} = h_{\mathfrak{G}} \circ \mathcal{F}$ coincides with the algebraic entropy ent defined by Adler, Konrad and McAndrew. So ent satisfies the invariance under conjugation and inversions as well as the logarithmic law. Since \mathcal{F} sends monomorphisms to embeddings, ent is also monotone w.r.t. taking invariant subgroups (not w.r.t. taking factors).
Example (Adler, Konrad and McAndrew’s algebraic entropy \(\text{ent} \))

Let \(G \) be an Abelian group and let \((\mathcal{F}(G), +)\) be the semilattice of all finite subgroups of \(G \). Letting \(\nu(F) = \log |F| \) for \(F \in \mathcal{F}(G) \), makes \(\mathcal{F}(G) \) a normed semilattice with a monotone norm.

For every homomorphism \(\phi : G \to H \) of Abelian groups the map \(\mathcal{F}(\phi) : \mathcal{F}(G) \to \mathcal{F}(H) \) defined by \(\mathcal{F}(\phi)(F) = \phi(F) \) for every \(F \in \mathcal{F}(G) \) is a morphism in \(\mathcal{S} \). The assignments \(G \mapsto \mathcal{F}(G) \), \(\phi \mapsto \mathcal{F}(\phi) \) define a covariant functor

\[
\mathcal{F} : \text{AbGrp} \to \mathcal{S}.
\]

The entropy \(h_\mathcal{F} = h_\mathcal{S} \circ \mathcal{F} \) coincides with the algebraic entropy \(\text{ent} \) defined by Adler, Konrad and McAndrew. So \(\text{ent} \) satisfies the invariance under conjugation and inversions as well as the logarithmic law. Since \(\mathcal{F} \) sends monomorphisms to embeddings, \(\text{ent} \) is also monotone w.r.t. taking invariant subgroups (not w.r.t. taking factors).
Example (The algebraic entropy h_{alg})

For $G \in \text{AbGrp}$ let $\mathcal{H}(G)$ be the family of all finite non-empty subsets of G. Then $(\mathcal{H}(G), +, \{0\})$ is a monoid. For every homomorphism $\phi : G \rightarrow H$ of Abelian groups, the map $\mathcal{H}(\phi) : \mathcal{H}(G) \rightarrow \mathcal{H}(H)$, defined by $\mathcal{H}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{H}(G)$, is a semigroup morphism.

Letting $\nu(F) = \log |F|$ for $F \in \mathcal{H}(G)$ makes $\mathcal{H}(G)$ a normed semigroup. The assignments $G \mapsto (\mathcal{H}(G), \nu)$ and $\phi \mapsto \mathcal{H}(\phi)$ give a covariant functor

$$\mathcal{H} : \text{AbGrp} \longrightarrow \mathcal{S}.$$

Moreover, $(\mathcal{H}(G), \subseteq)$ is an ordered semigroup and the norm ν is s-monotone. The entropy $h_\mathcal{H} = h_\mathcal{S} \circ \mathcal{H}$ coincides with the algebraic entropy h_{alg}. So h_{alg} is invariant under conjugation and inversions, monotone w.r.t. taking invariant subgroups and satisfies the logarithmic law.
Example (The algebraic entropy h_{alg})

For $G \in \textbf{AbGrp}$ let $\mathcal{H}(G)$ be the family of all finite non-empty subsets of G. Then $(\mathcal{H}(G), +, \{0\})$ is a monoid. For every homomorphism $\phi : G \rightarrow H$ of Abelian groups, the map $\mathcal{H}(\phi) : \mathcal{H}(G) \rightarrow \mathcal{H}(H)$, defined by $\mathcal{H}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{H}(G)$, is a semigroup morphism.

Letting $v(F) = \log |F|$ for $F \in \mathcal{H}(G)$ makes $\mathcal{H}(G)$ a normed semigroup. The assignments $G \mapsto (\mathcal{H}(G), v)$ and $\phi \mapsto \mathcal{H}(\phi)$ give a covariant functor $\mathcal{H} : \textbf{AbGrp} \rightarrow \mathcal{S}$.

Moreover, $(\mathcal{H}(G), \subseteq)$ is an ordered semigroup and the norm v is s-monotone. The entropy $h_{\mathcal{H}} = h_{\mathcal{G}} \circ \mathcal{H}$ coincides with the algebraic entropy h_{alg}. So h_{alg} is invariant under conjugation and inversions, monotone w.r.t. taking invariant subgroups and satisfies the logarithmic law.
Example (The algebraic entropy h_{alg})

For $G \in \text{AbGrp}$ let $\mathcal{H}(G)$ be the family of all finite non-empty subsets of G. Then $(\mathcal{H}(G), +, \{0\})$ is a monoid. For every homomorphism $\phi : G \to H$ of Abelian groups, the map $\mathcal{H}(\phi) : \mathcal{H}(G) \to \mathcal{H}(H)$, defined by $\mathcal{H}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{H}(G)$, is a semigroup morphism.

Letting $v(F) = \log |F|$ for $F \in \mathcal{H}(G)$ makes $\mathcal{H}(G)$ a normed semigroup. The assignments $G \mapsto (\mathcal{H}(G), v)$ and $\phi \mapsto \mathcal{H}(\phi)$ give a covariant functor

$$\mathcal{H} : \text{AbGrp} \longrightarrow \mathcal{S}.$$

Moreover, $(\mathcal{H}(G), \subseteq)$ is an ordered semigroup and the norm v is s-monotone. The entropy $h_\mathcal{H} = h_\mathcal{S} \circ \mathcal{H}$ coincides with the algebraic entropy h_{alg}. So h_{alg} is invariant under conjugation and inversions, monotone w.r.t. taking invariant subgroups and satisfies the logarithmic law.
Example (The algebraic entropy h_{alg})

For $G \in \textbf{AbGrp}$ let $\mathcal{H}(G)$ be the family of all finite non-empty subsets of G. Then $(\mathcal{H}(G), +, \{0\})$ is a monoid. For every homomorphism $\phi : G \rightarrow H$ of Abelian groups, the map $\mathcal{H}(\phi) : \mathcal{H}(G) \rightarrow \mathcal{H}(H)$, defined by $\mathcal{H}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{H}(G)$, is a semigroup morphism. Letting $v(F) = \log |F|$ for $F \in \mathcal{H}(G)$ makes $\mathcal{H}(G)$ a normed semigroup. The assignments $G \mapsto (\mathcal{H}(G), v)$ and $\phi \mapsto \mathcal{H}(\phi)$ give a covariant functor

$$\mathcal{H} : \textbf{AbGrp} \longrightarrow \mathcal{S}.$$

Moreover, $(\mathcal{H}(G), \subseteq)$ is an ordered semigroup and the norm v is s-monotone. The entropy $h_{\mathcal{H}} = h_{\mathcal{S}} \circ \mathcal{H}$ coincides with the algebraic entropy h_{alg}. So h_{alg} is invariant under conjugation and inversions, monotone w.r.t. taking invariant subgroups and satisfies the logarithmic law.
Example (The algebraic entropy h_{alg})

For $G \in \textbf{AbGrp}$ let $\mathcal{H}(G)$ be the family of all finite non-empty subsets of G. Then $(\mathcal{H}(G), +, \{0\})$ is a monoid. For every homomorphism $\phi : G \rightarrow H$ of Abelian groups, the map $\mathcal{H}(\phi) : \mathcal{H}(G) \rightarrow \mathcal{H}(H)$, defined by $\mathcal{H}(\phi)(F) = \phi(F)$ for every $F \in \mathcal{H}(G)$, is a semigroup morphism. Letting $\nu(F) = \log |F|$ for $F \in \mathcal{H}(G)$ makes $\mathcal{H}(G)$ a normed semigroup. The assignments $G \mapsto (\mathcal{H}(G), \nu)$ and $\phi \mapsto \mathcal{H}(\phi)$ give a covariant functor

$$\mathcal{H} : \textbf{AbGrp} \rightarrow \mathcal{S}.$$

Moreover, $(\mathcal{H}(G), \subseteq)$ is an ordered semigroup and the norm ν is s-monotone. The entropy $h_{\mathcal{H}} = h_{\mathcal{S}} \circ \mathcal{H}$ coincides with the algebraic entropy h_{alg}. So h_{alg} is invariant under conjugation and inversions, monotone w.r.t. taking invariant subgroups and satisfies the logarithmic law.
A discrete dynamical systems, namely a flow $T : X \to X$, can be considered also as an action $\mathbb{N} \curvearrowright X$ of the semigroup \mathbb{N} on X such that $\alpha(n)(x) = T^n(x)$ for $x \in X$ and $n \in \mathbb{N}$. This makes it natural to define entropy of d pairwise commuting endomorphisms of X, i.e., actions of \mathbb{N}^d. More generally, one may try to define entropy of arbitrary semigroup actions $S \curvearrowright X$.

In this direction, the notion of entropy of actions of amenable groups on compact metrizable spaces or measure spaces was introduced by Ornstein and Weiss [1987]. Hofmann and Stoyanov [1995] defined and studied topological entropy $h_\alpha(\gamma)$ of actions $S \curvearrowright X$ of a locally compact semigroup S on a metric space X, depending on a countable system α of compact subsets $\alpha = (N_1, N_2, \ldots, N_n, \ldots)$ of S satisfying $N_i N_j \subseteq N_{i+j}$. If $S = \mathbb{N}$ is generated by a single map $f : X \to X$ and $N_n = [0, n - 1]$, the entropy $h_\alpha(\gamma)$ coincides with Bowen’s topological entropy $h_U(f)$.
A discrete dynamical systems, namely a flow $T : X \to X$, can be considered also as an action $\mathbb{N} \curvearrowright X$ of the semigroup \mathbb{N} on X such that $\alpha(n)(x) = T^n(x)$ for $x \in X$ and $n \in \mathbb{N}$. This makes it natural to define entropy of d pairwise commuting endomorphisms of X, i.e., actions of \mathbb{N}^d. More generally, one may try to define entropy of arbitrary semigroup actions $S \curvearrowright X$.

In this direction, the notion of entropy of actions of amenable groups on compact metrizable spaces or measure spaces was introduced by Ornstein and Weiss [1987]. Hofmann and Stoyanov [1995] defined and studied topological entropy $h_{\alpha}(\gamma)$ of actions $S \curvearrowright X$ of a locally compact semigroup S on a metric space X, depending on a countable system α of compact subsets $\alpha = (N_1, N_2, \ldots, N_n, \ldots)$ of S satisfying $N_i N_j \subseteq N_{i+j}$. If $S = \mathbb{N}$ is generated by a single map $f : X \to X$ and $N_n = [0, n - 1]$, the entropy $h_{\alpha}(\gamma)$ coincides with Bowen’s topological entropy $h_U(f)$.
A discrete dynamical systems, namely a flow $T : X \rightarrow X$, can be considered also as an action $\mathbb{N} \curvearrowright X$ of the semigroup \mathbb{N} on X such that $\alpha(n)(x) = T^n(x)$ for $x \in X$ and $n \in \mathbb{N}$. This makes it natural to define entropy of d pairwise commuting endomorphisms of X, i.e., actions of \mathbb{N}^d. More generally, one may try to define entropy of arbitrary semigroup actions $S \curvearrowright X$.

In this direction, the notion of entropy of actions of amenable groups on compact metrizable spaces or measure spaces was introduced by Ornstein and Weiss [1987].

Hofmann and Stoyanov [1995] defined and studied topological entropy $h_\alpha(\gamma)$ of actions $S \curvearrowright X$ of a locally compact semigroup S on a metric space X, depending on a countable system α of compact subsets $\alpha = (N_1, N_2, \ldots, N_n, \ldots)$ of S satisfying $N_i N_j \subseteq N_{i+j}$. If $S = \mathbb{N}$ is generated by a single map $f : X \rightarrow X$ and $N_n = [0, n-1]$, the entropy $h_\alpha(\gamma)$ coincides with Bowen’s topological entropy $h_U(f)$.
A discrete dynamical systems, namely a flow $T : X \rightarrow X$, can be considered also as an action $\mathbb{N} \overset{\alpha}{\curvearrowright} X$ of the semigroup \mathbb{N} on X such that $\alpha(n)(x) = T^n(x)$ for $x \in X$ and $n \in \mathbb{N}$. This makes it natural to define entropy of d pairwise commuting endomorphisms of X, i.e., actions of \mathbb{N}^d. More generally, one may try to define entropy of arbitrary semigroup actions $S \overset{\alpha}{\curvearrowright} X$.

In this direction, the notion of entropy of actions of amenable groups on compact metrizable spaces or measure spaces was introduced by Ornstein and Weiss [1987]. Hofmann and Stoyanov [1995] defined and studied topological entropy $h_\alpha(\gamma)$ of actions $S \overset{\gamma}{\curvearrowright} X$ of a locally compact semigroup S on a metric space X, depending on a countable system α of compact subsets $\alpha = (N_1, N_2, \ldots, N_n, \ldots)$ of S satisfying $N_i N_j \subseteq N_{i+j}$. If $S = \mathbb{N}$ is generated by a single map $f : X \rightarrow X$ and $N_n = [0, n-1]$, the entropy $h_\alpha(\gamma)$ coincides with Bowen’s topological entropy $h_U(f)$.
A discrete dynamical systems, namely a flow $T : X \rightarrow X$, can be considered also as an action $\mathbb{N} \overset{\alpha}{\curvearrowright} X$ of the semigroup \mathbb{N} on X such that $\alpha(n)(x) = T^n(x)$ for $x \in X$ and $n \in \mathbb{N}$. This makes it natural to define entropy of d pairwise commuting endomorphisms of X, i.e., actions of \mathbb{N}^d. More generally, one may try to define entropy of arbitrary semigroup actions $S \overset{\alpha}{\curvearrowright} X$.

In this direction, the notion of entropy of actions of amenable groups on compact metrizable spaces or measure spaces was introduced by Ornstein and Weiss [1987]. Hofmann and Stoyanov [1995] defined and studied topological entropy $h_\alpha(\gamma)$ of actions $S \overset{\gamma}{\curvearrowright} X$ of a locally compact semigroup S on a metric space X, depending on a countable system α of compact subsets $\alpha = (N_1, N_2, \ldots, N_n, \ldots)$ of S satisfying $N_iN_j \subseteq N_{i+j}$. If $S = \mathbb{N}$ is generated by a single map $f : X \rightarrow X$ and $N_n = [0, n - 1]$, the entropy $h_\alpha(\gamma)$ coincides with Bowen’s topological entropy $h_U(f)$.
Recently Ceccherini-Silberstein, Coornaert and Krieger extended the notions of entropy to actions of amenable semigroups, following Ornstein and Weiss’s approach.

Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its non-empty subsets; S is right amenable, if for every $K \in \mathcal{P}_{\text{fin}}(S)$ and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that $|Fx \setminus F| \leq \varepsilon |F|$ for every $x \in K$.

It is easy to see that a cancellative semigroup S is right-amenable iff S admits a right-Følner net, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such that for every $s \in S$

$$\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.$$

A map $f : \mathcal{P}_{\text{fin}}(S) \rightarrow \mathbb{R}$ is said to be:

1. subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;

2. right-subinvariant if $f(Fs) \leq f(F)$ for every $s \in S$ and every $F \in \mathcal{P}_{\text{fin}}(S)$;
Recently Ceccherini-Silberstein, Coornaert and Krieger extended the notions of entropy to actions of amenable semigroups, following Ornstein and Weiss's approach.

Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its non-empty subsets; S is right amenable, if for every $K \in \mathcal{P}_{\text{fin}}(S)$ and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that $|Fx \setminus F| \leq \varepsilon |F|$ for every $x \in K$.

It is easy to see that a cancellative semigroup S is right-amenable iff S admits a right-Følner net, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such that for every $s \in S$

$$\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.$$

A map $f : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}$ is said to be:

1. subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;
2. right-subinvariant if $f(Fs) \leq f(F)$ for every $s \in S$ and every $F \in \mathcal{P}_{\text{fin}}(S)$;
Recently Ceccherini-Silberstein, Coornaert and Krieger extended the notions of entropy to actions of amenable semigroups, following Ornstein and Weiss's approach.

Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its non-empty subsets; S is right amenable, if for every $K \in \mathcal{P}_{\text{fin}}(S)$ and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that $|Fx \setminus F| \leq \varepsilon |F|$ for every $x \in K$.

It is easy to see that a cancellative semigroup S is right-amenable iff S admits a right-Følner net, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such that for every $s \in S$

$$\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.$$

A map $f : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}$ is said to be:

1. **subadditive** if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;

2. **right-subinvariant** if $f(Fs) \leq f(F)$ for every $s \in S$ and every $F \in \mathcal{P}_{\text{fin}}(S)$;
Recently Ceccherini-Silberstein, Coornaert and Krieger extended the notions of entropy to actions of amenable semigroups, following Ornstein and Weiss's approach. Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its non-empty subsets; S is right amenable, if for every $K \in \mathcal{P}_{\text{fin}}(S)$ and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that $|F_x \setminus F| \leq \varepsilon |F|$ for every $x \in K$.

It is easy to see that a cancellative semigroup S is right-amenable iff S admits a right-Følner net, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such that for every $s \in S$

$$\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.$$

A map $f : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}$ is said to be:

1. subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;

2. right-subinvariant if $f(Fs) \leq f(F)$ for every $s \in S$ and every $F \in \mathcal{P}_{\text{fin}}(S)$;
Recently Ceccherini-Silberstein, Coornaert and Krieger extended
the notions of entropy to actions of amenable semigroups,
following Ornstein and Weiss’s approach.
Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its
non-empty subsets; S is \textbf{right amenable}, if for every $K \in \mathcal{P}_{\text{fin}}(S)$
and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that
$|Fx \setminus F| \leq \varepsilon|F|$ for every $x \in K$.
It is easy to see that a cancellative semigroup S is right-amenable
iff S admits a \textbf{right-Følner net}, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such
that for every $s \in S$
$$
\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.
$$

A map $f : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}$ is said to be:
\begin{itemize}
 \item \textbf{1} \textbf{subadditive} if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every
 $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;
 \item \textbf{2} \textbf{right-subinvariant} if $f(Fs) \leq f(F)$ for every $s \in S$ and every
 $F \in \mathcal{P}_{\text{fin}}(S)$;
\end{itemize}
Recently Ceccherini-Silberstein, Coornaert and Krieger extended the notions of entropy to actions of amenable semigroups, following Ornstein and Weiss's approach. Let S be a semigroup and let $\mathcal{P}_{\text{fin}}(S)$ be the family of its non-empty subsets; S is right amenable, if for every $K \in \mathcal{P}_{\text{fin}}(S)$ and every $\varepsilon > 0$ there exists an $F \in \mathcal{P}_{\text{fin}}(S)$, such that $|Fx \setminus F| \leq \varepsilon |F|$ for every $x \in K$.

It is easy to see that a cancellative semigroup S is right-amenable iff S admits a right-Følner net, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_{\text{fin}}(S)$ such that for every $s \in S$

$$\lim_{i \in I} \frac{|F_is \setminus F_i|}{|F_i|} = 0.$$

A map $f : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}$ is said to be:

1. subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2)$ for every $F_1, F_2 \in \mathcal{P}_{\text{fin}}(S)$;
2. right-subinvariant if $f(Fs) \leq f(F)$ for every $s \in S$ and every $F \in \mathcal{P}_{\text{fin}}(S)$;
The following theorem and definition, due to Ceccherini-Silberstein, Coornaert and Krieger, are inspired by Ornstein and Weiss’ approach.

Theorem (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left amenable monoid and let $f : \mathcal{P}(S) \to \mathbb{R}$ be a subadditive, right-subinvariant map. Then there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that, for every left-Følner net $(F_i)_{i \in I}$ of S,

$$\lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda.$$

Let X be a compact topological space, let S be a cancellative left-amenable monoid and consider the left action $S \curvearrowright X$ by continuous maps. For $\mathcal{U} \in \text{cov}(X)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$\mathcal{U}_{\gamma,F} = \bigvee_{s \in F} \gamma(s)^{-1}(\mathcal{U}).$$
The following theorem and definition, due to Ceccherini-Silberstein, Coornaert and Krieger, are inspired by Ornstein and Weiss’ approach.

Theorem (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left amenable monoid and let $f : \mathcal{P}(S) \to \mathbb{R}$ be a subadditive, right-subinvariant map. Then there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that, for every left-Følner net $(F_i)_{i \in I}$ of S,

$$\lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda.$$

Let X be a compact topological space, let S be a cancellative left-amenable monoid and consider the left action $S \curvearrowright X$ by continuous maps. For $\mathcal{U} \in \text{cov}(X)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$\mathcal{U}_{\gamma,F} = \bigvee_{s \in F} \gamma(s)^{-1}(\mathcal{U}).$$
The following theorem and definition, due to Ceccherini-Silberstein, Coornaert and Krieger, are inspired by Ornstein and Weiss’ approach.

Theorem (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left amenable monoid and let $f : \mathcal{P}(S) \to \mathbb{R}$ be a subadditive, right-subinvariant map. Then there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that, for every left-Følner net $(F_i)_{i \in I}$ of S,

$$\lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda.$$

Let X be a compact topological space, let S be a cancellative left-amenable monoid and consider the left action $S \curvearrowright X$ by continuous maps. For $\mathcal{U} \in \text{cov}(X)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$\mathcal{U}_{\gamma,F} = \bigvee_{s \in F} \gamma(s)^{-1}(\mathcal{U}).$$
The following theorem and definition, due to Ceccherini-Silberstein, Coornaert and Krieger, are inspired by Ornstein and Weiss’ approach.

Theorem (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left amenable monoid and let $f : \mathcal{P}(S) \to \mathbb{R}$ be a subadditive, right-subinvariant map. Then there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that, for every left-Følner net $(F_i)_{i \in I}$ of S,

$$
\lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda.
$$

Let X be a compact topological space, let S be a cancellative left-amenable monoid and consider the left action $S \acts_X X$ by continuous maps. For $\mathcal{U} \in \text{cov}(X)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$
\mathcal{U}_{\gamma,F} = \bigvee_{s \in F} \gamma(s)^{-1}(\mathcal{U}).
$$
For every $\mathcal{U} \in \text{cov}(X)$ the function

$$f_\mathcal{U} : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}, \quad F \mapsto \log M(\mathcal{U}_\gamma, F).$$

is non-decreasing, subadditive and right-subinvariant. The above theorem gives the following:

Definition (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left-amenable semigroup acting $S \curvearrowright X$ on a compact space X. For $\mathcal{U} \in \text{cov}(X)$, the **topological entropy** of γ with respect to \mathcal{U} is

$$H_{\text{top}}(\gamma, \mathcal{U}) = \lim_{i \in I} \frac{f_\mathcal{U}(F_i)}{|F_i|},$$

where $(F_i)_{i \in I}$ is a left-\mathfrak{F}ølner net of S. The **topological entropy** of γ is

$$h_{\text{top}}(\gamma) = \sup\{H_{\text{top}}(\gamma, \mathcal{U}) \mid \mathcal{U} \in \text{cov}(X)\}.$$
For every $\mathcal{U} \in \text{cov}(X)$ the function

$$f_\mathcal{U} : \mathcal{P}_{\text{fin}}(S) \rightarrow \mathbb{R}, \quad F \mapsto \log M(\mathcal{U}_\gamma, F).$$

is non-decreasing, subadditive and right-subinvariant. The above theorem gives the following:

Definition (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left-amenable semigroup acting $S \curvearrowright X$ on a compact space X. For $\mathcal{U} \in \text{cov}(X)$, the topological entropy of γ with respect to \mathcal{U} is

$$H_{\text{top}}(\gamma, \mathcal{U}) = \lim_{i \in I} \frac{f_\mathcal{U}(F_i)}{|F_i|},$$

where $(F_i)_{i \in I}$ is a left-Følner net of S. The topological entropy of γ is

$$h_{\text{top}}(\gamma) = \sup \{ H_{\text{top}}(\gamma, \mathcal{U}) \mid \mathcal{U} \in \text{cov}(X) \}.$$
For every $\mathcal{U} \in \text{cov}(X)$ the function

$$f_\mathcal{U} : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}, \quad F \mapsto \log M(\mathcal{U}_\gamma, F).$$

is non-decreasing, subadditive and right-subinvariant. The above theorem gives the following:

Definition (Ceccherini-Silberstein, Coornaert and Krieger 2014)

Let S be a cancellative left-amenable semigroup acting $S \bowtie X$ on a compact space X. For $\mathcal{U} \in \text{cov}(X)$, the topological entropy of γ with respect to \mathcal{U} is

$$H_{\text{top}}(\gamma, \mathcal{U}) = \lim_{i \in I} \frac{f_\mathcal{U}(F_i)}{|F_i|},$$

where $(F_i)_{i \in I}$ is a left-Følner net of S. The topological entropy of γ is

$$h_{\text{top}}(\gamma) = \sup \{ H_{\text{top}}(\gamma, \mathcal{U}) \mid \mathcal{U} \in \text{cov}(X) \}.$$
Let S be a cancellative right-amenable semigroup acting $S \xrightarrow{\alpha} A$ on an abelian group A by endomorphisms. For $X \in \mathcal{P}_{\text{fin}}(A)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) = \sum_{s \in F} s \cdot X \in \mathcal{P}_{\text{fin}}(A)$$

be the α-trajectory of X with respect to F.

The function

$$f_X : \mathcal{P}_{\text{fin}}(S) \rightarrow \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

is subadditive, left-subinvariant, so the limit

$$H_{\text{alg}}(\alpha, X) = \lim_{i \in I} \frac{\log |T_{F_i}(\alpha, X)|}{|F_i|},$$

exists for every right-Følner net $(F_i)_{i \in I}$ of S and does not depend on the choice of $(F_i)_{i \in I}$.
Let S be a cancellative right-amenable semigroup acting $S \overset{\alpha}{\curvearrowright} A$ on an abelian group A by endomorphisms. For $X \in \mathcal{P}_{\text{fin}}(A)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) = \sum_{s \in F} s \cdot X \in \mathcal{P}_{\text{fin}}(A)$$

be the α-trajectory of X with respect to F. The function

$$f_X : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

is subadditive, left-subinvariant, so the limit

$$H_{\text{alg}}(\alpha, X) = \lim_{i \in I} \frac{\log |T_{F_i}(\alpha, X)|}{|F_i|},$$

exists for every right-Følner net $(F_i)_{i \in I}$ of S and does not depend on the choice of $(F_i)_{i \in I}$.
Let S be a cancellative right-amenable semigroup acting $S \overset{\alpha}{\curvearrowright} A$ on an abelian group A by endomorphisms. For $X \in \mathcal{P}_{\text{fin}}(A)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) = \sum_{s \in F} s \cdot X \in \mathcal{P}_{\text{fin}}(A)$$

be the α-trajectory of X with respect to F.

The function

$$f_X : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

is subadditive, left-subinvariant, so the limit

$$H_{\text{alg}}(\alpha, X) = \lim_{i \in I} \frac{\log |T_{F_i}(\alpha, X)|}{|F_i|},$$

exists for every right-Følner net $(F_i)_{i \in I}$ of S and does not depend on the choice of $(F_i)_{i \in I}$.
Let S be a cancellative right-amenable semigroup acting $S \acts A$ on an abelian group A by endomorphisms. For $X \in \mathcal{P}_{\text{fin}}(A)$ and for every $F \in \mathcal{P}_{\text{fin}}(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) = \sum_{s \in F} s \cdot X \in \mathcal{P}_{\text{fin}}(A)$$

be the α-trajectory of X with respect to F. The function

$$f_X : \mathcal{P}_{\text{fin}}(S) \to \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

is subadditive, left-subinvariant, so the limit

$$H_{\text{alg}}(\alpha, X) = \lim_{i \in I} \frac{\log |T_{F_i}(\alpha, X)|}{|F_i|},$$

exists for every right-Følner net $(F_i)_{i \in I}$ of S and does not depend on the choice of $(F_i)_{i \in I}$.
Let S be a cancellative right-amenable semigroup, A an abelian group and $S \overset{\alpha}{\curvearrowright} A$. For $X \in \mathcal{P}_{\text{fin}}(A)$, the algebraic entropy of α with respect to X is $H_{\text{alg}}(\alpha, X)$ and the algebraic entropies of α are

$$h_{\text{alg}}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{P}_{\text{fin}}(A)\}.$$

and

$$\text{ent}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{F}(A)\}.$$

These entropies share many of the properties of the algebraic entropies h_{alg} and ent defined for single endomorphisms. Moreover, if $f \in \text{End}(A)$ and the action $\mathbb{N} \overset{\alpha}{\curvearrowright} A$ is defined by $\alpha(n)(x) = f^n(x)$ for $n \in \mathbb{N}$ and $x \in A$, then

$$h_{\text{alg}}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = h_{\text{alg}}(f) \quad \text{and} \quad \text{ent}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = \text{ent}(f).$$
Definition (Fornasiero, Giordano Bruno, DD - 2017, Virili 2013 for amenable groups)

Let S be a cancellative right-amenable semigroup, A an abelian group and $S \xrightarrow{\alpha} A$. For $X \in \mathcal{P}_{\text{fin}}(A)$, the algebraic entropy of α with respect to X is $H_{\text{alg}}(\alpha, X)$ and the algebraic entropies of α are

$$h_{\text{alg}}(\alpha) = \sup \{ H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{P}_{\text{fin}}(A) \}.$$

and

$$\text{ent}(\alpha) = \sup \{ H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{F}(A) \}.$$

These entropies share many of the properties of the algebraic entropies h_{alg} and ent defined for single endomorphisms.

Moreover, if $f \in \text{End}(A)$ and the action $\mathbb{N} \xrightarrow{\alpha} A$ is defined by $\alpha(n)(x) = f^n(x)$ for $n \in \mathbb{N}$ and $x \in A$, then

$$h_{\text{alg}}(\mathbb{N} \xrightarrow{\alpha} A) = h_{\text{alg}}(f) \quad \text{and} \quad \text{ent}(\mathbb{N} \xrightarrow{\alpha} A) = \text{ent}(f).$$
Definition (Fornasiero, Giordano Bruno, DD - 2017, Virili 2013 for amenable groups)

Let S be a cancellative right-amenable semigroup, A an abelian group and $S \overset{\alpha}{\curvearrowright} A$. For $X \in \mathcal{P}_{\text{fin}}(A)$, the algebraic entropy of α with respect to X is $H_{\text{alg}}(\alpha, X)$ and the algebraic entropies of α are

$$h_{\text{alg}}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{P}_{\text{fin}}(A)\}.$$

and

$$\text{ent}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{F}(A)\}.$$

These entropies share many of the properties of the algebriac entropies h_{alg} and ent defined for single endomorphisms.

Moreover, if $f \in \text{End}(A)$ and the action $\mathbb{N} \overset{\alpha}{\curvearrowright} A$ is defined by $\alpha(n)(x) = f^n(x)$ for $n \in \mathbb{N}$ and $x \in A$, then

$$h_{\text{alg}}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = h_{\text{alg}}(f) \quad \text{and} \quad \text{ent}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = \text{ent}(f).$$
Definition (Fornasiero, Giordano Bruno, DD - 2017, Virili 2013 for amenable groups)

Let S be a cancellative right-amenable semigroup, A an abelian group and $S \curvearrowright A$. For $X \in \mathcal{P}_{\text{fin}}(A)$, the algebraic entropy of α with respect to X is $H_{\text{alg}}(\alpha, X)$ and the algebraic entropies of α are

$$h_{\text{alg}}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{P}_{\text{fin}}(A)\}.$$

and

$$\text{ent}(\alpha) = \sup\{H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{F}(A)\}.$$

These entropies share many of the properties of the algebraic entropies h_{alg} and ent defined for single endomorphisms.

Moreover, if $f \in \text{End}(A)$ and the action $\mathbb{N} \curvearrowright A$ is defined by $\alpha(n)(x) = f^n(x)$ for $n \in \mathbb{N}$ and $x \in A$, then

$$h_{\text{alg}}(\mathbb{N} \curvearrowright A) = h_{\text{alg}}(f) \quad \text{and} \quad \text{ent}(\mathbb{N} \curvearrowright A) = \text{ent}(f).$$
Definition (Fornasiero, Giordano Bruno, DD - 2017, Virili 2013 for amenable groups)

Let S be a cancellative right-amenable semigroup, A an abelian group and $S \overset{\alpha}{\curvearrowright} A$. For $X \in \mathcal{P}_{\text{fin}}(A)$, the algebraic entropy of α with respect to X is $H_{\text{alg}}(\alpha, X)$ and the algebraic entropies of α are

$$h_{\text{alg}}(\alpha) = \sup \{ H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{P}_{\text{fin}}(A) \}.$$

and

$$\text{ent}(\alpha) = \sup \{ H_{\text{alg}}(\alpha, X) \mid X \in \mathcal{F}(A) \}.$$

These entropies share many of the properties of the algebraic entropies h_{alg} and ent defined for single endomorphisms.

Moreover, if $f \in \text{End}(A)$ and the action $\mathbb{N} \overset{\alpha}{\curvearrowright} A$ is defined by $\alpha(n)(x) = f^n(x)$ for $n \in \mathbb{N}$ and $x \in A$, then

$$h_{\text{alg}}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = h_{\text{alg}}(f) \quad \text{and} \quad \text{ent}(\mathbb{N} \overset{\alpha}{\curvearrowright} A) = \text{ent}(f)$$
Theorem (Continuity for direct limit)

Let S be a cancellative right-amenable semigroup, A an abelian group and consider $S \xrightarrow{\alpha} A$. If A is a direct limit of α-invariant subgroups $\{A_i \mid i \in I\}$, then $h_{\text{alg}}(\alpha) = \sup_{i \in I} h_{\text{alg}}(\alpha_{A_i})$.

Theorem (Logarithmic Law)

Let G be an amenable group, A an abelian group and $G \xrightarrow{\alpha} A$. If H is a subgroup of G of finite index $[G : H] = k \in \mathbb{N}$, then

$$h_{\text{alg}}(\alpha \upharpoonright H) = k \cdot h_{\text{alg}}(\alpha) \quad \text{and} \quad \text{ent}(\alpha \upharpoonright H) = k \cdot \text{ent}(\alpha).$$

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

Let A be a torsion abelian group, S be a right-amenable monoid, α be a left action of S on A, and B be an α-invariant subgroup of A. Then

$$\text{ent}(\alpha) = \text{ent}(\alpha_B) + \text{ent}(\alpha_{A/B}).$$
Theorem (Continuity for direct limit)

Let S be a cancellative right-amenable semigroup, A an abelian group and consider $S \overset{\alpha}{\curvearrowright} A$. If A is a direct limit of α-invariant subgroups $\{A_i \mid i \in I\}$, then $h_{\text{alg}}(\alpha) = \sup_{i \in I} h_{\text{alg}}(\alpha_{A_i})$.

Theorem (Logarithmic Law)

Let G be an amenable group, A an abelian group and $G \overset{\alpha}{\curvearrowright} A$. If H is a subgroup of G of finite index $[G : H] = k \in \mathbb{N}$, then

$$h_{\text{alg}}(\alpha \upharpoonright H) = k \cdot h_{\text{alg}}(\alpha) \quad \text{and} \quad \text{ent}(\alpha \upharpoonright H) = k \cdot \text{ent}(\alpha).$$

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

Let A be a torsion abelian group, S be a right-amenable monoid, α be a left action of S on A, and B be an α-invariant subgroup of A. Then

$$\text{ent}(\alpha) = \text{ent}(\alpha_B) + \text{ent}(\alpha_{A/B}).$$
Entropy in Topological Groups
Entropy of semigroup actions

Theorem (Continuity for direct limit)

Let S be a cancellative right-amenable semigroup, A an abelian group and consider $S \xrightarrow{\alpha} A$. If A is a direct limit of α-invariant subgroups $\{A_i \mid i \in I\}$, then $h_{\text{alg}}(\alpha) = \sup_{i \in I} h_{\text{alg}}(\alpha A_i)$.

Theorem (Logarithmic Law)

Let G be an amenable group, A an abelian group and $G \xrightarrow{\alpha} A$. If H is a subgroup of G of finite index $[G : H] = k \in \mathbb{N}$, then

$$h_{\text{alg}}(\alpha \upharpoonright H) = k \cdot h_{\text{alg}}(\alpha) \quad \text{and} \quad \text{ent}(\alpha \upharpoonright H) = k \cdot \text{ent}(\alpha).$$

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

Let A be a torsion abelian group, S be a right-amenable monoid, α be a left action of S on A, and B be an α-invariant subgroup of A. Then

$$\text{ent}(\alpha) = \text{ent}(\alpha_B) + \text{ent}(\alpha_{A/B}).$$
Theorem (Continuity for direct limit)

Let S be a cancellative right-amenable semigroup, A an abelian group and consider $S \overset{\alpha}{\curvearrowright} A$. If A is a direct limit of α-invariant subgroups $\{A_i \mid i \in I\}$, then $h_{\text{alg}}(\alpha) = \sup_{i \in I} h_{\text{alg}}(\alpha_{A_i})$.

Theorem (Logarithmic Law)

Let G be an amenable group, A an abelian group and $G \overset{\alpha}{\curvearrowright} A$. If H is a subgroup of G of finite index $[G : H] = k \in \mathbb{N}$, then

$$h_{\text{alg}}(\alpha \upharpoonright H) = k \cdot h_{\text{alg}}(\alpha) \quad \text{and} \quad \text{ent}(\alpha \upharpoonright H) = k \cdot \text{ent}(\alpha).$$

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

Let A be a torsion abelian group, S be a right-amenable monoid, α be a left action of S on A, and B be an α-invariant subgroup of A. Then

$$\text{ent}(\alpha) = \text{ent}(\alpha_B) + \text{ent}(\alpha_{A/B}).$$
For a locally compact abelian group A and a continuous endomorphism $\phi : A \to A$ denote by \hat{A} the Pontryagin dual of A and $\hat{\phi} : \hat{A} \to \hat{A}$ be the dual of ϕ, defined by $\hat{\phi}(\chi) = \chi \circ \phi$.

A left action $S \bowtie K$ of a cancellative left-amenable semigroup S on a compact abelian group K induces a right dual action $\hat{K} \bowtie \hat{S}$ on the discrete group \hat{K}, defined by

$$\hat{\gamma}(s) = \hat{\gamma}(s) : \hat{K} \to \hat{K} \quad \text{for every } s \in S.$$

The Bridge theorem remains true in this much more general context (where $\hat{\gamma}^{\text{op}}$ is the left action of S^{op} associated to $\hat{\gamma}$):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action $S \bowtie K$ of a cancellative left-amenable semigroup S on a compact totally disconnected abelian group K

$$h_{\text{top}}(\gamma) = h_{\text{alg}}(\hat{\gamma}^{\text{op}}).$$
For a locally compact abelian group A and a continuous endomorphism $\phi : A \to A$ denote by \hat{A} the Pontryagin dual of A and $\hat{\phi} : \hat{A} \to \hat{A}$ be the dual of ϕ, defined by $\hat{\phi}(\chi) = \chi \circ \phi$.

A left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact abelian group K induces a right dual action $\hat{K} \curvearrowleft S$ on the discrete group \hat{K}, defined by

$$\hat{\gamma}(s) = \hat{\gamma}(s) : \hat{K} \to \hat{K}$$

for every $s \in S$.

The Bridge theorem remains true in this much more general context (where $\hat{\gamma}^{op}$ is the left action of S^{op} associated to $\hat{\gamma}$):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact totally disconnected abelian group K

$$h_{top}(\gamma) = h_{alg}(\hat{\gamma}^{op}).$$
For a locally compact abelian group A and a continuous endomorphism $\phi : A \to A$ denote by \hat{A} the Pontryagin dual of A and $\hat{\phi} : \hat{A} \to \hat{A}$ be the dual of ϕ, defined by $\hat{\phi}(\chi) = \chi \circ \phi$.

A left action $S \bowtie K$ of a cancellative left-amenable semigroup S on a compact abelian group K induces a right dual action $\hat{K} \bowtie \hat{S}$ on the discrete group \hat{K}, defined by

$$\hat{\gamma}(s) = \hat{\gamma}(s) : \hat{K} \to \hat{K} \quad \text{for every } s \in S.$$

The Bridge theorem remains true in this much more general context (where $\hat{\gamma}^{op}$ is the left action of S^{op} associated to $\hat{\gamma}$):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action $S \bowtie K$ of a cancellative left-amenable semigroup S on a compact totally disconnected abelian group K

$$h_{top}(\gamma) = h_{alg}(\hat{\gamma}^{op}).$$
For a locally compact abelian group A and a continuous endomorphism $\phi : A \to A$ denote by \hat{A} the Pontryagin dual of A and $\hat{\phi} : \hat{A} \to \hat{A}$ be the dual of ϕ, defined by $\hat{\phi}(\chi) = \chi \circ \phi$.

A left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact abelian group K induces a right dual action $\hat{K} \curvearrowleft S$ on the discrete group \hat{K}, defined by

$$\hat{\gamma}(s) = \hat{\gamma}(s) : \hat{K} \to \hat{K} \quad \text{for every } s \in S.$$

The Bridge theorem remains true in this much more general context (where $\hat{\gamma}^{op}$ is the left action of S^{op} associated to $\hat{\gamma}$):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact totally disconnected abelian group K

$$h_{\text{top}}(\gamma) = h_{\text{alg}}(\hat{\gamma}^{op}).$$
For a locally compact abelian group A and a continuous endomorphism $\phi : A \to A$ denote by \hat{A} the Pontryagin dual of A and $\hat{\phi} : \hat{A} \to \hat{A}$ be the dual of ϕ, defined by $\hat{\phi}(\chi) = \chi \circ \phi$.

A left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact abelian group K induces a right dual action $\hat{K} \curvearrowleft S$ on the discrete group \hat{K}, defined by

$$\hat{\gamma}(s) = \hat{\gamma}(s) : \hat{K} \to \hat{K} \quad \text{for every } s \in S.$$

The Bridge theorem remains true in this much more general context (where $\hat{\gamma}^{op}$ is the left action of S^{op} associated to $\hat{\gamma}$):

Theorem (Fornasiero, Giordano Bruno, DD - 2017)

For a left action $S \curvearrowright K$ of a cancellative left-amenable semigroup S on a compact totally disconnected abelian group K

$$h_{top}(\gamma) = h_{alg}(\hat{\gamma}^{op}).$$