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ABSTRACT 

This study investigates the utilization of Artificial Neural Networks (ANNs) for occupancy detection to 

optimize Heating, Ventilating, and Air Conditioning (HVAC) energy consumption. Leveraging environmental 

factors such as temperature, humidity, light, and CO2 levels, alongside occupancy status, various ANN 

architectures' efficacy in accurately predicting room occupancy is evaluated. The research involves 

comprehensive data analysis, including exploratory data analysis (EDA) and model evaluation on training, 

validation, and test datasets. The study demonstrates the potential of ANN-based occupancy detection in 

enhancing HVAC system efficiency by dynamically adjusting heating, cooling, and ventilation settings based 

on real-time occupancy information. Practical implications and future research directions for integrating ANN-

based occupancy detection into HVAC control systems to achieve energy savings and environmental 

sustainability are discussed. 

 

Key words: HVAC energy efficiency, Artificial Neural Networks (ANNs), occupancy detection, environmental 

factors, temperature, humidity, light, CO2 levels, room occupancy prediction, data analysis, Exploratory data 

analysis (EDA), model evaluation, training, validation, and test datasets, energy savings, environmental 

sustainability, building automation, optimization strategies. 

 

__________________________________________________________________________________ 

 
INTRODUCTION 

Effective management of Heating, Ventilation, and Air Conditioning (HVAC) systems is paramount for 

mitigating energy waste and advancing sustainability goals in today's energy-intensive world. With buildings 

accounting for a significant portion of global energy consumption, optimizing HVAC operations stands as a 

critical strategy for reducing carbon emissions and enhancing environmental stewardship. Amidst this backdrop, 

the pursuit of accurate occupancy detection emerges as a key avenue for maximizing HVAC energy efficiency. 

[1][2] 

Occupancy detection entails the identification of whether a space is occupied or vacant at any given time. 

Traditionally, this task has relied on simplistic methods such as motion sensors or manual switches, often 

leading to inefficient energy utilization due to inaccurate occupancy assessments. However, advancements in 

sensor technology, coupled with the rise of Artificial Intelligence (AI) techniques like Artificial Neural 

Networks (ANNs), have paved the way for more sophisticated and precise occupancy detection systems. [3][4] 

By leveraging a plethora of environmental parameters such as temperature, humidity, light levels, and CO2 

concentrations, alongside occupancy status, ANN-based occupancy detection systems offer a nuanced 

understanding of space utilization dynamics. These systems can discern subtle occupancy patterns and adapt 

HVAC settings in real-time, thereby optimizing energy consumption while maintaining occupant comfort. As 

such, the integration of ANN-based occupancy detection holds immense promise for revolutionizing HVAC 

management practices and ushering in an era of energy-efficient and sustainable buildings. [5][6] 
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Moreover, the adoption of ANN-based occupancy detection aligns with broader trends in building automation 

and smart technologies. As the world moves towards interconnected and intelligent buildings, the ability to 

dynamically adjust HVAC operations based on real-time occupancy information becomes increasingly valuable. 

This paradigm shift not only enhances energy efficiency but also contributes to occupant well-being and 

productivity. Therefore, exploring the potential of ANN-based occupancy detection represents a crucial step 

towards creating smarter, more adaptive built environments that prioritize sustainability and comfort. [7][2] 

Furthermore, the integration of ANN-based occupancy detection into HVAC systems aligns with the growing 

emphasis on data-driven decision-making in building management. By leveraging advanced data analytics and 

machine learning techniques, building operators can gain deeper insights into occupancy patterns, energy usage 

trends, and system performance. This data-driven approach enables proactive and adaptive control strategies, 

allowing HVAC systems to anticipate occupants' needs and optimize resource allocation accordingly. As 

buildings become increasingly interconnected and digitally enabled, the integration of ANN-based occupancy 

detection represents a strategic investment in the future of building management, offering opportunities for 

enhanced efficiency, resilience, and sustainability. [8][5] 

 

RESEARCH OBJECTIVES 

A. Performance Evaluation 

Assess the performance of different ANN architectures in predicting room occupancy based on environmental 

observations, including temperature, humidity, light, and carbon dioxide (CO2) levels. 

B. Optimal ANN Architecture Identification  

Determine the optimal ANN architecture that achieves the highest prediction accuracy and minimizes 

computational complexity. 

C. Feature Selection  
Identify the most influential environmental factors contributing to occupancy detection and evaluate the impact 

of feature selection on prediction accuracy. 

D. Energy Consumption Optimization  
Explore the potential energy savings achievable through the integration of the developed ANN model with 

HVAC control strategies. 

 

METHODOLOGY 

A. Data Collection 

Environmental data, including temperature, humidity, light, and CO2 levels, are collected from multiple rooms 

in a building from caggle. 

B. Data Preprocessing 

Collected data are cleaned, preprocessed, and normalized to ensure compatibility with ANN modeling. 

C. ANN Model Development  

Various ANN architectures, such as multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and 

recurrent neural networks (RNNs), are developed and trained for occupancy detection.  

D. Performance Evaluation 

The performance of each ANN model is evaluated using metrics such as accuracy, precision, recall, and F1-

score. 

E. Optimal ANN Architecture Selection 
The optimal ANN architecture is selected based on prediction accuracy, computational complexity, and 

interpretability 

We explored three ANN architectures labeled as ANN_1, ANN_2, and ANN_3. These architectures varied in 

terms of the number of layers, neurons, and dropout rates. Hyperparameters for each architecture were optimized 

using grid search, which systematically searched through a range of values for dropout rates. Each ANN was 

trained for 50 epochs with early stopping and learning rate reduction callbacks to prevent overfitting and enhance 

convergence. 

We adopt three distinct architectures for Artificial Neural Networks (ANNs) to predict occupancy status based on 

environmental observations. These architectures, denoted as ANN_1, ANN_2, and ANN_3, differ in their layer 

configurations and regularization techniques. 
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ANN_1: 

• Consists of a sequential arrangement of layers: 

• Dense layer with 64 units and ReLU activation function, taking input dimensions equivalent to the 

features of the training dataset. 

• Dropout layer with a dropout rate of 0.5 to mitigate overfitting. 

• Dense layer with 64 units and ReLU activation function. 

• Final dense layer with 1 unit and sigmoid activation function to output occupancy prediction 

probabilities. 

ANN_2: 

• Comprises the following layers: 

• Dense layer with 128 units and ReLU activation function, accepting input dimensions equivalent to the 

features of the training dataset. 

• Dropout layer with a dropout rate of 0.3 to prevent overfitting. 

• Dense layer with 64 units and ReLU activation function. 

• Final dense layer with 1 unit and sigmoid activation function for occupancy prediction. 

ANN_3: 

• Incorporates a more complex architecture: 

• Dense layer with 256 units and ReLU activation function as the input layer. 

• Dropout layer with a dropout rate of 0.4 for regularization. 

• Dense layer with 128 units and ReLU activation function. 

• Dense layer with 64 units and ReLU activation function. 

• Final dense layer with 1 unit and sigmoid activation function for occupancy prediction. 

These ANNs are trained and evaluated using environmental data, including temperature, humidity, light, and 

CO2 levels, alongside corresponding occupancy statuses, to optimize HVAC operation dynamically based on 

real-time occupancy information. 

In summary, 

• ANN_1: Sequential arrangement of layers including dense layers with ReLU activation functions and 

dropout layers to mitigate overfitting. 

• ANN_2: Configured with varying numbers of units and dropout rates to prevent overfitting. 

• ANN_3: Incorporates a deeper structure with increased neuron counts and dropout regularization. 

 

RESULTS  

After training the ANNs, comprehensive analysis was conducted to understand their performance and behavior. 

The confusion matrices and learning curves of the ANN architectures provide valuable insights into their 

predictive capabilities and convergence characteristics. The following results were observed: 

• ANN 1: Validation Loss: 0.0781, Validation Accuracy: 0.9782 (converges at 17 epochs) 

• ANN 2: Validation Loss: 0.0750, Validation Accuracy: 0.9782 (converges at 14 epochs) 

• ANN 3: Validation Loss: 0.0771, Validation Accuracy: 0.9786 (converges at 12 epochs) 

These results indicate high validation accuracy for all three ANN architectures, with slight variations in 

convergence times and loss values. 

Figure 1 displays the confusion matrix for ANN_1, illustrating the distribution of true positive, true negative, 

false positive, and false negative predictions. Similarly, Figure 2 depicts the learning curves of ANN_1, showing 

the training and validation loss over epochs. These visualizations aid in understanding the model's performance 

and identifying any overfitting or underfitting issues. 

In Figures 3 and 4, the confusion matrix and learning curves for ANN_2 are presented, providing a comparative 

analysis with ANN_1. By examining these metrics, differences in performance and convergence behavior 

between the two architectures can be discerned. 

Furthermore, Figures 5 and 6 showcase the confusion matrix and learning curves for ANN_3, offering insights 

into its performance compared to ANN_1 and ANN_2. Through comparative analysis of these visualizations, 

the strengths and weaknesses of each architecture can be evaluated, facilitating informed decision-making 

regarding optimal model selection. 
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The comprehensive analysis of the ANN architectures' performance, as depicted by the confusion matrices and 

learning curves, enhances our understanding of their predictive capabilities and convergence behavior. These 

insights are invaluable for optimizing model selection and parameter tuning to achieve the desired level of 

accuracy and generalization. 

 
Figure 1: ANN_1 Confusion Matrix 

 

 
Figure 2: Learning Curves – ANN_1 
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Figure 3: ANN_2 Confusion Matrix 

 

 
Figure 4: Learning Curves – ANN_2 
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Figure 5: ANN_3 Confusion Matrix 

 

 
Figure 6: Learning Curves-ANN_3 
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RESULTS ANALYSIS 

Upon conducting a thorough analysis of the results obtained from training the ANN architectures, several key 

insights emerge. The confusion matrices and learning curves provide detailed information regarding the models' 

predictive performance and convergence behavior, shedding light on their strengths and weaknesses. 

A. Confusion Matrices: 

The confusion matrices offer a comprehensive view of the models' classification performance, delineating true 

positive, true negative, false positive, and false negative predictions. By examining these matrices, we can gauge 

the accuracy and precision of the models in correctly identifying occupancy status based on environmental 

observations. Discrepancies between predicted and actual occupancy statuses are visually represented, enabling 

a nuanced understanding of the models' classification capabilities. 

For instance, in Figure 1, the confusion matrix for ANN_1 illustrates the distribution of correctly and incorrectly 

classified instances, providing insights into the model's ability to differentiate between occupied and vacant 

rooms. Similarly, Figures 3 and 5 present the confusion matrices for ANN_2 and ANN_3, respectively, 

facilitating comparative analysis across different architectures. 

B. Learning Curves: 

The learning curves depict the training and validation loss over epochs, offering valuable insights into the 

models' convergence behavior and generalization performance. By monitoring the trends in training and 

validation loss, we can assess the models' capacity to learn from the data and generalize to unseen instances. 

Discrepancies between training and validation loss curves indicate potential overfitting or underfitting issues, 

highlighting areas for model improvement. 

In Figures 2, 4, and 6, the learning curves for ANN_1, ANN_2, and ANN_3 are presented, respectively. These 

curves enable a comparative analysis of the models' convergence characteristics, including convergence speed 

and stability. By examining the convergence behavior of each architecture, informed decisions can be made 

regarding model selection and parameter tuning to optimize performance. 

C. Comparative Analysis: 

Through comparative analysis of the confusion matrices and learning curves across different ANN architectures, 

we can discern patterns and trends in performance. Discrepancies in classification accuracy, convergence speed, 

and stability between architectures provide valuable insights into the relative strengths and weaknesses of each 

model. 

For example, while ANN_1 may exhibit high classification accuracy, it may suffer from slower convergence 

compared to ANN_2 or ANN_3. Conversely, ANN_3, with its deeper architecture and dropout regularization, 

may achieve faster convergence but at the expense of increased computational complexity. 

By leveraging insights from the comparative analysis, informed decisions can be made regarding the selection 

of the optimal ANN architecture for occupancy detection in HVAC systems. Factors such as prediction 

accuracy, computational complexity, and convergence characteristics play a crucial role in determining the most 

suitable model for real-world applications. 

In summary, the comprehensive analysis of confusion matrices and learning curves provides valuable insights 

into the performance and behavior of the ANN architectures. By examining classification accuracy, convergence 

behavior, and comparative performance across different models, informed decisions can be made regarding 

model selection and parameter tuning to optimize performance for HVAC energy efficiency optimization.  

 

CONCLUSION 

The study has provided valuable insights into the application of Artificial Neural Networks (ANNs) for 

occupancy detection in HVAC systems, showcasing their potential to significantly improve energy efficiency. 

By accurately predicting room occupancy based on environmental factors, ANNs offer a promising solution for 

optimizing HVAC operations in both residential and commercial buildings. The findings underscore the 

importance of incorporating advanced technological solutions into building management systems to mitigate 

energy wastage and promote sustainability. 

Moreover, the integration of ANN-based occupancy detection with smart building technologies holds immense 

promise for future energy-efficient designs. By leveraging real-time occupancy information, HVAC systems can 

dynamically adjust their settings to meet occupants' needs while minimizing energy consumption. This approach 

not only enhances comfort levels but also contributes to substantial energy savings and environmental 



Yousif A.A et al                                                 Euro. J. Adv. Engg. Tech., 2021, 8(11):58-65 

___________________________________________________________________________ 

65 

preservation. However, further research is warranted to address challenges such as scalability, interoperability, 

and cybersecurity concerns associated with implementing ANN-driven HVAC control systems. Collaborative 

efforts between researchers, industry stakeholders, and policymakers are essential to realize the full potential of 

ANN-based occupancy detection in fostering energy-efficient and sustainable built environments. 

Furthermore, beyond the realm of HVAC systems, the success of ANN-based occupancy detection has 

implications for various other applications, including building security, resource management, and personalized 

user experiences. By accurately discerning occupancy patterns, these systems can optimize not only energy 

usage but also security protocols, lighting controls, and space utilization. Such advancements contribute to the 

creation of smarter, more adaptive built environments that prioritize efficiency, comfort, and safety. As 

technology continues to evolve, the integration of ANN-based solutions into building automation systems 

promises to revolutionize the way we interact with and manage our built environment, paving the way for a 

more sustainable and resilient future. 

In closing, this study represents a step towards leveraging cutting-edge technologies to address pressing 

challenges in building management and sustainability. By harnessing the power of ANN-based occupancy 

detection, we can pave the way for more efficient, comfortable, and environmentally conscious built 

environments. 
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