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Abstract  

This experimental study investigates the degradation mechanisms of a GFRP material 

commonly used in civil engineering applications. A substantial reduction in tensile, shear, 
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and compression properties is observed after 100 days of freeze-thaw cycling in saline 

environment (-20 
0
C to 20 

0
C). Nondestructive inspection techniques were progressively 

conducted on unexposed (ambient condition) and exposed (conditioned) specimens. The 

Dynamic Mechanical Analysis showed permanent decrease in storage modulus that was 

attributed to physical degradation of the polymer and/or fiber-matrix interface. This 

indicated the formation of internal cracks inside the exposed GFRP laminate. The 3D X-

Ray tomography identified preferred damage sites related to intralaminar and interlaminar 

cracks. The ultrasonic C-scan and optical microscopy showed the nature of the damage and 

fibers fracture. The thermal cycling events degraded the matrix binding the warp and fill 

fibers, impairing the structural integrity of the cross-ply laminate. The result of this work 

could benefit a multi-scale durability and damage tolerance model to predict the material 

state of composite structures under typical service environments. 

Key Words: Fiber, freeze-thaw, cycling, degradation, X-ray, ultrasonic, damage  

1. Introduction 

Glass Fiber Reinforced Plastic (GFRP) composites are extensively being used in civil 

engineering applications, namely, pedestrian bridges, piling bumpers, offshore and marine 

structures. These GFRP are fabricated by the Vacuum Assisted Resin Transfer Molding 



process (VARTM) and commonly use low cost woven roving (WR) E-glass fibers infused 

with a Vinyl ester resin. Their end use applications require continuous exposure to thermal 

cycling conditions, and their in-service environment is generally combined with aqueous 

environment or sea-water exposure. In cold regions, ice chemicals and rock salts are 

frequently used on highway and pedestrian bridges for ice and snow removal. In the last 

two decades, several researchers investigated the freeze/thaw (F/T) cycling effects on 

composite materials [1-6]. Significant reduction in mechanical properties was reported 

when thermal cycling occurred in an aqueous environment [1-11].
 
When F/T is combined 

with salt water, two mechanisms will most likely occur. The first one is related to matrix 

cracking under thermal cycling, and the second by diffusion through the resin down to the 

fibers. Resin degradation, fiber-matrix de-bond and fiber stress corrosion were found to be 

the major failure mechanisms in GFRP when immersed in sea water [12]. Experimental 

data available in the literature related to woven roving GFRP under F/T and saline exposure 

reported limited combination of mechanical tests and nondestructive inspection (NDI) 

techniques. This study provides a full spectrum of mechanical testing progressively backed 

by several comprehensive NDI techniques to better understand damage initiation in similar 

construction. Based on a recent literature survey conducted by Sousa et al. [8], it was felt 

that a detailed root cause failure analysis is needed to assist in the development of a 



mechanistic model based on experiment relating the material degradation to the observed 

loss in stiffness and strength. Understanding the cause, nature, and how damage is induced 

by the thermal cycling, one would be able to quantify the reduction and properly predict the 

structural performance of the woven roving GFRP construction. If such root cause failure 

analysis is properly investigated, specifically locating the size and orientation of the 

defects, then a valid multi-scale durability and damage tolerance model could be generated 

and implemented in any finite element software package to predict the material state of 

composite structures under typical service environments.  

In this paper, GFRP laminates identical to existing field applications are fabricated and 

tested. Several mechanical tests are presented along with thermomechanical analysis to 

measure internal damage and degree of micro-damage in the GFRP laminate. State-of-the-

art non-destructive inspection techniques are used to locate the size and preferred sites of 

the defects. This approach is detailed in the following sections and justifies the reduction 

observed in WR construction. In addition, the long term objective of this paper is to set the 

stage to develop an accelerated test method and provide additional experimental data that 

will enable engineers to predict the long term performance of composite structures in harsh 

environment. 

 



2. Experimental Program  

2.1 Materials 

The materials employed in this experimental study consist of 6 layers of E-glass plain 

weave fabric (813 g/m2) reinforced with Derakane 610C-200 epoxy-vinyl ester resin 

(Ashland Inc.). This resin is currently being used in several infrastructure applications due 

to its durability, toughness, and fire resistance properties. It consists of a liquid blend of 

vinyl ester monomers in styrene, where the styrene content is approximately 40-50 wt%.   

Although this type of thermosetting polymer resin is often referred to in industry as an 

“epoxy vinyl ester” resin, it actually does not contain any reactive epoxy groups nor does it 

cure by the same polymerization mechanism as most epoxy resin systems.  It is synthesized 

through the reaction of epoxy monomers with methacrylic acid, which replaces all the 

epoxide groups with methacrylate groups. This reaction leaves a carbon-carbon double 

bond (referred to as vinyl) on the ends of each monomer, which is attached to the main 

monomer through an ester linkage, thus the term “vinyl-ester”.  The main purpose of this is 

so that the polymerization can be initiated at room temperature with the use of peroxide-

based initiator systems due to the reaction of peroxide with the carbon-carbon double bond.  

However, the presence of the ester group also allows for the increased possibility of 



hydrolysis decomposition, compared to epoxy resin systems which do not contain the ester 

linkage.   

The initiator system used was Cadox 50 at a level of an amount of 1.25 wt%. This material 

is primarily a solution of methyl ethyl ketone peroxide (MEKP). One large panel was 

fabricated using the vacuum assisted resin transfer molding (VARTM) at Composite 

Advantage LLC. (Dayton, Ohio). The panel was actually a sandwich core composite 

containing a PVC foam core, however, the laminate skins were cut away afterwards to 

supply a solid laminate sample for testing as the focus of this study.  These molded cross-

ply laminates were allowed to cure for 30 days under ambient conditions (23°C and 50% 

RH). Nominal properties of composite constituents are listed in Table 1. The fiber volume 

fraction was approximately 53% with a total measured laminate thickness of 3.24 ± 0.1 

mm. 

Table 1- Properties of Constituent Materials 

Property E-Glass fiber Derakane 610C-200 

vinylester- Resin 

Tensile Strength (MPa) 3400 71 

Tensile Modulus (GPa) 80 3.53 

Elongation (%) 4.6 4.5 



Density (g/cc) 2.62 1.07 

Heat  Distortion Temperature - 76 
0
C 

 

2.2 Environmental Exposure  

All fabricated specimens were subjected to the following two exposure conditions: 

a) Unexposed: Storage at room temperature (23°C and 50% RH ) 

b) Exposed: Exposure to freeze-thaw (F/T) with immersion in saline solution (100 

days) 

To simulate sea–water environment, the exposed samples were fully immersed in a solution 

of deionized water containing 3% NaCl (sodium chloride). The exposed samples were 

subjected to 100 days of accelerated F/T cycling tests. Each cycle consists of 12 hour 

period with a temperature range of -20 °C to 20 °C (Figure 1).  A programmable freeze-

thaw climate chamber (Slab Tester-Qualitest
TM

) was used to thermally cycle all specimens 

for a total of 200 cycles (100 days).  



 

Figure 1- Freeze-Thaw Cycle Profile (12 hours period) 

2.3 Mechanical Testing 

After exposure, all specimens were paced under ambient condition and allowed to dry for 

72 hours. A total of 48 test coupons were cut using a diamond table saw and prepared 

according to the ASTM procedures. Strain gages were installed on 3 exposed and 

unexposed samples for each standard test. Complete details of sample dimensions and 

number of samples are displayed in Table 2. Longitudinal and transverse direction strains 

were installed on the tensile test coupons. The V-notched beam test samples were mounted 

with strain gauges in the + 45 and – 45 degree directions on one side of each the test 

coupon.   

  



Table 2- Composite Laminates Standard Evaluation Tests  

 

2.4 Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), 

and NDE Testing  

The effect of thermal cycling on the microstructure and physical properties of the polymer 

and laminates was characterized by Dynamic Mechanical Analysis (DMA) and Differential 

Scanning Calorimetry (DSC) techniques.  The DMA unit was a TA Instrument Q800 

operated in 3 point bending mode from 25-130°C at 5°C/min.  The frequency of oscillation 

was 1 Hz and strain amplitude of TMA was used to obtain the glass transition temperature 

and the coefficient of thermal expansion (CTE). The operating parameters for this test were 

Standard Test 

Nominal Dimensions 

length, width,  

thickness (mm) 

Number of Samples 

Exposed/Unexposed  

Shear V-Notched Beam (ASTM D5379)  

IOSIPESCU 

76.5×19×3.24 6 / 6 

Laminate Tensile Test (ASTM D3039) 254×25.4×3.24 6 / 6 

Laminate Compression Test (ASTM D6641) 139.7×6.35×3.24 6 / 6 



25-130°C @ 5°C/min. Each sample (exposed and unexposed) was subjected to two heating 

cycles. The first cycle removed the non-reversible effects such as residual curing, stress 

relief etc. The second heat was used to extract information about the fully cured polymer.. 

DSC testing was performed on neat resin samples with a TA Instruments Q2000 from 40-

250°C at 10°C/min, followed by cooling and reheating.  Sample size was approximately 5-

10 mg.  The neat resin samples were cut from blocks of resin leftover from the VARTM 

process in the resin reservoir.  Although the thermal history of the resin in the reservoir is 

usually not the same as experienced in the composite, at least the material can be used to 

study the effect of freeze-thaw on the resin independently of fibers. Ultrasonic C-Scan 

technique was employed to assess the damage in the laminates. An ultrasonic reflector plate 

(immersion reflection) with 5 MHz transducer frequency was applied on the test coupons, 

with a scan/index length of 381 mm and an increment of 0.51 mm. A 360 degree X-ray CT-

scan inspection (X-Tek real time HMX160) was applied to map out and determine the 

internal damage after exposure. High Resolution Scanning Electron Microscope (HRSEM-

Hitachi S-4800) was used to study the microstructure and defects in the woven roving 

(WR) structure. All DSC, DMA and NDE techniques were applied on exposed and 

unexposed panels (control panels). These test methods and results are discussed next. 

 



3. Results and Discussion 

Table 3 shows the average mechanical test results and Coefficient of Variations (COV) for 

each standard test (average of 12 samples per standard test). All mechanical 

characterization tests were conducted using a calibrated test machine (INSTRON 4208).  

The COV for strength and modulus for all specimens were less than 15.3 %. 

Table 3- Mechanical Test results 

Sample 

Type 

Test Direction 

Average  

Modulus 

(GPa) 

Modulus 

COV% 

Average 

Strength(MPa) 

Strength 

COV% 

Unexposed 

Shear  - 4.76 7.8 67.4 2.6 

Tension Longitudinal 31.09 4.7 453.6 

- 

7.8 

- Tension Transverse 32.7 14.9 

Compression Longitudinal  31.11  5.5 424.6 3.3 

Exposed 

Shear  - 3.87 9.6 58.3 6.8 

Tension Longitudinal 24.9 4.91 347.14 

- 

12.85 

- Tension Transverse 30.2 15.3 

Compression Longitudinal 27.7 2 352.2 9.6 

 



Normalized moduli and strengths for shear, tension, and compression are shown in Figure 

2.  Large reductions occurred in the tensile and compressive strengths of the GFRP 

material. The shear and tensile longitudinal moduli were also reduced after F/T exposure.  

In general, the compression strength in WR fabric is lower than the tensile strength; this is 

due to the already kinked fibers; however this is not the case after exposure (Table 3, row 6 

and 8). The tensile test results are mainly dominated by the fiber properties and clearly 

indicate that the longitudinal fibers and the structural integrity of the WR have been 

endangered due to the environmental conditions. A mechanistic model, which describes the 

mechanism of deterioration of the exposed laminates, is described in the root cause failure 

analysis section.  



 

Figure 2- Overall results of exposed (200 cycles) and unexposed (0 cycle) specimens 

3.1 Effect on Shear Properties 

Effect of exposure on shear properties of the laminates was studied in accordance to the v-

notched beam test (ASTM D5379-12) [13]. Figure 3 shows typical shear failure mode that 

occurred at the mid-span of the V-notched beam. The average reduction in shear modulus 

and strength after 100 days of exposure is 18.5% and 13.5 %, respectively (Figure 4). 



Similar reductions were reported by Guzman and Brøndsted [12] after 8 years of salt water 

exposure. 

 

Figure 3- Shear failure modes for a) unexposed; and b) exposed specimens 

 

Figure 4- Percent change in shear modulus and strength 



Following the shear test, failed samples were cut in between the V-notch locations (across 

the length of the sample) and dissected using an optical image technique. Figure 5 shows 

the final fracture states and internal cracks for the unexposed and exposed specimens. The 

unexposed failed specimens exhibited interlaminar cracks and separation in between the 

resin and warp fibers. The cracks were oriented along the warp direction. For the exposed 

failed samples, a high density of intralaminar cracks occurred along the fill fibers as well as 

their interfaces (Figure 5). This clearly shows that the resin has been degraded due to the 

F/T cycling.  

 

Figure 5– Micrograph of the cross section after failure at the V-notch location a) 

Unexposed: showing only interlaminar cracks, b) Exposed: showing interlaminar and 

intralaminar cracks  



3.2 Effect on Tensile Properties 

In this test a 23% reduction in the tensile strength and 19.7% in the longitudinal modulus 

occurred after exposure. These values are significantly higher than the COV listed in Table 

3.  Since the ASTM D3039 [14] test results are mainly dominated by the fibers, this 

presumably indicates that the fibers were damaged in the longitudinal and transverse 

directions of the WR construction. In general, when a delaminated composite material is 

subjected to tension, the residual strength is reduced by only 10 to 15 % [15]. Lateral 

strains (90 degree direction) were used to monitor and extract the stiffness of the laminate 

in the transverse direction. The transverse modulus decreased by 10 %. The failure modes 

are shown in Figure 7. It is interesting to note that Guzman and Brøndsted [12] reported 

similar reductions in transvers tensile modulus and strength (single glass fiber) after 8 years 

in salt water environment. 



 

Figure 6– Percent change in tensile modulus and strength  

 

Figure 7– Tensile test failure modes; unexposed and exposed specimens 



Figure 8 shows the tensile stress-strain curves in the longitudinal and transverses directions.  

For the exposed samples, the transverse strains are more pronounced than the unexposed 

samples. These highly deviated curves designate some sort of stiffness degradation due to 

loss in the structural integrity of the laminate, especially at the weave junctions (nodes) 

between the 0 and 90 degree fibers of the WR construction.  This could be a direct result of 

a weakened matrix that binds the warp fiber to the fill fiber. More in-depth validation of 

this key failure mechanism is explained in the non-destructive testing section.  

 

Figure 8- Longitudinal and transvers Stress-Strain curves for exposed and unexposed 

specimens 

 



3.3 Effect on Compressive Properties 

The combined loading compression test fixture was used to study the effect of exposure on 

the compressive properties of the GFRP laminates. A total of 12 samples were tested in 

accordance with ASTM D6641 [16]. The exposed samples showed an average reduction of 

17.1% in strength and 12% in modulus. One can notice the high dependency of the matrix 

degradation and interfacial failure on the compression strength versus the shear strength 

observed in Figure 4. Typical experienced failure modes are shown in Figure 9. 

 a) b) 



Figure 9 –a) Percent change in modulus and strength, b) Compression failure modes 

3.4 Root Cause Failure Analysis  

3.4.1 Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC) 

To study the internal damage or defects that occurred due to these environmental 

conditions, a DMA and DSC tests were conducted on unexposed and exposed laminates.   

The DMA results are given in Figure 10.  Figure 10a shows the results obtained from the 1
st
 

heating cycle (25-140°C @ 5 C/min).  After cooling the sample in the apparatus, a 2
nd

 

heating cycle was run on the same specimen.  The reheat cycle results (Figure 10B) show 

the condition of the material after being post cured.  This analysis is commonly run for 

thermosets because usually they are not fully cured in the original manufacturing process. 

Polymers generally are viscoelastic materials, exhibiting simultaneous elastic and viscous 

behavior in response to time varying stress. The amount of each type of behavior depends 

on the state of the polymer structure (chemical composition, crosslink density) and the 

temperature.  The storage modulus (E’) characterizes the elastic energy stored by the 

polymer, while the loss modulus (E”) represents the energy lost to viscous dissipation.  

Polymers that are highly crosslinked usually have high values of E’.  Also, the shape of the 

E’ and E” curves can be used to locate the temperature at which the polymer structure 



transitions from a glassy state (at low temperature) to a rubbery state (at higher 

temperature).  

Referring to Figure 10a, the sample subjected to 200 freeze-thaw cycles exhibited a 20% 

decrease in E’ near room temperature.  This could be due to a variety of reasons, such as 

plasticization of the matrix, chemical decomposition of the matrix, physical degradation of 

the fiber-matrix interface, etc.  Chemical decomposition of the matrix could be explained 

by hydrolysis of the ester linkage in the vinyl ester matrix, although hydrolysis reactions 

usually slow at the temperatures encountered.  Therefore, the change may be due to 

physical degradation of the resin and/or fiber-matrix interface from the freeze-thaw 

exposure. 

The E” curves provide more information about the phase structure of the resin.  Cured vinyl 

ester resins usually are comprised of two polymers phases: 1) the main crosslinked 

structure which is comprised of the vinyl ester – styrene copolymer network, and 2) a phase 

rich in homopolymerized linear polystyrene.  The peaks in the E” curve correspond to the 

temperature at which each phase transitions from glassy to rubbery state.  The glass 

transition of polystyrene is approximately 100°C, which corresponds closely with “phase 

1” peak.  The glass transition of the copolymer network is generally observed to be higher: 

in this case it occurs at 115°C, and is labeled as “phase 2” in the 0-cycle sample.   It is 



interesting that the 200-cycle sample does not exhibit the phase 2 transition in the same 

location. Most likely, the phase 2 transition was reduced to about 75°C (labeled as phase 2’, 

which is the shoulder in the E” curve, as well as the steep drop in E’).  Absorbed water 

would be expected to plasticize the main network because it has some polarity (e.g. ester 

bonds), while water should have little or no impact on the highly nonpolar polystyrene 

phase.  Indeed, the phase 1 peak is almost identical in both samples.  

Figure 10B shows the results after post curing the samples. Any water in the matrix is 

expected to be removed in the 1
st
 heating cycle. The value of E’ for the 200-cycle sample 

remained lower (17.5%) than the control sample, which indicates that there was some 

nonreversible degradation caused by the freeze-thaw cycles. The E” peak of the polystyrene 

phase (phase 1) was largely unaffected by the post curing process in both 0 and 200 cycle 

samples. In the 0 cycle sample, the E” peak of the vinyl ester phase shifted to a slightly 

higher temperature (120°C), which can be attributed to residual curing from the 1
st
 heating 

cycle.  In the 200 cycle sample, the vinyl ester E” peak is seen as a faint shoulder around 

the same temperature as the 0 cycle sample.  This indicates that the vinyl ester network was 

no longer plasticized, but was not as prevalent as the 0 cycle sample.  As with the E’ result, 

this also indicates some difference in the network or fiber-matrix interface caused by the 

freeze-thaw cycle.   



 

 

Figure 10: DMA results for composite, a) 1
st
 DMA heating cycle, b) 2

nd
 DMA heating 

cycle. 



The DSC results for a neat resin samples are summarized in Table 4. This technique was 

used to verify that the samples were not fully cured after VARTM processing, and to 

measure the Tg of the resin independently of the presence of fibers.  The Tg is strongly 

related to the nature of the crosslinked network, and therefore it can provide information 

about the decomposition of the polymer.  The DSC traces for the 1
st
 heat showed a Tg 

around 67°C for the 0-cycle sample and 63°C for the 200-cycle sample.  This difference 

was attributed to plasticization of the matrix from the freeze-thaw cycle, as observed in 

DMA.   However, upon reheating the Tg increased to essential the same value (96-97°C) in 

both cases, due to post curing experienced in the prior cycle.  This implies that there was no 

permanent chemical decomposition of the polymer, for example by hydrolysis.  The 

permanent damage detected by DMA (drop in storage modulus) is therefore attributed 

primarily to physical degradation in the polymer (cracks) and/or between the polymer and 

fiber.  The small change to phase 2 detected by DMA is not able to be detected by DSC.   

Table 4: Summarized Tg Results from DSC. 

# cycles 

Tg (°C) 

1st heat 2nd heat 

0 68.0 96.3 



66.5 - 

200 

62.4 97.4 

64.3 - 

 

3.4.1 Damage State in Woven Roving Architecture  

In order to investigate the size and location of the internal defects, a 3D X-Ray CT-Scan 

test was conducted on the exposed specimens. Figure 11 shows resin cracking at preferred 

sites. In addition, intralaminar cracks occurred in the mid-section of the FRP laminate, 

specifically in resin rich areas. The damage shown in Figure 11 (transverse cross section) is 

approximately 1.2 mm in length and 0.7 mm thick. These defects (cracks and fractures) are 

source of delamination initiation that further degrades the component strength and 

eventually lead to local stiffness reduction. 



 

Figure 11- X-Ray computed tomography showing damage in exposed samples a) 2 
nd

 and 3 

rd
 plies, b) longitudinal cross section, c) transverse cross section 

In order to test the structural integrity of the connections between the fill and warp fibers, a 

pulse ultrasonic C-scan technique was performed on two exposed and unexposed 

specimens. Figure 12 shows the C-scan images of all tested samples. The grid pattern 

(signals at nodes) is clearly shown in the unexposed samples (Figure 12a), whereas the 

linear pattern is clearly visible in the exposed samples. This change in pattern indicates that 

these connections are impaired and ineffective in transferring the loads, including racking 

or shear loads. In addition to the shear stiffness loss of the cracked matrix, the deterioration 

a) b) 

c) 



of these nodes is believed to affect the tensile and shear moduli of the laminate. To interpret 

this phenomenon, one could envision the laminate structure similar to a picture frame 

(hinged truss) with some degree of rotational stiffness at the four pins (nodes). Two of these 

pins could be connected with a horizontal spring simulating the lateral stiffness supplied by 

the matrix. If a load (tension of shear) is applied to the truss, the capability of the truss to 

resist load and deformation (axial or racking) is controlled by the rotational stiffness 

supplied by the nodes (bond at junction of fill and warp fibers) and the axial stiffness of the 

spring. This simple mechanistic model helps to understand the basic phenomena governing 

the behavior of these systems. 

 

Figure 12- Ultrasonic C-scan results (102 mm wide specimens); a) unexposed: grid pattern, 

b) exposed: linear pattern 

 

 
a) b) 



3.4.2 Matrix and Fiber Damage  

To map out the damage and frequency of defects that occurred in the laminate after 

exposure, a high resolution optical image technique was used to inspect their locations. 

Figure 13 shows damaged fibers and matrix bond failure between the fill and warp fibers. 

This failure pattern commonly occurred at the kink/weave location between the roving. It 

seems that the volume change due to the thermal cycling initiated a high non-uniform 

residual stresses at the sharpest curvature location and significantly degraded this 

node/junction between the fibers. The authors believe that this damage will be recurrent for 

any plain weave type no matter what type of reinforcement is used.  

 

Figure 13- Local magnified optical image at weave junction showing matrix failure 

between damaged warp fibers and fill fibers after exposure  

Warp 

Fibers 



Figure 14 shows the microstructure of an exposed specimen with a high resolution 

Scanning Electron Microscopy (SEM). Significant amount of fiber/matrix degradation is 

observed.  This justifies the DMA result discussed in section 3.4. The mismatch in the 

coefficient of thermal expansion between the resin and the E-glass fiber is believed to cause 

this interfacial failure mode. In addition, fiber fractures are clearly shown in Figure 14.  

 

Figure 14– SEM micrograph showing degradation of fiber/matrix interface and fiber 

fracture  

 Karbahari et. al. [11] reported that aqueous solution in contact with glass fiber surface 

produced free-alkali hydroxide groups that degraded the silica structure of the glass fiber 



when exposed to an alkaline media. The effect is through breaking of Si-O bonds in the 

glass network and was believed that surface loss and pitting occurred in areas of high pH 

solution. In general, alkali solution such as cement environment is known to degrade the 

glass fiber through several processes such as pitting, etching, leaching, and embrittlement 

[17-19]. Figure 15 shows a surface of a filament of glass fiber in an exposed sample. 

Several defects (black spots) are observed, including localized areas around these spots, 

which might be related to coupling agent or polymer swelling  

 

Figure 15- SEM picture of damaged E-glass fiber after exposure 

 



4. Conclusion 

 

This study presents the experimental results and evaluation of a woven roving E-glass 

fabric/ epoxy vinyl ester composite submerged in saline solution and exposed to 100 days 

of freeze-thaw environment. State-of-the-art NDI testing techniques were used to 

investigate the nature of the degradation, including all constituent materials, interfaces, and 

fabric construction.  A mechanistic model describing the failure mechanism and damage 

initiation and propagation as related to observed material degradation and reduction is 

presented.  

 

The following conclusions may be drawn: 

 

1. The conditioned specimens showed a substantial material degradation when 

compared to identical control specimens. The largest reduction was observed in the 

tensile properties of the GFRP. A reduction of 23 % in strength and 20 % in 

modulus were detected. The average reductions in shear modulus and strength were 

around 18.5% and 13.5%, respectively. Whereas an average reduction of 17.1% in 

compression strength and 12% in compression modulus were observed. 



2. The shear failure postmortem optical microscopy images showed delamination and 

intralaminar cracks in the exposed samples. 

3. The DMA testing indicated plasticization of the matrix from the exposure. The 

plasticization effects could be removed by heating the sample (thereby removing 

water) but there was a permanent decrease in storage modulus that is attributed to 

physical degradation of the polymer and/or fiber-matrix interface.  Most likely 

hydrolysis of the resin was not involved.  DSC results corroborated these findings. 

These results are consistent with the formation of internal cracks inside the GFRP 

laminate.  

4. The fiber/matrix interface has traditionally been viewed as the main damage due to 

thermal cycling. However, when F/T is combined with saline exposure, the warp 

fibers specifically at the weave junctions experienced extensive damage and 

fracture. 

5. The X-ray computed tomography showed a preferred site location of defects in the 

woven roving construction. The frequency of these defects was mainly located in 

the resin rich areas between the fill and warp fibers.  

6. The ultrasonic C-scan and optical microscopy showed that the volume change due 

to F/T cycling and reduction of through-thickness tensile strength of the matrix 



binding the warp and fill fibers at the weave junction impaired the structural 

integrity of the FRP material.  

7. The observed strength and stiffness reductions after accelerated exposure were 

similar to what was reported in the literature [12] on GFRP immersed in sea water 

for up to 8 years. The testing scheme and protocol proposed in this study could be 

used as an accelerated testing method for future evaluation of durability in 

composite materials. 

8. The results of this research are expected to apply to plain weave fabric regardless of 

the fiber types used in the reinforced polymer composites. A multi-scale durability 

and damage tolerance model would take advantage of the damage types presented in 

this paper, including the frequency, sizes, shapes, locations and distribution of the 

defects. 
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