Uncountably Many Quasi-Isometry Classes of Groups of Type FP

Ignat Soroko
University of Oklahoma, ignat.soroko@ou.edu

Robert Kropholler
Tufts University

Ian Leary
University of Southampton

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons
Uncountably many quasiisometry classes of groups of type FP

Ignat Soroko

University of Oklahoma

ignat.soroko@ou.edu

Joint work with

Robert Kropholler, Tufts University

and

Ian J. Leary, University of Southampton

June 27, 2017
TOPOLOGY \leadsto ALGEBRA

Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.
TOPOLOGY ⇝ ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA ⇝ TOPOLOGY
Group $G \leadsto$ Eilenberg–Maclane space $X = K(G, 1)$:
TOPOLOGY \leadsto ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA \leadsto TOPOLOGY
Group $G \leadsto$ Eilenberg–Maclane space $X = K(G, 1)$:

- X is a CW-complex,
- $\pi_1(X) = G$,
- \tilde{X} is contractible.
TOPOLOGY \leadsto ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA \leadsto TOPOLOGY
Group $G \leadsto$ Eilenberg–Maclane space $X = K(G, 1)$:
- X is a CW-complex,
- $\pi_1(X) = G$,
- \tilde{X} is contractible.

We build $X = K(G, 1)$ as follows:
- X has a single 0–cell,
- 1–cells of X correspond to generators of G,
- 2–cells of X correspond to relations of G,
- 3–cells of X are added to kill $\pi_2(X)$,
- 4–cells of X are added to kill $\pi_3(X)$,
- etc...
If the n–skeleton of $K(G,1)$ has finitely many cells, group G is of type F_n.
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n: $F_1 = \text{finitely generated groups},$
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:
\[F_1 = \text{finitely generated groups}, \]
\[F_2 = \text{finitely presented groups}. \]
If the n–skeleton of $K(G,1)$ has finitely many cells, group G is **of type F_n**:
- $F_1 = \text{finitely generated groups}$,
- $F_2 = \text{finitely presented groups}$.

If $K(G,1)$ has finitely many cells, group G is **of type F**.
If the \(n\)-skeleton of \(K(G, 1)\) has finitely many cells, group \(G\) is of type \(F_n\):
\[
F_1 = \text{finitely generated groups},
\]
\[
F_2 = \text{finitely presented groups}.
\]
If \(K(G, 1)\) has finitely many cells, group \(G\) is of type \(F\).

If \(X = K(G, 1)\), \(G\) acts cellularly on \(\tilde{X}\) and we have a long exact sequence
\[
\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0
\]
consisting of free \(\mathbb{Z}G\)-modules. This leads to a definition:
If the \(n \)-skeleton of \(K(G, 1) \) has finitely many cells, group \(G \) is **of type \(F_n \)**:

\[
F_1 = \text{finitely generated groups}, \\
F_2 = \text{finitely presented groups}.
\]

If \(K(G, 1) \) has finitely many cells, group \(G \) is **of type \(F \)**.

If \(X = K(G, 1) \), \(G \) acts cellularly on \(\tilde{X} \) and we have a long exact sequence

\[
\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0
\]

consisting of free \(\mathbb{Z}G \)-modules. This leads to a definition:

A group \(G \) is **of type \(FP_n \)** if the trivial \(\mathbb{Z}G \)-module \(\mathbb{Z} \) has a projective resolution which is **finitely generated** in dimensions 0 to \(n \):
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:

- $F_1 = \text{finitely generated groups}$,
- $F_2 = \text{finitely presented groups}$.

If $K(G, 1)$ has finitely many cells, group G is of type F.

If $X = K(G, 1)$, G acts cellularly on \tilde{X} and we have a long exact sequence

$$
\cdots \longrightarrow C_i(\tilde{X}) \longrightarrow \cdots \longrightarrow C_1(\tilde{X}) \longrightarrow C_0(\tilde{X}) \longrightarrow \mathbb{Z} \longrightarrow 0
$$

consisting of free $\mathbb{Z}G$–modules. This leads to a definition:

A group G is of type \textbf{FP}_n if the trivial $\mathbb{Z}G$–module \mathbb{Z} has a projective resolution which is \textbf{finitely generated} in dimensions 0 to n:

$$
\cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0
$$

If, in addition, all $P_i = 0$ for $i > N$, for some N, group G is of type \textbf{FP}. Clearly,
If the \(n \)-skeleton of \(K(G, 1) \) has finitely many cells, group \(G \) is of type \(F_n \):

\[
F_1 = \text{finitely generated groups},
F_2 = \text{finitely presented groups}.
\]

If \(K(G, 1) \) has finitely many cells, group \(G \) is of type \(F \).

If \(X = K(G, 1) \), \(G \) acts cellularly on \(\tilde{X} \) and we have a long exact sequence

\[
\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0
\]

consisting of free \(\mathbb{Z}G \)-modules. This leads to a definition:

A group \(G \) is of type \(\text{FP}_n \) if the trivial \(\mathbb{Z}G \)-module \(\mathbb{Z} \) has a projective resolution which is \textit{finitely generated} in dimensions 0 to \(n \):

\[
\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0
\]

If, in addition, all \(P_i = 0 \) for \(i > N \), for some \(N \), group \(G \) is of type \(\text{FP} \).

Clearly,

\[
FP_n \supset FP_{n+1} \quad \text{and} \quad F_n \supset F_{n+1}.
\]

\[
FP_n \supset F_n, \quad \text{and} \quad FP \supset F.
\]
Question 1: Are these inclusions strict?
Answer: Yes.
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,

Question 2: How many groups are there of type FP_2?

Answer 1: Up to isomorphism: $2^\mathbb{N}$ (I.Leary’15)

Answer 2: Up to quasiisometry: $2^\mathbb{N}$ (R.Kropholler–I.Leary–S.’17)
Question 1: Are these inclusions strict?
Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Question 2: How many groups are there of type FP_2?

Answer 1: Up to isomorphism: 2^{\aleph_0} (I.Leary’15)

Answer 2: Up to quasiisometry: 2^{\aleph_0} (R.Kropholler–I.Leary–S.’17)
Question 1: Are these inclusions strict?
Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:

- L is $(n - 1)$–connected $\iff BB_L$ is of type F_n,
- L is $(n - 1)$–acyclic $\iff BB_L$ is of type FP_n.
Question 1: Are these inclusions strict?
Answer: Yes.
- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:
- L is $(n-1)$–connected $\iff BB_L$ is of type F_n,
- L is $(n-1)$–acyclic $\iff BB_L$ is of type FP_n.

L is octahedron: $\pi_1(L) = 1, \pi_2(L) \neq 0$, \implies Stallings’s example.
L is n–dimensional octahedron (orthoplex) \implies Bieri’s example.
L has $\pi_1(L) \neq 1$, but $H_1(L) = 0$ $\implies BB_L$ of type $FP_2 \setminus F_2$.
Question 1: Are these inclusions strict?
Answer: Yes.
- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:

- L is $(n - 1)$–connected \iff BB_L is of type F_n,
- L is $(n - 1)$–acyclic \iff BB_L is of type FP_n.

L is octahedron: $\pi_1(L) = 1$, $\pi_2(L) \neq 0$, \implies Stallings’s example.
L is n–dimensional octahedron (orthoplex) \implies Bieri’s example.
L has $\pi_1(L) \neq 1$, but $H_1(L) = 0$ \implies BB_L of type $FP_2 \setminus F_2$.

Question 2: How many groups are there of type FP_2?

Answer 1: Up to isomorphism: 2^{\aleph_0} (I.Leary’15)

Answer 2: Up to quasiisometry: 2^{\aleph_0} (R.Kropholler–I.Leary–S.’17)
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- **Generators:** directed edges of L, the opposite edge to a being a^{-1}.
- **Triangle relations:** For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- **Long cycle relations:** For each $n \in S \setminus \{0\}$ and each $(a_1, \ldots, a_l) \in \Gamma$, a relation: $a_1 a_2 \ldots a_l = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1}.
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_l) \in \Gamma$, a relation: $a_1^n a_2^n \cdots a_l^n = 1$.

Theorem (I.J. Leary) If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- **Generators:** directed edges of L, the opposite edge to a being a^{-1}.
- **(Triangle relations)** For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- **(Long cycle relations)** For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_l) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_l^n = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1}.
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_l) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_l^n = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?
Take the famous Higman’s group:

\[H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle. \]

Let \(K \) be its presentation complex. It is aspherical and acyclic. Take \(L \) to be the 2nd barycentric subdivision of \(K \). Then \(L \) is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

\[G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle. \]
Take the famous Higman’s group:

\[H = \langle a, b, c, d \mid a^b = a^2, \ b^c = b^2, \ c^d = c^2, \ d^a = d^2 \rangle. \]

Let \(K \) be its presentation complex. It is aspherical and acyclic. Take \(L \) to be the 2nd barycentric subdivision of \(K \). Then \(L \) is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

\[G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators}, \ 1 \text{ long relator } \forall n \in S \rangle. \]

Theorem (R.Kropholler–Leary–S.)

Groups \(G_L(S) \) *form* \(2^{\aleph_0} \) *classes up to quasiisometry.*
Take the famous Higman’s group:

\[H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle. \]

Let \(K \) be its presentation complex. It is aspherical and acyclic. Take \(L \) to be the 2nd barycentric subdivision of \(K \). Then \(L \) is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

\[G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle. \]

Theorem (R.Kropholler–Leary–S.)

Groups \(G_L(S) \) form \(2^{\aleph_0} \) classes up to quasiisometry.

Recall that groups \(G_1, G_2 \) are **quasiisometric** (qi), if their Cayley graphs are qi as metric spaces, i.e. there exists \(f : Cay(G_1, d_1) \to Cay(G_2, d_2) \), and \(A \geq 1, B \geq 0, C \geq 0 \) such that for all \(x, y \in Cay(G_1) \):

\[
\frac{1}{A} d_1(x, y) - B \leq d_2(f(x), f(y)) \leq Ad_1(x, y) + B,
\]

and for all \(z \in Cay(G_2) \) there exists \(x \in Cay(G_1) \) such that \(d_2(z, f(x)) \leq C \).
How to distinguish groups up to qi?

Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops.
How to distinguish groups up to qi?

Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops.

Let $TL(G)$ denote the spectrum of lengths of taut loops in the Cayley graph of a group G. Bowditch proves that if groups G_1 and G_2 are qi, then there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.
How to distinguish groups up to qi?

Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops.

Let $TL(G)$ denote the spectrum of lengths of taut loops in the Cayley graph of a group G. Bowditch proves that if groups G_1 and G_2 are qi, then there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.

Goal: to engineer groups with taut loops spectra “wildly interspersed” in \mathbb{N}, this will make the linear relation above impossible.
How to distinguish groups up to qi?

Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops.

Let $TL(G)$ denote the spectrum of lengths of taut loops in the Cayley graph of a group G. Bowditch proves that if groups G_1 and G_2 are qi, then there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.

Goal: to engineer groups with taut loops spectra “wildly interspersed” in \mathbb{N}, this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.
How to distinguish groups up to qi?

Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops.

Let $TL(G)$ denote the spectrum of lengths of taut loops in the Cayley graph of a group G. Bowditch proves that if groups G_1 and G_2 are qi, then there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.

Goal: to engineer groups with taut loops spectra “wildly interspersed” in \mathbb{N}, this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

In our case, groups $G_L(S)$ do not have the property of small cancellation, so instead we use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra. This information, and the freedom to choose arbitrary subsets $S \subset \mathbb{Z}$ for groups $G_L(S)$ allow us to construct continuously many qi classes of these groups.

Thank you!