
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

6-2006

Interacting with Web Hierarchies
Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Naren Ramakrishnan
Virginia Polytechnic Institute and State University

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

Part of the Databases and Information Systems Commons, Graphics and Human Computer
Interfaces Commons, Numerical Analysis and Scientific Computing Commons, OS and Networks
Commons, Other Computer Sciences Commons, Systems Architecture Commons, and the Theory
and Algorithms Commons

This Article is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Perugini, Saverio and Ramakrishnan, Naren, "Interacting with Web Hierarchies" (2006). Computer Science Faculty Publications. 24.
https://ecommons.udayton.edu/cps_fac_pub/24

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub/24?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

Interacting with Web Hierarchies

Saverio Perugini† and Naren Ramakrishnan‡

†Department of Computer Science, University of Dayton, OH 45469–2160
E-mail: saverio@udayton.edu Tel: (937) 229–4079 Fax: (937) 229–4000

‡Department of Computer Science, Virginia Tech, VA 24061–0106
E-mail: naren@cs.vt.edu Tel: (540) 231–8451 Fax: (540) 231–6075

June 23, 2006

Abstract

What makes one hierarchical website easier to interact withthan another? Why are some interface
designs frustrating for certain information-seeking tasks? How can we realize flexible, adaptive, and
responsive dialogs in user-website interactions? In this article, we survey some of the emerging designs
for hierarchical websites and present vocabulary for thinking about faceted website design.

Introduction

Hierarchies are ubiquitous on the web, from store catalogs,to news services, to community classifieds.
They are one of the most natural ways to organize, present, and navigate online information and, yet, can
be a major source for frustration when the hierarchy does notmirror our mental conception of information
seeking. As a result, interface designers have developed many variants of the traditional drill-down motif,
all of which aim to get the user to their information of interest quicker.

In this article, we survey some desired features of interaction with web hierarchies1, in particular support
for flexible navigation orders, for exposing and exploring dependencies, and for procedural information-
seeking tasks. We also present several (adaptive) interface designs which support these features. Rather
than advocate the superiority of specific interfaces, our goal here is to present vocabulary for thinking about
hierarchical sites. The effective realization of the designs presented here will depend not only on the nature
of information-finding tasks to be supported but also on the type of content being delivered through the site.

Desired Features for Interacting with Hierarchies

Flexible Navigation Orders

The flexible navigation ordersfeature means that inputs can arrive in any (user-specified)order. To help
illustrate this feature, consider a user visiting an onlinecar shopping site, such as autotrader.com:

Scenario 1:
“I am here to buy a car. The most important criteria for me are price, safety rating, and color,
in that order. What’s available?”

To conduct such a search online, the user will find helpful a hierarchy organized by price at the top-level,
safety rating at the next, and color subsequently. We say that such a hierarchy dictates atotal order over
automobile facets, since the price must be specified before safety rating, which must be done before color.
However, the user would be hard pressed to find such a classification; most automobile sites we surveyed
organize their inventory alongside more traditional facets such as make, model, and year. In the absence of
a suitable totally-ordered hierarchy, this user would benefit from an interface whichenumeratesall possible
navigation orders or an ability togeneratetheir own (totally-ordered) classification tree for automobiles.

Enumerated vs. Generative Interface Designs

Enumerative interfaces support flexible navigation ordersby exposingall of the individualchoicesfor un-
specified facets at every level [6] and are exemplified in Epicurious.com. For instance, in Fig. 1 (left) all
of the individual choices for each of the classification’s facets (e.g., main ingredient, cuisine, preparation
method, season/occasion, and so on) are enumerated. From Fig. 1 (left) the user selects ‘bake’ (a prepa-
ration method) and thus a choice for preparation method is unavailable in Fig. 1 (right). We can think of
enumerated interfaces as multiple totally-ordered hierarchies, one for each for then! possible navigation
orders, wheren is the number of facets considered in the classification. So as to not overwhelm the user
with all such orders, some sites, such as Kelley Blue Book online at kbb.com, present a choice of only a few
facets at each level, yielding a partially enumerated hyperlink structure.

1We use the termhierarchy in a broad sense here, namely a multi-attributed classification, not necessarily a tree-structured
organization.

2

→

Figure 1: An enumerative interface: the recipe classification at epicurious.com.

There are alternate enumerative interfaces designs for hierarchies. For instance, pull-downs menus, such
as those used for browsing digital cameras and camcorders atsonystyle.com (see Fig. 4), are enumerative,
but hide the enumerated choices behind UI components. Otherinterfaces, e.g., that for AppleiTunes, present
all facets and choices on a single page, typically in tabularform, and explicitly relay back how attribute
values are pruned during an interaction. In a sense, these interfaces are enumerative but by supporting
browsing informationwithin a page, the illusion of traveling through hyperspace is lost. As the number of
classification facets increases (automobiles can have>20 individual attributes) such interfaces can become
cluttered, raising issues of screen real estate. We shall have more to say about pull-down menu and table-
based interfaces in the following section.

In contrast to enumerative interfaces, generative interfaces support the construction of a totally-ordered
hierarchy for subsequent browsing. Fig. 2 illustrates how such an interface might work. Here, the site
requests a navigation order first and subsequently generates a totally-ordered hierarchy conforming to it.
Such order specification can be donea priori (as in Fig. 2) or incrementally, depending on the task to be
supported. Consider, for example, the following slightly different information-seeking scenario:

Scenario 2:
“I am here to buy a car. I’m only interested in fuel-efficient cars — those that yield greater than
40 miles per gallon — and would like to begin my search from there.”

An interface to support such a task might permit the user to specify the navigational order of the classifi-
cation’s facetson-the-fly. Such an interface meshes browsing the hierarchy with specifying its navigation
order and has been described metaphorically as ‘[laying] down new track to suggest useful directions to go
based on where we have been so far and what we are trying to do’ [5]. A generative approach is reactive
to the user’s directives and organizes subsequent pages so as to reconcile what is left of the hierarchy with
what the user desires to do next. See [3] for a discussion of other elements of a generative approach.

An alternate interface for supporting scenarios such as those in this section is an out-of-turn interface,
introduced and described in [10] (see Fig. 3). Anout-of-turn (OOT) interface lies somewhere between an
enumerative and generative interface. Unlike interfaces based on facets, pull-down menus, or a table, it does
not enumerate all of the individual choices at each level. Unlike a generative interface, it doesnot permit
the user tobrowsein any order. An OOT interface simply empowers the user to supply a (out-of-turn)
value for a facet or facets alternate to that solicited on thecurrent webpage when the user does not like the

3

↓

→

↑

Figure 2: Use of a generative interface to supportScenario 1. (top left) First, the user specifies that she
desires to browse the automobiles by price, safety rating, and color, in that order. A totally-ordered classifi-
cation is then generated and the user progressively clicks on hyperlinks labeled ‘$20,000–$24,999’ (bottom
left), ‘excellent’ (bottom right), and ‘white’ (top right)to retrieve a page listing cars with these features or
presenting additional facets of classification, e.g., makeand model.

4

→

Figure 3: Use of an out-of-turn interface in a voice-enabledbrowser. (left) The user decides to not pursue any
of the presented hyperlinks and instead speaks ‘40–44 mpg’ out-of-turn. (right) Processing the out-of-turn
input results in a reduced set of choices, because some makers do not fit the mileage specification.

current organization. We can permit the user to supply inputout-of-turn by speaking to the browser through
a voice interface (see Fig. 3) [8]. Alternatively, we can support OOT interaction using a toolbar embedded
into the browser (see Fig. 5) [10]. Since an OOT interface does not enumerate all facets of classification at
any level, it is important to provide users withmeta-inquiry capabilities to inquire which attributes are left
unspecified. However, observe that out-of-turn interaction does not imply free form input, only the ability
to communicate input that is normally solicited further into the interaction.

Observe that the nature of content presented in a hierarchy affects which interface designs may be used
to interact with it. Some content is inherentlyfacetedmeaning that when presented in a hierarchy, each
level corresponds to a facet of information assessment; main ingredient, cuisine, and preparation method
in epicurious.com or make, model, and year in kbb.com. On theother hand, large directories of links to
websites, such as Yahoo! and the Open Directory Project (ODP) at dmoz.org, presentunfacetedcontent,
where there is not a one-to-one correspondence between hierarchy levels and facets. For example, the top-
level of ODP presents hyperlinks labeled ‘Arts,’ ‘Music,’ and ‘Sports’ which correspond to nothing more
specific than a topic. Since there is no concept of a facet, flexible interaction with these structures is typically
achieved using purely navigational links. For instance, ODP offers shortcuts (links whose target is a page
deeper in the hierarchy), backlinks (to pages at levels higher than the current), and multiclassification links
(which bridge otherwise unconnected, but seemingly related, topics) to allow users to circumvent the rigid

5

nature of the site’s static navigation structure. Notice that, with the exception of an OOT interface, none
of the interfaces described here can be used to interact withan unfaceted hierarchy. (In order to construct
an enumerated interface, the designer must enumerate all possible orderings of facets, again, requiring their
existence. Similarly, to use a generative interface, the user must be able to specify an ordering of facets, thus
requiring their existence.)

In summary, some interfaces force the user to supply values for facets in an order completely prede-
termined by the hierarchy. Other interfaces, e.g., an out-of-turn interface or an exhaustively enumerated
interface, give the usercarte blancheto communicate inputs in any order they see fit. Still other sites, such
as Project Vote-Smart (vote-smart.org), provide a combination of the two, either enforcing order at the be-
ginning of the interaction and permitting flexibility at theend, or vice versa, or mixing and matching both
to create novel interaction experiences. We must also realize that sometimes it is desirable or necessary to
design for retaining at least partial control over input order. For example, several sites, such as those for
weather reports, require a zip code from the start to even begin interaction with the user.

Exposing and Exploring Dependencies

Let us now turn to a different consideration when designing interfaces to hierarchies. In a given website,
there are likely to be several dependencies between individual selections and it is desirable to expose these
relationships to site visitors. At a basic level, progressive drilling down and retracing paths does indeed
expose such relationships (e.g., upon clicking a model choice for car, the user might notice that the model
does not meet his mileage requirement, so he backtracks and tries other selections). Obviously, we wish to
do better, without back-and-forth interactions on the partof the user.

To illustrate what we are alluding to, refer again to Fig. 3. Here when the user says ‘40-44 mpg,’ choices
such as Acura are removed, since these cars do not meet the mileage specification. Such hyperlink pruning
on the current page provides immediate visual feedback about dependencies. Theexposing and exploring
dependenciesfeature means that the interface obeys or exploits the dependencies implicit in the hierarchy
and provides facilities to help expose them to users. Such web functional dependencies range from the
simple ‘every Civic is a Honda’ tautologies to less salient,but more interesting, relationships such as ‘all
cars with a safety rating of 3.5 or higher achieve<20 mpg on average’ or ‘the Honda Civic Hybrid doesn’t
come in the color red.’

We can obtain such web functional dependencies from either domain knowledge or a data-driven anal-
ysis of the hierarchy (e.g., we can reason that sincenoneof the paths through the classification containing
hyperlinks labeled ‘Honda’ and ‘Civic Hybrid’ contain a hyperlink labeled ‘red’, the dependency mentioned
above must hold). Techniques from association-rule mining[1] are relevant here. We can summarize func-
tional dependencies by using ‘→’ to denote ‘implies’ and a¬ to denote ‘negation.’ For instance, ‘Honda
→ ¬ Toyota’, ‘Civic → Honda’, ‘{safety rating> 3.5} → {<20 mpg}’, and ‘{Honda, Civic Hybrid} → ¬
red’.

Reactive Menus and Query Expansion Interfaces

Some commercial websites now explicitly recognize that dependencies are ubiquitous in hierarchies and
provide facilities to exploit them. For example, the Kelly Blue Book has a search for make by model name
which invokes web functional dependencies of the formmodel→ makewhich help lead the user to a desired
automobile. Another simple method exposing dependencies to users, which is an extension of the exposure
implicit in the hyperlink pruning via out-of-turn interaction mentioned above, is through the reduction of

6

→

Figure 4: TheSony Advisorreactive menu for exposing and exploring dependencies. (left) From the start
there are 14 digital cameras available and the user checks the box specifying cameras with a resolution
over 9 megapixels (MP). (right) Only one camera meets the criterion – the DSC–R1 model. Through this
interaction the site reveals the ‘9MP→ DSC–R1’ dependency to the user, as well as several others such as
‘9MP → ¬ DSC–T9.’

→

Figure 5: Use of a real-time query expansion interface (see toolbar at top of browser) to pursue the
information-seeking goal ofScenario 3. (left) User types ‘diese’ out-of-turn (when site is soliciting for
car model/make). (right) As soon as the user enters the ‘l’, thereby completing the specification of the term
‘diesel,’ the query is automatically expanded (in real-time) to ‘diesel manual.’ This indicates that a query for
‘diesel’ and a query for ‘diesel manual’ have the same results or, in other words, ‘cars with diesel engines
only come with a manual transmission’ and hence there are no automatic diesel vehicles in this site.

7

options available in pull-down menu designs. For instance,the Sony Advisorreactive menu (see Fig. 4)
available through sonystyle.com (mentioned earlier in thesection on flexible navigation orders) updates a
set of products, such as digital cameras and camcorders, as users add and remove options, such as picture
resolution, from those products. The automatic addition and deletion of products from the current set (right
side of either window in Fig. 4) based on the status of the the pull-down checkboxes for each facet (left
side of either window in Fig. 4) exposes the dependencies underlying the products Sony offers and allows
shoppers to naturally explore the interplay of features in the available models. Wine.com has a similar
interface for exploring dependencies while browsing wines.

We can also expose these dependencies through query expansion. For example, when the user says
‘safety rating> 3.5’ (when, e.g., the site solicits for car make), we can expand this query to ‘safety rating
> 3.5,<20 mpg’ becauseall cars with a safety rating greater than 3.5 also yield<20 mpg. Such automatic
query expansion, when conducted in real-time, provides immediate feedback to the user.

Consider the following information-seeking scenario to help illustrate the use of real-time query expan-
sion:

Scenario 3:
“I am interested in buying a car that runs on diesel fuel, but I’ve heard that diesel engines
are usually only available for cars with a manual transmission. However, I want an automatic
transmission. Are any diesel cars equipped with an automatic transmission?”

Such a scenario can be easily supported if we know whether the‘diesel → manual’ dependency holds.
Fig. 5 illustrates how a user might employ a real-time query expansion interface to an automobile hierarchy
to approach this scenario.

Notice that real-time query expansion isuser-independent; the expansion is the same forall users and
only depends on the co-occurrence of terms on the paths through the hierarchy. Prior queries have no
bearing on the expansion. Additional (expansion) terms areadded to the queryonly when the compos-
ite query yields thesameresult as the unexpanded query. Interfaces using a similar style of real-time
query expansion for information exploration and discoveryare emerging on the web. SeeGoogle Suggests
(http://www.google.com/webhp?complete=1&hl=en) or Stanford’s auto-completeSearch on TAP(http://
sp06.stanford.edu) for examples.

It is important to note that the complete set of dependenciessatisfied by a classification change as the
user interacts with it. For instance, consider the user who clicks on ‘Lexus’ (car make) at the top-level
of an automobile classification. This interaction eliminates the ‘Lexus→ ¬ BMW’ dependency and may
cause the ‘coupe→ sunroof’ dependency to emerge. This latter dependency indicates that all Lexus coupes
have a sunroof and would likelynot exist in the siteprior to the selection of ‘Lexus,’ unlessall coupes
from all car makes have a sunroof (unlikely). By revealing the (all ornothing) dependencies underlying the
(automobile) facets of a hierarchical classification, real-time expansion can be used to help a user understand
the constraints underlying a domain.

In summary, there are multiple levels of dependency exploration. Drilling-down a hierarchy via out-
of-turn interaction (typically) causes the available choices for all facets to be pruned. However, since this
design only presents one facet per page, the user is only ableto observe how her input affected the set of
choices for the current facet. Manipulating reactive menusalso causes the choices for all facets to be pruned.
However, unlike an out-of-turn interface, here the user is able to observe the pruning in all facets due to the
enumerative style of the interface. We can reveal more dependencies by adding real-time query expansion
to an out-of-turn interface.

8

↓ ↑

→

Figure 6: Table-based continuation interface. The two screens on the left illustrate one line of inquiry,
yielding a result which is then cascaded into another line ofinquiry (right two screens).

9

Support for Procedural Tasks

The interactions we have described until now entail drilling down a classification and thereby reducing the
size of the hierarchy and the number of items (e.g., cars) remaining. We say that such interactions are
destructiveand involve only one line of inquiry (or control flow). However, strategies for tackling some
information-finding tasks are constructive orprocedural [2] in nature, and require cascading information
across multiple sub-goals. For instance, consider the following scenario:

Scenario 4:
“I’m interested in a Lexus. I want one whose fuel efficiency iscomparable to the Toyota Camry.”

This scenario involves two sub-goals. First, the user must find the fuel efficiency of the Toyota Camry
and, then, use that information to find a particular Lexus. With a faceted or table-based interface, the user
would need to manually remember the information retrieved in the first sub-goal, start over with the fully
populated instance of the table, and supply the retrieved information to satisfy the second sub-goal. This
process is only exacerbated as the number of sub-goals increase. Interfaces with thesupport for procedural
tasksfeature provide a facility for the user to naturally aggregate retrieved information into a new line of
inquiry without having to remember any intermediate result(s) or start over.

Continuation-based Interface Designs

One way for the user to cascade information from one sub-goalonto another is through what we call auser-
initiated continuation, borrowing its name and motif from the concept of acontinuation[11] in programming
languages. A continuation indicates a ‘promise to do something’ and summarizes the amount of work
remaining at a point of execution in a program. To cascade theoutput of one information-finding goal to the
input of another, we essentially replace the current prunedhierarchy (i.e., the current continuation) with a
fresh copy of the original hierarchy that has been pruneda priori with respect to the information retrieved
in the previous sub-goal. This process provides a smooth transition between sub-goals for the user.

Fig. 6 illustrates how a user might approach scenario 4 usinga table-based continuation interface design.
The user first supplies the information shedoeshave, namely (model), by clicking on ‘Camry’ in the list
labeled ‘Model’ (Fig. 6, top left). This cause several choices to be pruned out of each of the lists and reveals
an MPG of 30–34 (Fig. 6, bottom left). In order to supply this retrieved information in a new line of inquiry
to a fully-populated instance of the table, the user checks the box labeled ‘MPG’ (now that only one item
remains) and clicks the ‘Dialog continuation’ Submit button (Fig. 6, bottom left). This results in an instance
of the table containing only the makes, models, and years of automobiles which get 30–34 MPG (Fig. 6,
bottom right). Now the user clicks on ‘Lexus’ (Fig. 6, bottomright) to find the information (i.e., model of
Lexus) in which she is ultimately interested. This reveals that the Lexus with fuel efficiency comparable
to the Toyota Camry is the ES 330 (Fig. 6, top right). Notice that the continuation facility allows the user
to both abandon a given line of conversation (since the requisite information has been obtained) and find
herself in the middle of another line of inquiry. Proceduralinformation-seeking and information aggregation
is relevant in a variety of tasks, especially ‘informationre-finding,’ the process of pursuing some information
which you have already found [7] in the past and would like to find again.

Notice that the continuation feature is not an isolated option. It can be added to a variety of interface
designs. However, the continuation feature is not relevantin a generative design. Recall that a generative
interface is used to create a hierarchy tailored to the needsof a user and not to directly solve an information-
seeking task, procedural or otherwise. We can, however, addthe continuation feature to the hierarchy
resulting from interaction with a generative interface.

10

Sony’s Advisor

vanilla hierarchy OOT interface

generative interface

OOT interface + real−time query expansion + continuation

OOT interface + continuation

enumerative interface + continuation

Epicurious.com

Apple iTunes

kbb.com

rigidunexposed

Wine.com

procedural tasks

dependencies

exposed OOT interface + real−time query expansion

navigation orders

flexible

unsupported

supported

Figure 7: The three dimensional space of interfaces to hierarchical websites induced by the features dis-
cussed in this article.

Procedural tasks are common in solving complex constraint satisfaction problems. For example, con-
sider a tourist planning a trip to Europe where the tourist must not only develop a carefully staged schedule
of events (e.g., the train arrives in London at 3:00p, rentalcar will be available at 3:30p, and hotel check-in
is at 4:00p), but also satisfy constraints in the process (e.g., Le Louvreis closed on Sundays). The ability to
automatically cascade output from one information-seeking process into another as illustrated above is an
important ingredient for supporting such activities.

Discussion

The above features offer a sneak peek into the variety of offerings available to improvise on the vanilla
hierarchy. We saw that we can achieveflexible navigation ordersthrough i) an enumerative (faceted, e.g.,
epicurious.com; table-based, e.g.,iTunes; or pull-down menus, e.g., sonystyle.com) interface, ii) an (a priori
or on-the-fly) generative interface, or iii) an out-of-turninterface. Note that the use of enumeration and the
capability to supply input out-of-turn are mutually exclusive in an interface. If all possible choices, for
all possible unspecified facets, are enumerated on the current webpage, then there is no need to interact
out-of-turn. Similarly, the use of enumeration and generation are mutually exclusive. We demonstrated that
exposing and exploring dependenciescomes for free through the pruning of choices for facets in enumerative
and OOT designs. However, an enumerative design reveals more dependencies at once since it presents all
choices for all (unspecified) facets on one page. Thus, we canaugment an OOT interface with real-time
query expansion to make more dependencies salient. We also illustrated that we can achievesupport for
procedural tasksby adding a continuation facility to any interface presented here, save for a generative
design.

These three features induce a three-dimensional space of possible interfaces supporting (combinations
of) them. Fig. 7 situates the interface designs presented here in this space. Notice that while there are 8 (=

11

2
3) combinations of these three features, corresponding to the 8 corners of the cube, two of them are not

meaningful and, therefore, two corners of the cube in Fig. 7 contain no examples. Specifically, there are no
points at (rigid navigation orders, unexposed dependencies, supported procedural tasks) or (rigid navigation
orders, exposed dependencies, supported procedural tasks). The reader may also note that if you want to
expose dependencies in an interface, you must also have flexible navigation orders, but the reverse is not so.

Choice of implementation technologies is another important dimension which must be considered in
developing interfaces to information hierarchies. Here, we can distinguish between the amount of sophis-
tication built into the interface versus the back-end (databases, dynamic webpage generation capabilities).
If we view the user-site dialog as one of communicating inputs and receiving webpages in return, then we
must assess how input is captured and represented, where pages are transformed, who is responsible for
maintaining the state of the interaction.

If no out-of-turn input is to be supported, designs using hyperlinks or pull-down menus can be realized
at the browser level (with static pages possibly augmented with runnable JavaScript code) without requiring
costly lookup, mapping, or transformation operations. Out-of-turn input, on the other hand, requires some
facility to map the user’s unresponsive inputs to hyperlinklabels (tags) and, more importantly, to transform
the site to accommodate the out-of-turn input. The former istypically supported using XUL (XML User-
interface Language; xulplanet.com) for a toolbar or using SALT (Speech Application Language Tags) and
X+V (XHTML+Voice) for voice interaction. The latter is typically done via XSLT running on the server.

New web technologies such as AJAX (Asynchronous JavaScriptand XML) [9] provide support for
more effective communication between front- and back-end components. AJAX is particularly helpful for
handling anyasynchronouscommunication with the user required for rich and responsive web interaction.
For this reason AJAX is ideal for implementing real-time query expansion and other within-page designs
like those used in table-based interfaces. For instance, AJAX facilities are crucial to the draggable maps in
Google Mapsat maps.google.com. Moreover, we can use AJAX to develop themapping module described
above while minimizing browser–server communication. Also, toolkits such as thePLT Scheme servlet API
(see www.plt-scheme.org), which is based on first-class closures and continuations [4], provide a sound
approach for realizingstatefulweb interactions, especially those required for the continuation facility de-
scribed here.

New designs will undoubtedly emerge as we have greater understanding of users’ goals and objectives.
For instance, in order to support ‘what if’ analysis we need to provide additional operations such as union
and intersection over intermediate results (that might be stored in a scratch-pad akin to the online ‘shop-
ping cart’). Another practical interaction feature permits the user to preview a page prior to clicking on the
link/button which retrieves it. Such a ‘I just want to see what is behind the current page’ capability is impor-
tant in scenarios where the user is unsure, e.g., if clicking‘Submit’ is going to charge their credit card! Such
novel features will provide the next generation of interface options to support compelling functionalities in
web hierarchies.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules between Sets of Items in Large
Databases. InProceedings of the ACM International Conference on Management of Data (SIGMOD),
pages 207–216, Washington, DC, May 1993. ACM Press.

[2] S. K. Bhavnani, C. K. Bichakjian, T. M. Johnson, R. J. Little, F. A. Peck, J. L. Schwartz, and V. J.
Strecher. Strategy Hubs: Next-Generation Domain Portals with Search Procedures. InProceedings

12

of the ACM Conference on Human Factors in Computing Systems (CHI’03), pages 393–400, Fort
Lauderdale, FL, April 2003. ACM Press.

[3] B. De Carolis. Generating Mixed-Initiative Hypertexts: a Reactive Approach. InProceedings of the
Fourth International Conference on Intelligent User Interfaces (IUI), pages 71–78, Los Angeles, CA,
1999. ACM Press.

[4] D. P. Friedman, M. Wand, and C. T. Haynes.Essentials of Programming Languages. MIT Press,
Second edition, 2001.

[5] M. A. Hearst. Next Generation Web Search: Setting Our Sites. IEEE Data Engineering Bulletin, Vol.
23(3):pp. 38–48, September 2000.

[6] M. A. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Yee. Finding the Flow in Web
Site Search.Communications of the ACM, Vol. 45(9):pp. 42–49, September 2002.

[7] W. Jones, H. Bruce, and S. Dumais. Keeping Found Things Found on the Web. InProceedings of
the Tenth ACM International Conference on Information and Knowledge Management (CIKM), pages
119–126, Atlanta, GA, November 2001. ACM Press.

[8] M. Narayan, C. Williams, S. Perugini, and N. Ramakrishnan. Staging Transformations for Multimodal
Web Interaction Management. InProceedings of the Thirteenth ACM International World WideWeb
Conference (WWW), pages 212–223, New York, NY, May 2004. ACM Press.

[9] L. D. Paulson. Building Rich Web Applications with Ajax.IEEE Computer, Vol. 38(10):pp. 14–17,
2005.

[10] S. Perugini and N. Ramakrishnan. Personalizing Web Sites with Mixed-Initiative Interaction.IEEE IT
Professional, Vol. 5(2):pp. 9–15, March–April 2003.

[11] D. Quan, D. Huynh, D. R. Karger, and R. Miller. User Interface Continuations. InProceedings of the
Sixteenth Annual ACM Symposium on User Interface Software and Technology (UIST), pages 145–148,
Vancouver, Canada, November 2003. ACM Press.

13

	University of Dayton
	eCommons
	6-2006

	Interacting with Web Hierarchies
	Saverio Perugini
	Naren Ramakrishnan
	eCommons Citation

	interfaces.dvi

