Topologically Homogeneous Continua, Isometrically Homogeneous Continua, and the Pseudo-Arc

Janusz Prajs

California State University, Sacramento, prajs@csus.edu

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the Geometry and Topology Commons, and the Special Functions Commons

This Semi-plenary Lecture is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Topologically Homogeneous Continua, Isometrically Homogeneous continua, and the Pseudo-arc

Janusz R. Prajs

Department of Mathematics and Statistics
California State University, Sacramento
University of Opole, Poland

32nd Summer Conference on Topology and Its Applications
University of Dayton, OH
We use accumulated knowledge on topologically homogeneous continua, and in particular on the pseudo-arc, to investigate the properties of isometrically homogeneous continua.
This talk is a review of six results. There is an entire story behind each of these results. For each result, telling the story and only sketching the proof would fill out entire talk. I make no effort to do that.
This talk is a review of six results. There is an entire story behind each of these results. For each result, telling the story and only sketching the proof would fill out the entire talk. I make no effort to do that.

This talk is addressed to non-specialists. I hope they will have a chance to see something about the nature of the presented investigation.

Major concepts are reduced to definitions.

Major results, which took effort of numerous authors over decades, are reduced to single statements.

I do not sketch the proofs. But I can answer some questions regarding the proofs.
(Sierpiński, 1920)

A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \rightarrow X$ with $h(x) = y$. Many important spaces in topology and its applications are homogeneous: the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers, the Cantor set, the pseudo-arc, manifolds [connected, without boundary], the Hilbert cube and Hilbert cube manifolds, the Menger curve and Menger manifolds, the underlying topological spaces of topological groups. Homogeneous spaces are within the focus of the study in topology and mathematics.
A space X is called topologically homogeneous provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n,
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers,
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers,
A space X is called topologically homogeneous provided for every $x, y \in X$ there is a homeomorphism $h : X \rightarrow X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers, the Cantor set,
A space X is called topologically homogeneous provided for every $x, y \in X$ there is a homeomorphism $h : X \rightarrow X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers, the Cantor set, the pseudo-arc,
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers, the Cantor set, the pseudo-arc, manifolds [connected, without boundary],
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \rightarrow X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

- the real line \mathbb{R} and n-spaces \mathbb{R}^n,
- rational numbers, irrational numbers,
- the Cantor set, the pseudo-arc,
- manifolds [connected, without boundary],
- the Hilbert cube and Hilbert cube manifolds,
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

the real line \mathbb{R} and n-spaces \mathbb{R}^n, rational numbers, irrational numbers, the Cantor set, the pseudo-arc, manifolds [connected, without boundary], the Hilbert cube and Hilbert cube manifolds, the Menger curve and Menger manifolds,
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \rightarrow X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

- the real line \mathbb{R} and n-spaces \mathbb{R}^n,
- rational numbers, irrational numbers,
- the Cantor set, the pseudo-arc, manifolds [connected, without boundary],
- the Hilbert cube and Hilbert cube manifolds,
- the Menger curve and Menger manifolds,
- the underlying topological spaces of topological groups.
A space X is called **topologically homogeneous** provided for every $x, y \in X$ there is a homeomorphism $h : X \to X$ with $h(x) = y$.

Many important spaces in topology and its applications are homogeneous:

- the real line \mathbb{R} and n-spaces \mathbb{R}^n,
- rational numbers, irrational numbers,
- the Cantor set, the pseudo-arc,
- manifolds [connected, without boundary],
- the Hilbert cube and Hilbert cube manifolds,
- the Menger curve and Menger manifolds,
- the underlying topological spaces of topological groups.

Homogeneous spaces are within the focus of the study in topology and mathematics.
A **continuum** is a non-empty compact metric space. In the talk all spaces are metric.
A **continuum** is a non-empty compact metric space.
In the talk all spaces are metric.
The classifying study of homogeneous compact metric spaces can be reduced to the study of homogeneous continua by the following result.

Theorem (J. T. Rogers, 1980s)
Every homogeneous compact metric space is the product of a homogeneous continuum and either a finite set, or the Cantor set.

Studying homogeneous continua has been my greatest adventure in research in topology.

Janusz R. Prajs
A **continuum** is a non-empty compact metric space. In the talk all spaces are metric. The classifying study of homogeneous compact metric spaces can be reduced to the study of homogeneous continua by the following result.

Theorem (J. T. Rogers, 1980s)

Every homogeneous compact metric space is the product of a homogeneous continuum and either a finite set, or the Cantor set.
A *continuum* is a non-empty compact metric space. In the talk all spaces are metric. The classifying study of homogeneous compact metric spaces can be reduced to the study of homogeneous continua by the following result.

Theorem (J. T. Rogers, 1980s)

Every homogeneous compact metric space is the product of a homogeneous continuum and either a finite set, or the Cantor set.

Studying *homogeneous continua* has been my greatest adventure in research in topology.
Homogeneous continua is an excellent field for further exploration.

- A century of history, many well known authors contributed to this field. Too many names to list here.
Homogeneous continua is an excellent field for further exploration.

- A century of history, many well known authors contributed to this field. Too many names to list here.
- Yet vast and mostly unexplored. Known to be challenging.
Homogeneous continua is an excellent field for further exploration.

- A century of history, many well known authors contributed to this field. Too many names to list here.
- Yet vast and mostly unexplored. Known to be challenging.
- Only recently planar homogeneous continua have finally been classified (the result by Hoehn and Overteegen).
Homogeneous continua is an excellent field for further exploration.

- A century of history, many well known authors contributed to this field. Too many names to list here.
- Yet vast and mostly unexplored. Known to be challenging.
- Only recently planar homogeneous continua have finally been classified (the result by Hoehn and Overteegen).
- A complete classification of homogeneous one-dimensional continua and homogeneous continua in 3-space is a matter of rather distant future.
Homogeneous continua is an excellent field for further exploration.

- A century of history, many well known authors contributed to this field. Too many names to list here.
- Yet vast and mostly unexplored. Known to be challenging.
- Only recently planar homogeneous continua have finally been classified (the result by Hoehn and Overteeegen).
- A complete classification of homogeneous one-dimensional continua and homogeneous continua in 3-space is a matter of rather distant future.

If focusing on manifolds, homogeneous continua may appear a vast and perhaps too large area. To a general topologist, homogeneous continua may be a rather narrow class. The study of these continua is somewhere halfway between these two viewpoints.
Homogeneous continua is an excellent field for further exploration.
Homogeneous continua is an excellent field for further exploration.

- Variety of methods have been used to study homogeneous continua.
Homogeneous continua is an excellent field for further exploration.

- Variety of methods have been used to study homogeneous continua.
- Rich in creativity: new ideas, new methods, new important examples have been found.
Homogeneous continua is an excellent field for further exploration.

- Variety of methods have been used to study homogeneous continua.
- Rich in creativity: new ideas, new methods, new important examples have been found.
- Association with space-time modeling.
Homogeneous continua is an excellent field for further exploration.

- Variety of methods have been used to study homogeneous continua.
- Rich in creativity: new ideas, new methods, new important examples have been found.
- Association with space-time modeling.
- Esthetical motivation.
Homogeneous continua is an excellent field for further exploration.

- Variety of methods have been used to study homogeneous continua.
- Rich in creativity: new ideas, new methods, new important examples have been found.
- Association with space-time modeling.
- Esthetical motivation.
- Still mostly unexplored. There is a lot to discover!
Let K be a continuum.

Definition

A continuum X is K-connected provided for each pair $x, y \in X$ there is a map $f : K \to X$ with $x, y \in f(K)$.

For instance, if K is an arc, K-connected means path connected. If the whole X is a continuous image of K, obviously, X is K-connected. In general, the converse never holds.

Theorem

There is no non-degenerate continuum K such that for every continuum X, the continuum X is K-connected if and only if X is a continuous image of K.

The proof follows the pattern of constructing uncountable collections of path connected continua without common model. (Modified constructions of Waraszkiwicz and Maćkowiak).
Let K be a continuum.

Definition

A continuum X is K-connected provided for each pair $x, y \in X$ there is a map $f : K \rightarrow X$ with $x, y \in f(K)$.

For instance, if K is an arc, K-connected means path connected.
Let K be a continuum.

Definition

A continuum X is *K-connected* provided for each pair $x, y \in X$ there is a map $f : K \rightarrow X$ with $x, y \in f(K)$.

For instance, if K is an arc, *K-connected* means *path connected*. If the whole X is a continuous image of K, obviously, X is *K-connected*.
Let K be a continuum.

Definition

A continuum X is *K-connected* provided for each pair $x, y \in X$ there is a map $f : K \to X$ with $x, y \in f(K)$.

For instance, if K is an arc, *K-connected* means *path connected*. If the whole X is a continuous image of K, obviously, X is K-connected. In general, the converse never holds.
Let K be a continuum.

Definition

A continuum X is K-connected provided for each pair $x, y \in X$ there is a map $f : K \to X$ with $x, y \in f(K)$.

For instance, if K is an arc, K-connected means *path connected*.

If the whole X is a continuous image of K, obviously, X is K-connected.

In general, the converse never holds.

Theorem

There is no non-degenerate continuum K such that for every continuum X, the continuum X is K-connected if and only if X is a continuous image of K.
K-connected Continua and Three Results

Let K be a continuum.

Definition

A continuum X is K-connected provided for each pair $x, y \in X$ there is a map $f : K \to X$ with $x, y \in f(K)$.

For instance, if K is an arc, K-connected means path connected.

If the whole X is a continuous image of K, obviously, X is K-connected.

In general, the converse never holds.

Theorem

There is no non-degenerate continuum K such that for every continuum X, the continuum X is K-connected if and only if X is a continuous image of K.

The proof follows the pattern of constructing uncountable collections of path connected continua without common model. (Modified constructions of Waraszkiewicz and Maćkowiak).
Thus for K-connectedness to imply being a continuous image of K special conditions must hold. We ask specifically:

Question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

Why would one consider such a question? If K is a well-understood and/or relatively simple continuum, a positive answer would provide important structural information on X.

This question has already been considered in the case K is an arc. In this case, being a continuous image of K is equivalent to local connectedness by the Hahn-Mazurkiewicz theorem.

Classic Theorem for Special 'Elite' Homogeneous Continua

If a continuum X admits a topological group structure, then X is locally connected if and only if X is path connected.
A Question

Thus for K-connectedness to imply being a continuous image of K special conditions must hold. We ask specifically:

Question
Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?
A Question

Thus for K-connectedness to imply being a continuous image of K special conditions must hold. We ask specifically:

Question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

Why would one consider such a question?
A Question

Thus for \mathbf{K}-connectedness to imply being a continuous image of \mathbf{K} special conditions must hold. We ask specifically:

Question

Suppose X is a \mathbf{K}-connected homogeneous continuum. Is X necessarily a continuous image of \mathbf{K}?

Why would one consider such a question?

If \mathbf{K} is a well-understood and/or relatively simple continuum, a positive answer would provide important structural information on X.
A Question

Thus for K-connectedness to imply being a continuous image of K special conditions must hold. We ask specifically:

Question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

Why would one consider such a question?

If K is a well-understood and/or relatively simple continuum, a positive answer would provide important structural information on X. This question has already been considered in the case K is an arc. In this case, being a continuous image of K is equivalent to local connectedness by the Hahn-Mazurkiewicz theorem.
Thus for K-connectedness to imply being a continuous image of K special conditions must hold. We ask specifically:

Question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

Why would one consider such a question?

If K is a well-understood and/or relatively simple continuum, a positive answer would provide important structural information on X. This question has already been considered in the case K is an arc. In this case, being a continuous image of K is equivalent to local connectedness by the Hahn-Mazurkiewicz theorem.

Classic Theorem for Special ‘Elite’ Homogeneous Continua

If a continuum X admits a topological group stricture, then X is locally connected if and only if X is path connected.
In this case, our question takes the form of the following question by K. Kuperberg.

Question (K. Kuperberg, 1970s)
Is every homogeneous path connected continuum locally connected? (Or equivalently, is it a continuous image of an arc?)
Result I: The Case K Is an Arc

In this case, our question takes the form of the following question by K. Kuperberg.

Question (K. Kuperberg, 1970s)
Is every homogeneous path connected continuum locally connected? (Or equivalently, is it a continuous image of an arc?)

Theorem (Result I, 2002)
There exist, even in dimension 1, path connected, non-locally connected homogeneous continua.
Result I: The Case K Is an Arc

In this case, our question takes the form of the following question by K. Kuperberg.

Question (K. Kuperberg, 1970s)
Is every homogeneous path connected continuum locally connected? (Or equivalently, is it a continuous image of an arc?)

Theorem (Result I, 2002)
There exist, even in dimension 1, path connected, non-locally connected homogeneous continua.

Thus our question, for K being an arc, has been answered in the negative.
What are other K’s reasonable to consider?
What are other K’s reasonable to consider? To hope for significant results, we postulate that K satisfies the three following conditions:

- The union of two continuous images of K with non-empty intersection is a continuous image of K.
- The product of two continuous images of K is a continuous image of K.
- The continuum K and its continuous images are relatively simple and/or well studied.
What are other K’s reasonable to consider?
To hope for significant results, we postulate that K satisfies the three following conditions:

- The union of two continuous images of K with non-empty intersection is a continuous image of K.
- The product of two continuous images of K is a continuous image of K.
- The continuum K and its continuous images are relatively simple and/or well studied.

All three conditions are satisfied if K is an arc with the class of locally connected continua as continuous images of K.

(Discussion)
The Case \(K \) Is the Cantor Fan

If \(K \) is the Cantor fan, \(K \)-connectedness is equivalent to path connectedness. Continuous images of the Cantor fan have been studied, and they are known as uniformly path connected continua (W. Kupeberg, 1970s), which are the continua admitting a compact collection of paths such that each two points are in the image of at least one path in the collection. All three postulated conditions are satisfied if \(K \) is the Cantor fan.

(Discussion) Janusz R. Prajs

Homogeneous Continua
If K the Cantor fan, K-connectedness is equivalent to path connectedness. Continuous images of the Cantor fan have been studied, and they are known as **uniformly path connected** continua (W. Kupeberg, 1970s), which are the continua admitting a compact collection of paths such that each two points are in the image of at least one path in the collection.
If \(K \) the Cantor fan, \(K \)-connectedness is equivalent to path connectedness. Continuous images of the Cantor fan have been studied, and they are known as \textbf{uniformly path connected} continua (W. Kupeberg, 1970s), which are the continua admitting a compact collection of paths such that each two points are in the image of at least one path in the collection.

All three postulated conditions are satisfied if \(K \) is the Cantor fan.

(Discussion)
Our Question in the Case K Is the Cantor Fan

Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?
Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

in the case K is the Cantor fan, takes the form of the following question by D. P. Bellamy.

Question (D. P. Bellamy, 1980s)

Is every homogeneous path connected continuum uniformly path connected?
Theorem (Result II, 2016)
Every path connected homogeneous continuum is uniformly path connected, that is, it is a continuous image of the Cantor fan.
The Case K Is the Cantor Fan: Solution

Theorem (Result II, 2016)

Every path connected homogeneous continuum is uniformly path connected, that is, it is a continuous image of the Cantor fan.

Thus our question has been answered in the affirmative in the case K is the Cantor fan.

(Pay attention to dates ...)
The Case K Is the Cantor Fan: Solution

Theorem (Result II, 2016)

Every path connected homogeneous continuum is uniformly path connected, that is, it is a continuous image of the Cantor fan.

Thus our question has been answered in the affirmative in the case K is the Cantor fan.

(Pay attention to dates ...)

In fact, a somewhat stronger condition has been proven.

Theorem (2016)

If X is a homogeneous path connected continuum and $x_0 \in X$, then there is a topologically complete separable collection \mathcal{P} of paths $p_\alpha : [0, 1] \to X$ with $p_\alpha(0) = x_0$ for each α such that the destination map $p_\alpha \mapsto p_\alpha(1)$ from \mathcal{P} to X is surjective and open.
The Case K Is the Cantor Fan: Main Conclusion

Definition

Two continua X and Y are called **continuously equivalent** provided there exist continuous surjections $f : X \to Y$ and $g : Y \to X$.

There are uncountably many equivalence classes of this relation. Even for path connected continua only, there are still uncountably many classes. Yet for homogeneous path connected continua we have the following reduction to exactly two classes.

Theorem (2016)

If X is a homogeneous path connected continuum, then X is either continuously equivalent to an arc (the case X is locally connected), or continuously equivalent to the Cantor fan (the case X is non-locally connected).

Janusz R. Prajs
Homogeneous Continua
The Case K Is the Cantor Fan: Main Conclusion

Definition

Two continua X and Y are called **continuously equivalent** provided there exist continuous surjections $f : X \to Y$ and $g : Y \to X$.

There are uncountably many equivalence classes of this relation. Even for path connected continua only, there are still uncountably many classes. Yet for homogeneous path connected continua we have the following reduction to exactly two classes.
The Case K Is the Cantor Fan: Main Conclusion

Definition

Two continua X and Y are called **continuously equivalent** provided there exist continuous surjections $f : X \to Y$ and $g : Y \to X$.

There are uncountably many equivalence classes of this relation. Even for path connected continua only, there are still uncountably many classes. Yet for homogeneous path connected continua we have the following reduction to exactly two classes.

Theorem (2016)

If X is a homogeneous path connected continuum, then X is either continuously equivalent to an arc (the case X is locally connected), or continuously equivalent to the Cantor fan (the case X is non-locally connected).
The Pseudo-arc

Definitions

Let X be a continuum:

- X is **decomposable** if there are two proper subcontinua A and B such that $X = A \cup B$.
- X is **indecomposable** if X is not decomposable.
- X is **hereditarily indecomposable** if every subcontinuum of X is indecomposable.
- X is **arc-like** if for every $\varepsilon > 0$ there is an ε-map $f_\varepsilon : X \to [0, 1]$.

Theorem (R. H. Bing, 1950)

All non-degenerate hereditarily indecomposable arc-like continua are mutually homeomorphic.

A hereditarily indecomposable arc-like continuum is called the **pseudo-arc**.
The Pseudo-arc

Definitions

Let \(X \) be a continuum:

- **\(X \) is decomposable** if there are two proper subcontinua \(A \) and \(B \) such that \(X = A \cup B \).
- **\(X \) is indecomposable** if \(X \) is not decomposable.
- **\(X \) is hereditarily indecomposable** if every subcontinuum of \(X \) is indecomposable.
- **\(X \) is arc-like** if for every \(\varepsilon > 0 \) there is an \(\varepsilon \)-map \(f_\varepsilon : X \rightarrow [0, 1] \).

Theorem (R. H. Bing, 1950)

All non-degenerate hereditarily indecomposable arc-like continua are mutually homeomorphic.

A hereditarily indecomposable arc-like continuum is called the **pseudo-arc**.
The Pseudo-arc

First example by B. Knaster (1922). In 1948 E. Moise presented another construction, introduced the name *pseudo-arc*, and proved the property that all its subcontinua are homeomorphic to the whole continuum. Shortly afterwards Bing showed that Moise’ example is homogeneous.

The two initial steps of the construction of the pseudo-arc
Continuous images of the pseudo-arc have been characterized independently by L. Fearnley and A. Lelek in early 1960s as weakly chainable continua. The significance of the class of weakly chainable continua is similar to that of locally connected continua. However weak chainability is not a local property, and it is less intuitive.
Continuous Images of the Pseudo-arc

Continuous images of the pseudo-arc have been characterized independently by L. Fearnley and A. Lelek in early 1960s as weakly chainable continua. The significance of the class of weakly chainable continua is similar to that of locally connected continua. However weak chainability is not a local property, and it is less intuitive.

Fearnley has also shown that weakly chainable continua are closed with respect to finite unions and countable products.
Continuous images of the pseudo-arc have been characterized independently by L. Fearnley and A. Lelek in early 1960s as weakly chainable continua. The significance of the class of weakly chainable continua is similar to that of locally connected continua. However weak chainability is not a local property, and it is less intuitive.

Fearnley has also shown that weakly chainable continua are closed with respect to finite unions and countable products.

The pseudo-arc satisfies all three postulated conditions for a continuum K in our study.
Continuous images of the pseudo-arc have been characterized independently by L. Fearnley and A. Lelek in early 1960s as weakly chainable continua. The significance of the class of weakly chainable continua is similar to that of locally connected continua. However weak chainability is not a local property, and it is less intuitive.

Fearnley has also shown that weakly chainable continua are closed with respect to finite unions and countable products.

The pseudo-arc satisfies all three postulated conditions for a continuum K in our study.

Continuous maps from the pseudo-arc to a space are called pseudo-paths. They introduce the structure of pseudo-path components of a space.
Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?
The Case \textbf{K} is the Pseudo-arc

Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

in the case K is the pseudo-arc takes the form

Question

Suppose X is a pseudo-path connected homogeneous continuum. Must X be weakly chainable?
The Case K is the Pseudo-arc

Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

in the case K is the pseudo-arc takes the form

Question

Suppose X is a pseudo-path connected homogeneous continuum. Must X be weakly chainable?

This question has recently been answered in the affirmative, which provides a significant reduction in the classification study of and search for homogeneous continua.
The Case K is the Pseudo-arc

Our general question

Suppose X is a K-connected homogeneous continuum. Is X necessarily a continuous image of K?

in the case K is the pseudo-arc takes the form

Question

Suppose X is a pseudo-path connected homogeneous continuum. Must X be weakly chainable?

This question has recently been answered in the affirmative, which provides a significant reduction in the classification study of and search for homogeneous continua.

Theorem (Result III, 2015)

Every pseudo-path connected homogeneous continuum is weakly chainable.
Let X be a space and G a topological group with the identity e.

A map $F : G \times X \to X$ is an action of G on X provided $F(e, x) = x$ and $F(gh, x) = F(g, F(h, x))$ for all $x \in X$ and $g, h \in G$.
Let X be a space and G a topological group with the identity e.

A map $F : G \times X \to X$ is an action of G on X provided $F(e, x) = x$ and $F(gh, x) = F(g, F(h, x))$ for all $x \in X$ and $g, h \in G$.

An action $F : G \times X \to X$ is transitive provided for all $x, y \in X$ there is a $g \in G$ such that $F(g, x) = y$.
Let X be a space and G a topological group with the identity e. A map $F : G \times X \to X$ is an action of G on X provided $F(e, x) = x$ and $F(gh, x) = F(g, F(h, x))$ for all $x \in X$ and $g, h \in G$.

An action $F : G \times X \to X$ is transitive provided for all $x, y \in X$ there is a $g \in G$ such that $F(g, x) = y$.

We say that a metrizable space X is isometrically homogeneous if it admits a compatible metric for which the group of isometries of X onto itself acts transitively.
Let X be a space and G a topological group with the identity e.

A map $F : G \times X \rightarrow X$ is an **action** of G on X provided $F(e, x) = x$ and $F(gh, x) = F(g, F(h, x))$ for all $x \in X$ and $g, h \in G$.

An action $F : G \times X \rightarrow X$ is **transitive** provided for all $x, y \in X$ there is a $g \in G$ such that $F(g, x) = y$.

We say that a metrizable space X is **isometrically homogeneous** if it admits a compatible metric for which the group of isometries of X onto itself acts transitively.

Compact metric groups, as topological spaces, are a sub-category of isometrically homogeneous compact spaces.
The two following propositions are well-known and classic.

Proposition

A continuum X is homogeneous if and only if X admits a transitive action by a Polish group (that is, by a separable, topologically complete metric group). Therefore, isometrically homogeneous continua are a narrow, 'elite' class among all (topologically) homogeneous continua.
The two following propositions are well-known and classic.

Proposition
A continuum X is homogeneous if and only if X admits a transitive action by a Polish group (that is, by a separable, topologically complete metric group).

Proposition
A continuum X is isometrically homogeneous if and only if X admits a transitive action by a compact, connected group.
The two following propositions are well-known and classic.

Proposition
A continuum X is homogeneous if and only if X admits a transitive action by a Polish group (that is, by a separable, topologically complete metric group).

Proposition
A continuum X is isometrically homogeneous if and only if X admits a transitive action by a compact, connected group.

Thus isometrically homogeneous continua are a narrow, ‘elite’ class among all (topologically) homogeneous continua.
Isometrically homogenous continua are a narrow, ‘elite’ class among all (topologically) homogeneous continua.
For isometrically homogeneous continua we ask the question discussed before. Let K be a continuum.

Question

Suppose X is a K-connected isometrically homogeneous continuum. Is X necessarily a continuous image of K?
For isometrically homogeneous continua we ask the question discussed before. Let K be a continuum.

Question

Suppose X is a K-connected isometrically homogeneous continuum. Is X necessarily a continuous image of K?

The next result shows that our question, for isometrically homogeneous continua, has positive answer in the three considered cases for K. Not only that. What is more surprising is that for isometrically homogeneous continua K-connectedness, in the three cases for K, are equivalent conditions.
The following is a generalization and extension of the classic result for compact connected topological groups mentioned earlier in this talk.

Theorem (Result IV, 2015)

Suppose X is an isometrically homogeneous continuum. Then the following conditions are equivalent:

1. X is pseudo-path connected.
2. X is weakly chainable.
3. X is path connected.
4. X is locally connected.

In general, none of the two of the four conditions are equivalent. Pseudo-path connectedness is the weakest one, which for isometrically homogeneous continua turns out to be equivalent to local connectedness, the strongest one. $(1) \iff (2)$ the only equivalence holding for all homogeneous continua.

Janusz R. Prajs

Homogeneous Continua
The following is a generalization and extension of the classic result for compact connected topological groups mentioned earlier in this talk.

Theorem (Result IV, 2015)

Suppose X is an isometrically homogeneous continuum. Then the following conditions are equivalent:

1. X is pseudo-path connected.
2. X is weakly chainable.
3. X is path connected.
4. X is locally connected.

In general, none two of the four conditions are equivalent. Pseudo-path connectedness is the weakest one, which for isometrically homogeneous continua turns out to be equivalent to local connectedness, the strongest one.
Isometrically Homogeneous Continua: Result IV

The following is a generalization and extension of the classic result for compact connected topological groups mentioned earlier in this talk.

Theorem (Result IV, 2015)

Suppose X is an isometrically homogeneous continuum. Then the following conditions are equivalent:

1. X is pseudo-path connected.
2. X is weakly chainable.
3. X is path connected.
4. X is locally connected.

In general, none two of the four conditions are equivalent. Pseudo-path connectedness is the weakest one, which for isometrically homogeneous continua turns out to be equivalent to local connectedness, the strongest one.

$(1) \Leftrightarrow (2)$ the only equivalence holding for all homogeneous continua.
Ample Continua: Definition

Definition

A continuum A in a space X is called **ample** if for every $\varepsilon > 0$ the ε-neighborhood of A contains a continuum L such that $A \subset \text{Int}L$.

Janusz R. Prajs

Homogeneous Continua
A continuum A in a space X is called **ample** if for every $\varepsilon > 0$ the ε-neighborhood of A contains a continuum L such that $A \subset \text{Int}L$.

The continuum A may be ‘thin’ or not, but it can be slightly ‘thickened’ to a continuum having A in its interior.
The following two results are in a modified version. The authors did not use the term *ample continuum*.

Theorem (D. P. Bellamy and J. Łysko, 2014)

The product $P \times P$ of two (or more) pseudo-arcs has ample diagonal $\Delta = \{(x, x) \mid x \in P\}$.
The following two results are in a modified version. The authors did not use the term *ample continuum*.

Theorem (D. P. Bellamy and J. Łysko, 2014)

The product $P \times P$ of two (or more) pseudo-arcs has ample diagonal $\Delta = \{(x, x) \mid x \in P\}$.

Theorem (D. P. Bellamy and J. Łysko, 2014)

If a continuum X is a topological group, then X is locally connected if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is ample in $X \times X$.
Ample Diagonal of $X \times X$ and Isometric Homogeneity

Homogenous continua X that are very far from being locally connected, such as the pseudo-arc, can have ample diagonal in $X \times X$ by the first result of Bellamy and Łysko. If we additionally assume isometric homogeneity, it is not the case any more.
Homogenous continua X that are very far from being locally connected, such as the pseudo-arc, can have ample diagonal in $X \times X$ by the first result of Bellamy and Łysko. If we additionally assume isometric homogeneity, it is not the case any more.

The following is an addition to the result IV and a generalization of the second result by Bellamy and Łysko.

Theorem (Theorem, an addition to Result IV)

If X is an isometrically homogeneous continuum, then X is locally connected if and only if the diagonal in the product $X \times X$ is ample.
Bellamy and Łysko have shown that the product of two pseudo-arcs has ample diagonal. It turns out that a much more general statement holds, which is the next result.

Theorem (Theorem, Result V)

Let X be a homogeneous, weakly chainable continuum. Then the diagonal in the product $X \times X$ is ample.
Ample Diagonal of $X \times X$ and Topological Homogeneity

Bellamy and Łysko have shown that the product of two pseudo-arcs has ample diagonal. It turns out that a much more general statement holds, which is the next result.

Theorem (Theorem, Result V)

Let X be a homogeneous, weakly chainable continuum. Then the diagonal in the product $X \times X$ is ample.

The question of the converse to this result is intriguing.

Question

Suppose X is a homogeneous continuum having the diagonal in the product $X \times X$ ample. Is X necessarily a weakly chainable continuum? In other words, is X a continuous image of the pseudo-arc?
A continuum X is called (a) **aposyndetic** ((b) **mutually aposyndetic**) provided for all $x, y \in X$ with $x \neq y$, respectively:

- (a) there exists a continuum $K \subset X$ such that $x \in \text{Int}K$ and $y \notin K$.
- (b) there exist disjoint continua K, L with $x \in \text{Int}K$ and $y \in \text{Int}L$.

Janusz R. Prajs

Homogeneous Continua
A continuum X is called (a) **aposyndetic** (b) **mutually aposyndetic**) provided for all $x, y \in X$ with $x \neq y$, respectively:

- (a) there exists a continuum $K \subset X$ such that $x \in \text{Int}K$ and $y \notin K$.
- (b) there exist disjoint continua K, L with $x \in \text{Int}K$ and $y \in \text{Int}L$.

(a) Neither aposyndetic at x with respect to y, nor at y with respect to x. (b) Aposyndetic at x with respect to y but not at y with respect to x. (c) Aposyndetic.
Aposyndesis: Definitions

A continuum X is called (a) **aposyndetic** ((b) **mutually aposyndetic**) provided for all $x, y \in X$ with $x \neq y$, respectively:

- (a) there exists a continuum $K \subset X$ such that $x \in \text{Int}K$ and $y \notin K$.
- (b) there exist disjoint continua K, L with $x \in \text{Int}K$ and $y \in \text{Int}L$.

Only the continuum (c) is aposyndetic. (c) is also mutually aposyndetic.
Definition. A continuum X is **semi-indecomposable** provided for every two disjoint subcontinua of X at least one has empty interior.
Semi-indecomposable Continua

Definition. A continuum X is **semi-indecomposable** provided for every two disjoint subcontinua of X at least one has empty interior.

Semi-indecomposable continua have been introduced by Charls L. Hagopian under the name *strictly non-mutually aposyndetic continua*.

Example (C.L. Hagopian)

The product $P \times P$ of two pseudo-arcs is an example of a homogeneous, semi-indecomposable, aposyndetic (and thus decomposable) homogeneous continuum.
Two Pairs of Opposites

Aposyndesis and **indecomposability** are a pair of opposite properties in the sense of the statement below. (They are not negations of each other!)

Let X be a continuum.

- X is aposyndetic if and only if X is aposyndetic at each point with respect to any other point.
- X is indecomposable if and only if X is **not** aposyndetic at each point with respect to any other point.

Mutual aposyndesis and **semi-indecomposability** are a pair of opposite properties. (They are not negations of each other!)

Let X be a continuum.

- X is mutually aposyndetic if and only if X is mutually aposyndetic between every two different points in X.
- X is semi-indecomposable if and only if X is **not** mutually aposyndetic between every two different points in X.
Two Pairs of Opposites

Aposyndesis and **indecomposability** are a pair of opposite properties in the sense of the statement below. (They are not negations of each other!)

Let \(X \) be a continuum.

- \(X \) is aposyndetic if and only if \(X \) is aposyndetic at each point with respect to any other point.
- \(X \) is indecomposable if and only if \(X \) is **not** aposyndetic at each point with respect to any other point.

Similarly, **mutual aposyndesis** and **semi-indecomposability** are a pair of opposite properties. (They are not negations of each other!)

Let \(X \) be a continuum.

- \(X \) mutually aposyndetic if and only if \(X \) is mutually aposyndetic between every two different points in \(X \).
- \(X \) semi-indecomposable if and only if \(X \) is **not** mutually aposyndetic between every two different points in \(X \).
Theorem (2016, Result VI)

If X is an isometrically homogeneous continuum, then exactly one of the following conditions holds:

1. X is indecomposable.
2. X is semi-indecomposable and aposyndetic.
3. X is mutually aposyndetic.
Open Problems and Questions

Problem

Classify all semi-indecomposable, aposyndetic, compact connected topological groups.

Question

Is every semi-indecomposable, aposyndetic, compact connected topological group 2-dimensional?

Question

Does there exist a non-degenerate homogeneous hereditarily non-weakly chainable continuum?
Open Problems and Questions

Problem
Classify all semi-indecomposable, aposyndetic, compact connected topological groups.

Problem
Classify all semi-indecomposable, aposyndetic, compact connected isometrically homogeneous continua.

Question
Is every semi-indecomposable, aposyndetic, compact connected topological group 2-dimensional?

Question
Does there exist a non-degenerate homogeneous hereditarily non-weakly chainable continuum?
Open Problems and Questions

Problem
Classify all semi-indecomposable, aposyndetic, compact connected topological groups.

Problem
Classify all semi-indecomposable, aposyndetic, compact connected isometrically homogeneous continua.

Question
Is every semi-indecomposable, aposyndetic, compact connected topological group 2-dimensional?

Question
Does there exist a non-degenerate homogeneous hereditarily non-weakly chainable continuum?
Open Problems and Questions

Problem
Classify all semi-indecomposable, aposyndetic, compact connected topological groups.

Problem
Classify all semi-indecomposable, aposyndetic, compact connected isometrically homogeneous continua.

Question
Is every semi-indecomposable, aposyndetic, compact connected topological group 2-dimensional?

Question
Does there exist a non-degenerate homogeneous hereditarily non-weakly chainable continuum?