
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

2005

A Generative Programming Approach to
Interactive Information Retrieval: Insights and
Experiences
Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Naren Ramakrishnan
Virginia Polytechnic Institute and State University

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

Part of the Databases and Information Systems Commons, Graphics and Human Computer
Interfaces Commons, Other Computer Sciences Commons, and the Systems Architecture
Commons

This Book Chapter is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion
in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Perugini, Saverio and Ramakrishnan, Naren, "A Generative Programming Approach to Interactive Information Retrieval: Insights and
Experiences" (2005). Computer Science Faculty Publications. 29.
https://ecommons.udayton.edu/cps_fac_pub/29

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub/29?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

A Generative Programming Approach to
Interactive Information Retrieval:

Insights and Experiences

Saverio Perugini1 and Naren Ramakrishnan2

1 Department of Computer Science
University of Dayton, OH 45469-2160 USA

saverio@udayton.edu
http://homepages.udayton.edu/~perugisa

2 Department of Computer Science
Virginia Tech, VA 24061-0106 USA

naren@cs.vt.edu
http://people.cs.vt.edu/~ramakris

Project website: http://oot.cps.udayton.edu

Abstract. We describe the application of generative programming to a
problem in interactive information retrieval. The particular interactive
information retrieval problem we study is the support for ‘out of turn
interaction’ with a website – how a user can communicate input to a
website when the site is not soliciting such information on the current
page, but will do so on a subsequent page. Our solution approach makes
generous use of program transformations (partial evaluation, currying,
and slicing) to delay the site’s current solicitation for input until after
the user’s out-of-turn input is processed. We illustrate how studying out-
of-turn interaction through a generative lens leads to several valuable in-
sights: (i) the concept of a web dialog, (ii) an improved understanding of
web taxonomies, and (iii) new web interaction techniques and interfaces.
These notions allow us to cast the design of interactive (and responsive)
websites in terms of the underlying dialog structure and, further, suggest
a simple implementation strategy with a clean separation of concerns. We
also highlight new research directions opened up by the generative pro-
gramming approach to interactive information retrieval such as the idea
of web interaction axioms.

1 Introduction

Generative programming has been typically been applied to problems at the
crossroads of programming languages and software engineering such as modu-
larizing cross-cutting concerns, synthesizing programs from formal specifications,
and automatically generating program documentation. We describe here a novel
application of generative programming to a problem in interactive information
retrieval [1].

2

1.1 Motivating Example

Everybody has experienced the frustration in interacting with automated infor-
mation systems where the system does not let the user progress through the
dialog without answering a currently posed question. For instance,

1 System: Welcome to the automated flight reservation system.
2 System: Please say the date on which you wish to travel.
3 Sallie: I’d like to fly from New York to Brussels next week.
4 System: Sorry, I didn’t understand. Please specify a date.
5 Sallie: If you can tell me available dates, I can choose.
6 System: Please say the date on which you wish to travel.
7 Sallie: [Hangs up]

The mental mismatch between Sallie’s conception of the task and the system’s
design is manifest in the above interaction. The system is expecting a date in
Line 3 whereas Sallie specifies her choice of source and destination cities. Even
though this information is going to be relevant further into the interaction, the
system insists on specifying date before going further. Similar inconveniences
happen while interacting with websites. A site presents hardwired choices of
hyperlinks to pursue and even though the user’s input is pertinent and probably
solicited deeper in the site, there is no way for the user to circumvent the given
navigation structure.

Our solution to the above situations, where the user cannot answer a cur-
rently posed question, but does have some other information pertinent to the
task at hand, is to provide a capability for out-of-turn interaction. For instance,
we would provide a capability for the user to speak something into the browser,
and in this way supply out-of-turn input. Such ‘unsolicited reporting’ has been
recognized [2] as a simple form of mixed-initiative interaction, a dialog manage-
ment strategy where the two participants take turns exchanging the initiative.
Using out-of-turn interaction, the user is empowered to complete an information-
finding task in the manner that best suits her conception. Moreover, we show
that out-of-turn interaction, irrespective of when it happens, can be supported
uniformly by a generative programming approach. A website that currently pro-
vides a hardwired choice of completion options can be automatically converted
into one that supports out-of-turn interaction!

The idea behind our approach is quite simple: we liken out-of-turn interaction
to non-sequential evaluation of a computer program, e.g., partial evaluation. We
model an information seeking interaction as a computer program so that user
inputs correspond to values for program variables (ref. Fig. 1, left). When the
user provides input in the order in which they are requested, we are sequen-
tially evaluating the program, i.e., interpreting it. In a web hierarchy, this would
correspond to plain browsing. When the user provides out-of-turn input, we
jump ahead to nested program segments that involve that input and simplify
them out via partial evaluation. By employing sequences of such interpretations
and partial evaluations, we can support complex interactions that involve both
responsive as well as out-of-turn inputs.

3

if (Alabama)
 ...
if (Alaska)
 if (Senate)
 if (Republican)
 ...
 if (House)
 if (Republican)
 ...
if (Arizona)
 ...
if (California)
 ...
if (Georgia)
 if (Senate)
 if (Democrat)
 /* Zell Bryan Miller */
 if (Republican)
 /* C. Saxby Chambliss */
 if (House)
 ...
if (Virginia)
 ...

 if (Senate)
 if (Democrat)
 /* Zell Bryan Miller */
 if (Republican)
 /* C. Saxby Chambliss */
 if (House)
 ...

if (Alabama)
 ...
if (Arizona)
 ...
if (California)
 ...
if (Georgia)
 if (Senate)
 /* Zell Bryan Miller */
 if (House)
 ...
if (Virginia)
 ...

 if (Democrat)
 /* Zell Bryan Miller */
 if (Republican)
 /* C. Saxby Chambliss */

if (Alabama)
 ...
if (California)
 ...
if (Georgia)
 /* Zell Bryan Miller */

 /* Zell Bryan Miller */

Georgia

Democrat

Georgia

Democrat Senate

Senate

Fig. 1. Staging web interactions using program transformations. The top series of
transformations mimic an in-turn (i.e., browsing) interaction sequence with the user
specifying (Georgia: Senate: Democrat), in that order (ref. Fig. 2, left). The bottom
series of transformations correspond to an out-of-turn interaction sequence where the
user specifies (Democrat: Senator: Georgia), in that order (ref. Fig. 2, right). Notice
that we can stage both interaction sequences here with the same program transforma-
tion! All programs shown here are partial evaluations of the starting program (left).

1.2 Implementing Out-of-turn Interaction Generatively

Now, since a given program can be transformed in numerous ways, the designer
need only write the program in one way but the use of program transforma-
tions enables us to realize all possible interaction sequences. Further, since par-
tial evaluation subsumes interpretation, there is no need to distinguish between
an in-turn or out-of-turn input. This enables a simple implementation strategy
with a clean separation of concerns. An input, supplied using any of a vari-
ety of user interfaces, is communicated to a server where it is used to partially
evaluate a program. The resulting program is rendered as a website and pre-
sented back to the user. Fig. 1 depicts these ideas using Project Vote Smart
(PVS; www.vote-smart.org), a website which indexes the webpages of the US
Congressional Officials and asks a user to make a selection for state, branch
of Congress, and party, in that order, to access an official’s page. Fig. 2, left
and right, illustrates how the sequences staged by the top and bottom series of
program transformations in Fig. 1, respectively, might be rendered on the web.

Our generative approach makes enabling out-of-turn interaction in an exist-
ing website a fairly mechanical process. The approach requires four components:
a representation, transformer, out-of-turn interaction interface, and generator. A
representation of the site’s hyperlink structure, such as that in Fig. 1 (left), can
be extracted from the original site and stored in its server from which it will be
transformed to stage user interaction. Such a representation can be easily gen-
erated from a depth-first traversal of the site using either an off-the-shelf web
crawler or web scripting languages (e.g., Python) to build a customized bot. The

4

⇓ ⇓

⇓ ⇓

⇓ ⇓

Fig. 2. Retrieving the webpage of the Senator Miller in PVS. (left) In-turn interaction
sequence: the user specifies values for relevant politician attributes by progressively
clicking on the presented hyperlinks (Georgia: Senate: Democrat), in that order. (right)
Out-of-turn interaction sequence: user specifies (Democrat: Senate: Georgia), in that
order, using out-of-turn interaction via voice.

out-of-turn interaction interface captures and communicates the user’s out-of-
turn input (i.e., a string) to a web server. We have built an out-of-turn interaction
toolbar interface, called Extempore, using XUL (XML User Interface Language).
Extempore is embedded into a traditional web browser as a plug-in [3]. We also
have implemented a voice interface using SALT (Speech Application Language
Tags) to capture out-of-turn speech utterances (illustrated in Fig. 2, right). A
server-side program or web service transforms the representation given a set of
(in-turn or out-of-turn) user input terms (communicated via a hyperlink click or
the out-of-turn interface). Lastly, the generator produces a webpage containing
hyperlink labels corresponding to the variables at the topmost level of nesting
in the representation.

5

Initially we simply run the representation through the generator to create
the top-level page of the site. The resulting webpage is aesthetically identical to
the original site’s homepage except that each hyperlink now represents a request
to invoke the transformation operator on the representation wrt the hyperlink’s
label rather than a request for a static page. Once this initialization is complete,
a communicate-transform-generate loop responds to each user interaction (hy-
perlink click or out-of-turn input). The user communicates an input using the
available interaction interfaces (hyperlinks or the out-of-turn interface). This in-
put is used to transform the representation. Then the generator produces the
resulting page from the new representation. Notice that there is no longer a
need to store and retrieve any static pages. The current page is always gener-
ated dynamically from the the topmost level of nesting of the mostly recently
transformed representation. The malleability of the representation stages the in-
teraction and provides the illusion of a website containing a hardwired hierarchy
of hyperlinks. When the representation reduces to the modeling of a single page,
the user is redirected to that webpage. Note also that the representation is the
only site-specific component in our framework.

1.3 Outline

Our research began by exploring the use of partial evaluation to transform rep-
resentations of websites, for realizing out-of-turn interaction [3]. One of the first
lessons we learned was that program transformers have a novel use (hitherto
unexplored) as stagers, i.e., devices to mediate and manage interaction between
two entities. In this sense, a partial evaluator is not just a pre-processor before a
compiler, it is an active participant in an interaction loop between the human and
the information system. This led us to investigate other program transformers
(e.g., currying) and study their staging properties. We are now able to develop
complex (web) dialogs as compositions of these primitive stagers [4], especially
those involving mixed-initiative interaction. This paper begins by presenting
these notions. Studying dialog simplification in this context then leads us to an
improved understanding of web taxonomies. Next, we present new web interac-
tion techniques and associated interfaces that exploit properties of taxonomies
and which allow us to support complex dialogs. We conclude by introducing the
idea of web interaction axioms and their potential role in interactive systems.

2 Related Research

Concepts from generative programming (partial evaluation [5], currying [6], pro-
gram slicing [7], and continuations [8]), have been traditionally studied and em-
ployed in systems such as compilers and debuggers. While there are established
and effective models for classical information retrieval (e.g., vector-space [9]),
models for solutions to interactive information retrieval (IR) problems are in
their infancy. Generative programming suggests helpful metaphors for devel-
oping such models. However, generative programming is under-explored in the
interactive IR community.

6

Belkin et al. introduced the idea of an ‘interaction script’ [10] which can be
thought of as a program for interaction, though expressed in English rather than
program codes and is only intended to be sequentially evaluated. Slicing [11],
and source-to-source rewrite rules [12] have been used to restructure web appli-
cations. Graunke et al. [13] describe an approach to automatically restructure
batch programs for interactive use on the World Wide Web. An important issue
addressed is maintaining state across web interactions which use the stateless
HTTP protocol. Their approach involves first-class continuations from program-
ming languages [8], e.g., via the call/cc (call-with-current-continuation) facility
provided by Scheme. Since first-class continuations can be saved and resumed,
they are an ideal construct for saving and restoring state between user interac-
tions over the web. Using a similar idea based on continuations, Queinnec [14]
developed a model for a web server intended to address state maintenance prob-
lems caused by connections terminated prematurely, pressing the ‘back button,’
and window cloning. Lastly, Quan et al. [15] explore the idea of using contin-
uations and currying to postpone, save, and resume interactions with intrusive
dialog boxes, including partially-filled ones, in traditional application software,
such word processors and e-mail clients. The common theme of these efforts,
including our research, is the appeal to concepts from programming languages
to achieve a rich and expressive form of a human-computer interaction. Our
work differs from all these efforts in its focus on out-of-turn interactions (and
dialogs involving them). We believe that the generative programming approach
presented here suggests useful metaphors for developing interactive information
systems and also lends insights into representations for complex dialogs.

3 Web Dialogs

In studying the nature of dialogs supported in our framework, we started to think
of a program transformation in terms of the number of interaction sequences it is
capable of staging, which we refer to as the transformer’s interaction paradigm.
For example, our use of partial evaluation in PVS is capable of staging interac-
tion sequences representing all permutations of state, branch, party or, in other
words, 3,240 (= 540 × 3!) sequences. PVS has 540 paths from its root to each
leaf corresponding to the 540 members of the US Congress. In general, a par-
tial evaluator can support m × n! sequences assuming that each of the m paths
through the site has a consistent dialog length of n. Studying program transform-
ers via the number of sequences they support revealed that partial evaluation
could stage m × n! sequences in a given site, but no less. In other words, while
partial evaluation can support all orders of supplying inputs, it cannot enforce
an order. This property prevented us from, e.g., staging dialogs involving state,
branch, party, where the party information must be supplied second. This ‘all or
nothing’ nature of partial evaluation arises because, without factoring a program
into multiple units, there is no way to prevent expressions containing particular
remaining variables from being simplified by a partial evaluator.

7

This compelled us to develop a dialog notation, where the specific inputs (e.g.,
Alabama, Senate, Democrat) are abstracted into their categories (e.g., state,
branch, party) and used as dialog slots in the context of a program transformer.
The syntax of our notation uses the abbreviation of a program transformation
(e.g., PE for partial evaluator) over a sequence of such slots. For example, we
represent a dialog where values for state, branch, party may be communicated in
any order as PE

state branch party . Such an expression succinctly compacts a set of
interaction sequences; contrast this with the programs in Fig. 1 where the inputs
are woven into the dialog structure. Next we incorporated additional program
transformers in order to achieve a finer level of control over the number of inter-
action sequences stagable. For example, a currier stages a different number of
sequences than a partial evaluator, i.e., C

state branch party "= PE
state branch party .

The former only permits the user to supply a prefix of the remaining dialog
options at any point in the interaction, whereas the latter makes no such restric-
tion. Next we can begin to nest program transformers on top of each other to
create complex dialogs (i.e., dialogs composed of smaller dialogs, or subdialogs).
For instance, PE

PE
a b

P E
c d

precludes sequences such as ≺c a b d$. This notation pro-
vided a concise way to specify complex dialogs (i.e., much more compact than
enumerating each individual interaction sequence to be supported). In addition,
using a small set of reduction rules [4], which indicate how any dialog (described
in this notation) should be simplified each time a user supplies an input, we are
able to stage a variety of web dialogs in our generative framework.

4 An Improved Understanding of Web Taxonomies

Dialog simplification in the staging transformations framework can be viewed
as pruning branches of a website based on user input. This led us to investigate
functional dependencies in information hierarchies, a concept which implicitly
captures what should remain and what should be pruned out when a user sup-
plies input.

4.1 Functional Dependencies on the Web

Intuitively, an FD of the form x → y exists in a website when all paths (from
the root to a leaf) through the site containing x also contain y. Notice that
x → y does not necessarily mean that y → x. In the generative approach,
since representations change dynamically after every interaction, the set of FDs
satisfied by a site also changes dynamically. As some paths through the site
are pruned out by partial evaluation, new dependencies emerge. For instance,
communicating ‘Senate’ to PVS out-of-turn at the top level, causes the ‘Virginia
→ Republican’ FD to emerge. This FD is not present in the original site because
not all politicians in Virginia are Republicans (but the Senators are). In the
untransformed PVS site, there are 129 FDs!

The set of FDs a site satisfies can be mined from a relational representation
of the paths through the site, where each tuple in the relation corresponds to a

8

path, using standard algorithms from association rule mining [16]. We added a
mining component to our generative framework to discover FDs. Since FDs must
be re-computed at every step, we would like to optimize the process of mining
them. While non-intuitive, it happens to be helpful to postpone computing the
current set of FDs until after the user’s input has been processed. In other
words, rather than discovering that the ‘Virginia → Republican’ FD (among
many others) exists after the user supplies ‘Senate’, only compute that FD if
and when the knowledge of its existence is required (e.g., if the users supplies
‘Virginia’ next!). This lazy discovery not only prevents us from computing FDs
that are irrelevant to the task at hand, but also results in a more efficient and
simple mining procedure. For example, if the user does supply ‘Virginia’ next,
we need only observe that the only party option remaining is ‘Republican’ to
conclude that the ‘Virginia → Republican’ FD held before the input ‘Virginia’
was processed – a procedure more efficient than examining all pairs of terms
(which co-occur) a priori as candidates for potential FDs.

FDs serve multiple uses in the generative framework. First, and most obvi-
ously, they suggest a simple strategy to perform input expansion. For instance,
if a user communicates ‘Washington, DC’ at the top level of PVS we can safely
expand this input to ‘Washington, DC House Democrat’, without changing the
semantics of the request, because the ‘Washington, DC → {House, Democrat}’
dependency exists. Second, the exploitation of FDs results in cleaner representa-
tions, by consolidating series’ of nested conditionals without else clauses, thereby
relieving the user from having to click through several pages, each with only one
link.

Further, we can generalize the notion of FDs to say that an FD of the form
x → y exists in a website when at least t% of the paths through the site contain-
ing x also contain y. Using FDs of this sort for input expansion makes interactive
IR approximate. Approximate interactive IR is important as it enables a host
of new and compelling queries and suggests novel user interfaces. We shall have
more to say about these two items in section 5 when we discuss new interaction
techniques. In summary, we have illustrated how our generative approach led to
the concept of a web FD and a new way to conduct query expansion on the web
which together led to approximate interactive IR on the web.

4.2 Levelwise and Non-levelwise Taxonomies

Thus far, we have focused on out-of-turn inputs in a levelwise taxonomy, where
each input (e.g., Virginia) addresses a distinct information category (e.g., state).
With very minor modifications, we can extend our approach to work with non-
levelwise taxonomies – those where no such organization exists. For instance,
consider the web directory in Fig. 3 (left). Notice that in this website, unlike
PVS, each level does not correspond to an information category (e.g., state or
party). For instance, a hyperlink labeled ‘soccer’ resides at levels two and three.

To capture input expansion in non-levelwise sites, we use the concept of a
negative FD: x → ¬ y, that holds when none of the paths through the site

9

1

2

sports

3

recreation

4

soccer

5

events

6

travel

7

outdoors

8

movies

9

news

10

players

11

baseball

12

soccer

13

europe

14

soccer

15

boating

1

2

sports

3

recreation

4

soccer

5

events

7

outdoors

8

movies

9

news

10

players

12

soccer

14

soccer

1

3

recreation

4

sports

14

outdoors

8

movies

9

news

10

players

12

events

Fig. 3. (left) Hypothetical hierarchical web directory with characteristics similar to
those in Yahoo!. (right and center) Customized versions of (left) wrt ‘soccer’.

containing x also contain y. Some intuitive negative FDs in PVS are, ‘Demo-
crat → ¬ Republican’, ‘House → ¬ Senate’, and ‘Virginia → ¬ Ohio’. Notice
that any negative FD x → ¬ y implies y → ¬ x. When the user communi-
cates ‘Senate’ out-of-turn, we can partially evaluate wrt to Senate=true and
House=false. The reader will notice that negative FDs in a levelwise site in-
volve only the labels of hyperlinks at the same level. However this is not the
case in non-levelwise sites, thus providing the motivation for negative FDs. For
instance, the following are some negative FDs that hold in the site illustrated
in Fig. 3 (left): ‘sports → ¬ {boating, europe, outdoors, recreation, travel}’ and
‘soccer → ¬ {baseball, boating, europe, travel}’. Thus, when a user says ‘soccer’
out-of-turn in Fig. 3 (left), we can partially evaluate the program in Fig. 4 (left)
wrt soccer=true and baseball, boating, europe, and travel set to false
which yields the program in Fig. 4 (right) which models Fig. 3 (right).

Notice that there are no salient structural properties of websites that ulti-
mately influence the characteristics of their FDs (e.g., only FDs, only negative
FDs, or a mixture of the two). The type of each FD currently satisfied by a
site is dependent only on the current relationships between the co-occurrence
of terms (labeling hyperlinks) on paths through the site (term y co-occurs on
all/no paths containing term x). There are ways alternate to path containment
in which terms can co-occur (e.g., two terms co-occur if the distinct paths which
contain them lead to the same leaf vertex, i.e., the terms are used to index the
same page) and using these criteria lead to additional types of FDs [17]. Fur-
ther, notice the t threshold in our generalized notion of an FD defines the type
of FD (t=0 specifies a negative FD and t=100 indicates an FD) for a particular
co-occurrence criteria.

The distinction between levelwise and non-levelwise sites encouraged us to
study the properties of web hierarchies to discern which program transforma-
tions are applicable to certain types of hierarchies. This analysis led to our
development of a partial order of graph-theoretic classes of hierarchical hyper-
media [17] which formally characterize websites by the relationships among the
terms modeling the site’s hyperlink labels. This ordering helps connect our work

10

1 if (sports) if (sports) if (sports)
2 if (soccer) if (soccer)
3 if (movies) if (movies) if (movies)
4 page = 8; page = 8; page = 8;
5 if (news) if (news) if (news)
6 page = 9; page = 9; page = 9;
7 if (players) if (players) if (players)
8 page = 10; page = 10; page = 10;
9 if (events) if (events) if (events)
10 if (baseball);
11 page = 11;
12 if (soccer); if (soccer)
13 page = 12; page = 12; page = 12;
14 if (recreation) if (recreation) if (recreation)
15 if (travel)
16 if (europe)
17 page = 13;
18 if (outdoors) if (outdoors) if (outdoors)
19 if (soccer) if (soccer)
20 page = 14; page = 14; page = 14;
21 if (boating)
22 page = 15;

Fig. 4. (left) Programmatic representation of the website modeled by Fig. 3 (left). (cen-
ter) Representation of the site in Fig. 3 (center) resulting from slicing (left) wrt music.
(right) Representation of site in Fig. 3 (right) resulting from partially evaluating (cen-
ter) wrt only soccer=true.

to the hypermedia and interactive visualization community who have developed
a similar taxonomy [18]. We refer the reader to [17] for a discussion of the formal
details of the classes, detecting them, and proofs of their properties.

4.3 A General Program Transformation: Program Slicing

Even though we were able to generalize the support for out-of-turn interaction
to non-levelwise sites, we still wanted to develop a general purpose program
transformation technique than simply applying a combination of FDs and par-
tial evaluation. One reason for this is that often only a subset of the terms in the
consequent of a negative FD employed are necessary for partial evaluation. For
example, partially evaluating the program in Fig. 4 (left) wrt sports=true and
recreation=false results in the same program as would a partial evaluation
wrt to sports=true and boating, europe, outdoors, recreation, and travel
set to false. This encouraged us to study non-semantic-persevering transfor-
mations (ref. Table 1), such as program slicing [7], to generalize our approach
to different forms of hierarchical hypermedia in a single framework. The idea in-
volves slicing a program to retain only those sequences annotated with the user’s
out-of-turn input [19]. Program slicing [7] is a theoretical operation used to ex-

11

Syntax-preserving Semantic-preserving
Partial evaluation ×

√

Program slicing
√

×

Table 1. Comparison of partial evaluation and program slicing along a syntax- vs.
semantic-preserving dichotomy.

tract statements that affect (or are affected by) the computation of a variable
of interest at a point of interest from a program. There are several varieties of
slicing; backward and forward slicing are the two most relevant for our purposes.
Slicing has been predominately applied to problems in software engineering such
as debugging and reverse engineering [7]. However, it has been applied applied to
web application development [11]. Our use of it here helps relate it to interactive
IR.

When the user says ‘soccer’ out-of-turn in Fig. 3 (left) we forward slice the
program in Fig. 4 (left) wrt the soccer variable at all program points. This leads
to the (page assignment) statements at lines 4, 6, 8, 13, and 20 from which we
backward slice the program. The result is a representation of the site containing
only paths involving hyperlinks labeled ‘soccer’ leading to leaf webpages contain-
ing information about soccer (ref. Fig. 4, center). Finally, we partially evaluate
the program wrt the variable modeling the user’s input (‘soccer’) statically set
to true thereby removing all expressions involving it, since it has now been sup-
plied. This results in a program modeling the new site (ref. Fig. 4, right) from
which an actual site can be recreated. This program transformation technique
generalizes out-of-turn interaction to all of the classes of hierarchical hypermedia
that we identified.

4.4 A Duality in Uses of Program Slicing

The instructive nature of our use of generative programming suggested that an
attempt to compute web FDs via program transformation might reveal more
insight. We developed a technique which uses program slicing to mine web FDs
from a programmatic representation of a website. We refer the reader to [17]
for the details of the program transformation technique and rather focus on
its implications here. We use partial evaluation and program slicing as pruning
operators. There is a tradeoff between these two program transformations in
the context interactive IR. Specifically, one can think of program slicing as a
transformation for

1. directly pruning a website (as illustrated above in Fig. 4), or
2. extracting information (i.e., FDs) about what to prune from a site and then

using this information with partial evaluation to conduct the same site prun-
ing as in (1).

Studying this duality reveals that there might be simpler or more effective meth-
ods for realizing out-of-turn interaction with instances of specialized classes in
our taxonomy, akin to that illustrated in section 4.2 for levelwise sites.

12

Towards a Taxonomy of Program Transformations for Interactive IR
Thus far, we have seen that our generative approach using only partial evaluation
works for only levelwise sites, the most specific class in our partial order. In addi-
tion, we have illustrated an alternate program transformation technique, based
on slicing, to realize out-of-turn interaction in all of the classes of hierarchical
websites we identified. This suggests that additional specialized transformation
techniques might exist for classes in our lattice between the most general and
most specific class. Developing a mapping between classes of hierarchical hyper-
media and generative techniques for interacting with them moves us closer to a
generative programming model for interactive IR.

This section has described many insights and made several connections. To
recap, we have seen that

1. our simplification rules, involving program transformers, led to the idea of a
web FD,

2. web FDs led to a new way to conduct query expansion on the web and,
ultimately, approximate interactive IR,

3. the application of partial evaluation as a pruning operator led to classes of
hierarchical hypermedia,

4. supporting out-of-turn interaction with instances of the classes led to two
new generative approaches: one involving a combination of FDs and partial
evaluation and another involving program slicing which generalizes out-of-
turn interaction to each class,

5. the two new generative approaches and a method to mine FDs with slicing
led to a duality in uses of program slicing, and

6. we are optimistic that this duality will lead to a taxonomy of program trans-
formations for interactive IR.

Overall, this generative programming thread resulted in an improved under-
standing of web taxonomies and new research issues.

4.5 New Research Issues for Web Taxonomies

Many large web taxonomies, such as Yahoo! and the Open Directory Project
at dmoz.org, are modeled as a DAG (Directed Acyclic Graph), owing to the
presence of symbolic links. A symbolic link is a special type of hyperlink which
makes a directed connection from a webpage along one path through a website
to a page along another path. One obvious use of symbolic links is multiclassi-
fication. For example, information about music is classified under both the arts
and computers categories in Fig. 3 (left). Rather than classify information under
more than one category, a designer might classify it under only one category,
but include a symbolic link from one category to another (e.g., from the arts
sub-tree to the computers sub-tree, or vice versa) to give the user the illusion
that the item is classified in both categories. Representing a website modeled
as a DAG using a program is challenging and requires the use of unconditional
branches (e.g., gotos) or functions to factor common branches. This viewpoint

13

leads us to associate a symbolic link with a kludge for out-of-turn interaction. We
hypothesize that designers include symbolic links to address the fact that users
do not have facilities to interact out-of-turn. Testing this hypothesis suggests
that we should mine the uses of symbolic links on the web to identify the typical
contexts in they are employed. Replacing symbolic links with new interaction
techniques which more naturally support users’ information-seeking activities re-
lieves the designer from having to anticipate where and how to include symbolic
links in a taxonomy to accommodate users with diverse informational goals.

Lastly, notice that we might generalize our definition of an FD even further
to capture and expose the various relationships that might exist between the
terms that label hyperlinks in websites. For instance, rather than saying that
the x → y FD holds if t% of the paths through the site involving x also involve
y, we might say the x → y FD holds if M (x, y) ! t, where M is a term similarity
metric from IR (e.g., cosine or Jaccard’s [20]) and t is a threshold. Thus, another
research issue that this thread revealed involves experimentation to identify the
metrics and threshold values that are appropriate for a given (class of website,
information-seeking goal) pair to be supported.

5 New Web Interaction Techniques and Interfaces

5.1 User Interfaces for Approximate Interactive IR

Approximate retrieval in a web taxonomy, introduced above, is important be-
cause, by exposing term relationships (similarities), it can help a user assimilate
the underlying domain by dependency exploration. It also can reveal hidden
aspects of the domain. For example, a user that communicates ‘Senate Senior’
and observes that it expands to ‘Senate Senior Democrat’ might conclude that
the Senior leadership in the Senate is largely Democratic, an inference difficult
to make simply by browsing the site. Such approximate interactive IR suggests
that we might expand a query in real-time for the user or permit the user to set
the expansion threshold (from no expansion to as much expansion as possible)
and dynamically observe the links that are removed or added as the user, e.g.,
moves a slider bar UI widget to dynamically adjust the threshold.

5.2 Dialog Continuations

Our footing on the generative landscape suggested investigating addition tech-
niques from programming languages employed in program transformations, such
as continuations. We then used continuations to design a new web interaction
primitive, dialog continuations, intended to address the destructive nature of
program transformations on interaction. To support procedural tasks, we must
allow for new subdialogs to be dynamically invoked at the behest of the user,
who also determines any partial input that might be applicable at that point.
To achieve this functionality, we explicitly manipulate dialog continuations, bor-
rowing an important notion from the programming languages literature [8]. A
continuation indicates a ‘promise to do something’ and summarizes the amount

14

web: (website × interaction technique × user input) ⇒ personalized website
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
program-theoretic: (program × transformation × variable) ⇒ interaction paradigm

Fig. 5. The connection between the web and program-theoretic domains.

of work remaining at a point of execution in a program. While all languages
employ continuations internally, only some (e.g., Scheme) allow the user to ex-
plicit manipulate and reason about them. To cascade one dialog onto another,
we essentially replace the current continuation with a fresh dialog that has been
partially evaluated with the user’s chosen input, and jump to this dialog. This
allows the user to both abandon a given line of conversation (since the requisite
information has been obtained) and find themselves in the middle of another
line of inquiry.

We have implemented a real-time query expansion interface and various dia-
log continuation interfaces for users to interactively explore the PVS data. They
are available for demonstration from our project webpage at http://oot.cps.
udayton.edu.

6 Discussion

We have described the insight gained by the virtue of a generative program-
ming lens for interactive IR. The central theme of our generative approach is
to pose interactive information retrieval as the application of a program trans-
formations to a programmatic representation of a website based on partial user
input (ref. Fig 5, bottom). The creativity in our work (ref. Fig. 5) arises from
relating concepts in the web domain (e.g., sites, interactions) to notions in the
program-theoretic domain (e.g., programs, transformations). An additional op-
portunity for creativity involves varying the (program, transformation) pair to
achieve a desired form of interaction. The predominate form of interaction dis-
cussed in this article is out-of-turn interaction.

The generative techniques showcased here can be implemented with many
software tools or programming languages. Our implementation employs PHP
for the transformation, generative, and mining components and XUL, SALT,
and JavaScript for the user interaction interfaces. Our generative approach has
not only been instructive, but also has led to a simple implementation strat-
egy. We implemented the entire framework using less then 1000 lines of code,
where the constituent components each occupy approximately equal amounts
of code and are cleanly factored. The framework contains no code specific to a
targeted website. The representation is the only component which contains site-
specific information and is supported as plug-in basis (or simply stored on the
original website’s server). For further implementation details, including caching
and sessioning, see [4]. We have applied these techniques and our framework
to several websites: (i) GAMS (Guide to Available Mathematical Software) at

15

gams.nist.gov, (ii) Project Vote Smart at vote-smart.org, (iii) CITIDEL
(Computing and Information Technology Interactive Digital Educational Li-
brary) at citidel.org [21], (iv) the Open Directory Project at dmoz.org, and
(v) the Online Virginia Tech Timetables of Classes accessible through vt.edu.
We refer the reader to [3, 4, 17] for the details of these case studies.

In summary, the insight exposed by our use of generative programming has
(i) helped us connect our work to other communities, (ii) driven the development
of new concepts, and (iii) led to new research issues. In particular, we connected
our work to the discourse analysis (dialog) and hypermedia/visualization com-
munities. The concept of an FD on the web, while simple, suggested a new way
to do query expansion on the web and led to approximate retrieval in large web
taxonomies. In addition, borrowing notions like continuations from programming
languages led to new, richer, and more conversational, ways of interacting with
websites. We intend to continue to investigate the use of generative programming
for interactive IR. For example, we might use a language’s support for reflection
to permit the user to dynamically query the program for the choices that are still
unspecified as a way of enquiring ‘what may I say at this point in the dialog?’

Another compelling line of future work entails investigating what the ax-
iomatic semantics of a program modeling a website imply about the forms of
interaction supported by the site. In other words, what are the web interaction
analogs to the axiomatic semantics of a program modeling web interaction? An
example of a simple (and obvious) interaction axiom which can be inferred from
the program is ‘no customer shall reach the thank you page without first paying
for the items in their shopping cart.’ We are optimistic that this work will help us
automatically reason about interacting with a site from program axioms. We an-
ticipate such automated reasoning to become more important with the growth of
initiatives advocating for more automation, such as the semantic web [22] which
aims to lift the communication paradigm of the web from human-to-computer to
computer-to-computer. For this reason, we believe that the generative approach
espoused here is especially timely. The long-term goal of this work is to use the
insight detailed here to develop general, but automated, models for the design
of interactive (and responsive) websites.

References

1. Marchionini, G.: Information Seeking in Electronic Environments. Cambridge
Series on Human-Computer Interaction. Cambridge University Press (1997)

2. Allen, J.F., Guinn, C.I., Horvitz, E.: Mixed-Initiative Interaction. IEEE Intelligent
Systems Vol. 14 (1999) pp. 14–23

3. Perugini, S., Ramakrishnan, N.: Personalizing Web Sites with Mixed-Initiative
Interaction. IEEE IT Professional Vol. 5 (2003) pp. 9–15

4. Narayan, M., Williams, C., Perugini, S., Ramakrishnan, N.: Staging Transfor-
mations for Multimodal Web Interaction Management. In: Proceedings of the
Thirteenth ACM International World Wide Web Conference (WWW), New York,
NY (2004) pp. 212–223

5. Jones, N.D.: An Introduction to Partial Evaluation. ACM Computing Surveys
Vol. 28 (1996) pp. 480–503

16

6. Ullman, J.: Elements of ML Programming. Second edn. Prentice-Hall (1997)
7. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Lan-

guages Vol. 3 (1995) pp. 121–189
8. Friedman, D.P., Wand, M., Haynes, C.T.: Essentials of Programming Languages.

Second edn. MIT Press (2001)
9. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley

(1999)
10. Belkin, N.J., Cool, C., Stein, A., Thiel, U.: Cases, Scripts, and Information-Seeking

Strategies: On the Design of Interactive Information Retrieval Systems. Expert
Systems with Applications Vol. 9 (1995) pp. 379–395

11. Ricca, F., Tonella, P.: Web Application Slicing. In: Proceedings of the International
Conference on Software Maintenance (ICSM), Florence, Italy (2001) pp. 148–157

12. Ricca, F., Tonella, P., Baxter, I.D.: Restructuring Web Applications via Trans-
formation Rules. In: Proceedings of the First International Workshop on Source
Code Analysis and Manipulation (SCAM), Florence, Italy (2001) pp. 150–160

13. Graunke, P., Findler, R., Krishnamurthi, S., Felleisen, M.: Automatically Restruc-
turing Programs for the Web. In: Proceedings of the Sixteenth IEEE International
Conference on Automated Software Engineering (ASE), San Diego, CA (2001) pp.
211–222

14. Queinnec, C.: The Influence of Browsers on Evaluators or, Continuations to Pro-
gram Web Servers. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP), Montreal, Canada (2000) pp. 23–
33

15. Quan, D., Huynh, D., Karger, D.R., Miller, R.: User Interface Continuations. In:
Proceedings of the Sixteenth Annual ACM Symposium on User Interface Software
and Technology (UIST), Vancouver, Canada (2003) pp. 145–148

16. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), Washington, DC (1993) pp. 207–216

17. Perugini, S.: Program Transformations for Information Personalization. Ph.D.
dissertation, Department of Computer Science, Virginia Tech (2004) Available in
the Virginia Tech ETD collection at http://scholar.lib.vt.edu/theses/available/etd-
06252004-162449/. US Copyright Office Registration Number TX 6-040-012.

18. McGuffin, M.J., m. c. schraefel: A Comparison of Hyperstructures: Zzstructures,
mSpaces, and Polyarchies. In: Proceedings of the Fifteenth ACM Conference on
Hypertext and Hypermedia (HT), Santa Cruz, CA (2004) pp. 153–162

19. Perugini, S., Ramakrishnan, N.: Personalization by Program Slicing. Journal of
Object Technology Vol. 4 (2005) pp. 5–11 Special issue: Sixth ACM GPCE Young
Researchers Workshop, Vancouver, Canada, October 2004.

20. Srehl, A., Ghosh, J., Mooney, R.: Impact of Similiarity Measures on Web-page
Clustering. In: Proceedings of the AAAI Worshop of Artificial Intelligence for
Web Search, Austin, TX (2000) pp. 58–64

21. Perugini, S., McDevitt, K., Richardson, R., Pérez-Quiñones, M.A., Shen, R., Ra-
makrishnan, N., Williams, C., Fox, E.A.: Enhancing Usability in CITIDEL: Mul-
timodal, Multilingual, and Interactive Visualization Interfaces. In: Proceedings of
the Fourth ACM/IEEE Joint Conference on Digital Libraries (JCDL), Tucson, AZ
(2004) pp. 315–324

22. Despeyroux, T.: Practical Semantic Analysis of Web sites and Documents. In:
Proceedings of the Thirteenth ACM International World Wide Web Conference
(WWW), New York, NY (2004) pp. 685–693

	University of Dayton
	eCommons
	2005

	A Generative Programming Approach to Interactive Information Retrieval: Insights and Experiences
	Saverio Perugini
	Naren Ramakrishnan
	eCommons Citation

	gpce2005.pdf

