6-2017

Liouville Numbers and One-sided Ergodic Hilbert Transformations

David Constantine
Wesleyan University

Joanna Furno
Indiana University - Purdue University, Indianapolis, jfurno@iupui.edu

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the [Geometry and Topology Commons](http://ecommons.udayton.edu/geometry_topo), and the [Special Functions Commons](http://ecommons.udayton.edu/special_functions)

eCommons Citation

http://ecommons.udayton.edu/topology_conf/32

This Topology + Dynamics and Continuum Theory is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Liouville Numbers and One-sided Ergodic Hilbert Transformations

Dave Constantine \(^1\) Joanna Furno \(^2\)

\(^1\)Wesleyan University
\(^2\)Indiana University-Purdue University, Indianapolis

June 28, 2017
\[\sum_{n=0}^{\infty} f \circ T^n(x) b_n \]

- \((X, \mathcal{B}, \mu)\) is a probability measure space.
- \(T : (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)\) is invertible, measure-preserving, (For all \(B \in \mathcal{B}\), \(\mu(T^{-1}B) = \mu(B)\).) ergodic. (For all \(B \in \mathcal{B}\), if \(T^{-1}B = B\), then \(\mu(B)\) is 0 or 1.)
- \(\sum b_n\) is a positive, divergent series.

One-sided ergodic Hilbert transform when \(b_n = \frac{1}{n}\).
Birkhoff Ergodic Theorem

One-sided EHT: \[\sum_{n=0}^{\infty} \frac{1}{n} f \circ T^n(x) = \lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{1}{k} f \circ T^k(x) \]

Theorem (Birkhoff Ergodic Theorem)

Suppose
- \((X, \mathcal{B}, \mu)\) is a probability measure space,
- \(T\) is ergodic and measure-preserving on \((X, \mathcal{B}, \mu)\), and
- \(f \in L^1(\mu)\).

Then
\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k(x) = \int f \, d\mu \]

almost everywhere.
Theorem (Constantine, F)

Let $f = 2\chi_U - 1$, where U is finite union of intervals with
$m(U) = 1/2$. Then there are irrational α such that
$\sum f \circ R^n_\alpha(x)/n$ diverges for all points $x \in S^1$. Such α can be provided explicitly
in terms of the continued fraction expansion.
For an irrational $\alpha \in (0, 1)$, let $\alpha = [a_1 a_2 a_3 \ldots]$ be the continued fraction expansion.

Denote the nth convergent by $\frac{p_n}{q_n}$.

Then $q_0 = 1$, $q_1 = a_1$, and $q_n = a_n q_{n-1} + q_{n-2}$ for all $n \geq 2$.
Fix n. For $k \in [1, a_{n+1} - 1]$, let

$$s(\sigma_k) = \sum_{i=q_{n-1}+(k-1)q_{n+1}}^{q_{n-1}+kq_n} f \circ R^i_\alpha(x).$$

Lemma (Constantine, F)

Let $C = \{k \in [1, a_{n+1} - 1] : s(\sigma_k) \neq s(\sigma_{k+1})\}$. i.e. C is the set of k at which $s(\sigma_k)$ changes. Then $|C| \leq 2B$, where B is the number of intervals in the definition of f.
Let c_m be a sequence, and let $s_n = \sum_{m=1}^{n} c_m$.

Using summation by parts:

$$\sum_{m=1}^{N} \frac{c_m}{m+k} \cdot \frac{1}{m + k} = \frac{s_N}{N + k + 1} - \sum_{m=1}^{N} \frac{s_m}{m + k} \left(\frac{1}{m + k + 1} - \frac{1}{m + k} \right)$$

$$= \frac{s_N}{N + k + 1} + \sum_{m=1}^{N} \frac{s_m}{m + k} \cdot \frac{1}{m + k(m + k + 1)}.$$
An irrational real number α is Liouville if for all $k \geq 1$, there exists a rational number $\frac{p}{q}$ such that

$$\left| \alpha - \frac{p}{q} \right| < q^{-(k+1)}.$$
Let $f = 2\chi_U - 1$, where U is finite union of intervals with $m(U) = 1/2$.

Theorem (Kakutani, Petersen 1981)

If α is not a Liouville number, then the ergodic Hilbert transform of f converges at all points. Hence the set of α for which the EHT of f diverges for any x has Hausdorff dimension zero.

Theorem (Constantine, F)

There exist Liouville numbers α for which $\sum f \circ R_n^\alpha(x)/n$ converges for all $x \in S^1$. The set of such α is dense.
Let f be any mean zero function on S^1. Let $[a, b]$ be any interval of length q_n. Then for any $x \in S^1$,

$$\left| \sum_{k \in [a, b]} f \circ R^k_\alpha(x) \right| < \text{Var}(f).$$

Corollary

Let $f = 2\cdot \chi_U - 1$, where U is the union of B intervals and $m(U) = \frac{1}{2}$. Then, for any interval $[a, b]$ of length q_n and any $x \in S^1$,

$$\left| \sum_{k \in [a, b]} f \circ R^k_\alpha(x) \right| < 4B.$$
Strategy

- Pick near-alternating subsequences.
- Bound the first term in the subsequences (to bound the sum).
- Use the continued fraction expansion:
 - If not Liouville, then there exists $k > 1$ such that $q_{n+1} < q_n^k$ for all n.
 - Taking $a_{n+1} = q_n^{n-1}$ for all (large enough) n implies Liouville and $q_{n+1} \leq 2q_n^n$.

Constantine, Furno

Liouville Numbers and EHTs
Open Questions

Can you find $f_1 = 2\chi_U - 1$ and $f_2 = 2\chi_V - 1$, two mean-zero indicator functions on finite unions of interval, and a (Liouville) number α such that the EHT of f_1 diverges for all x but the EHT of f_2 converges for all x?

Do there exist a mean-zero indicator function f and a (Liouville) α such that the EHT of f diverges for some x and converges for other x?
Thanks!