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Abstract. Recommender systems attempt to reduce information ovkbdoa retain customers by selecting
a subset of items from a universal set based on user pretaren@/hile research in recommender systems
grew out of information retrieval and filtering, the topicshsteadily advanced into a legitimate and challenging
research area of its own. Recommender systems have tredljideen studied from a content-based filtering
vs. collaborative design perspective. Recommendatiansever, are not delivered within a vacuum, but rather
cast within an informal community of users and social cont&herefore, ultimately all recommender systems
makeconnectionamong people and thus should be surveyed from such a pevepeEhis viewpoint is under-
emphasized in the recommender systems literature. Wefoherake aconnection-orientegberspective toward
recommender systems research. We posit that recommemdiasaan inherently social element and is ultimately
intended to connect people either directly as a result df@kpser modeling or indirectly through the discovery
of relationships implicit in extant data. Thus, recommersystems are characterized by how they model users to
bring people together: explicitly or implicitly. Finallyser modeling and the connection-centric viewpoint raise
broadening and social issues—such as evaluation, taggetid privacy and trust—which we also briefly address.

Keywords: Recommendation, recommender systems, small-worldsalsoetworks, user modeling

“What information consumes is rather obvious: it consunhesattention of its
recipients. Hence a wealth of information creates a powefrigttention, and a
need to allocate that attention efficiently among the ouwemdlnce of information
sources that might consume it.”

Herbert A. Simon

1. Introduction

The advent of the WWW and concomitant increase in infornmatigailable online has
caused information overload and ignited research in recendar systems. By selecting
a subset of items from a universal set based on user preéserecommender systems
attempt to reduce information overload and retain custentexamples of systems include
top-N lists, book [71] and movie [4] recommenders, advanced seangines [31], and
intelligent avatars [5]. The benefits of recommendationraost salient in voluminous
and ephemeral domains (e.g., news) and include ‘prediatiliey’ [55], the value of a
recommendation as advice given prior to investing timergneand in most cases, money
in consuming a product. Recommender systems harnessdeesnihich develop a model
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of user preferences to predict future ratings of artifacthe underlying algorithms to
realize recommendation range from keyword matching [45dphisticated data mining
of customer profiles [7]. Recommender systems are now widgligved to be critical to
sustaining the Internet economy [105].

Researchers have identified four main dimensions to helparstudy of recommender
systems: how the system is (i) modeled and designed (ieereabmmendations content-
based or collaborative?), (ii) targeted (to an individugbup, or topic), (iii) built, and
(iv) maintained (online vs. offline) [67]. Recommender syss are typically studied along
the modeling dimension. The most popular (and over-empldsimodeling dichotomy
is content-based filteringi71] vs. collaborative filtering[40]. Content-based filtering
involves recommending items similar to those the user kad iin the past; e.g., ‘Since you
liked The Little Lisperyou also might be interested irhe Little SchemérCollaborative
filtering, on the other hand, involves recommending iterastisers, whose tastes are similar
to the user seeking recommendation, have liked; e.g., $emd Lucy likeSleepless in
Seattle Linus likesYou've Got Mail Lucy also might likeYou've Got Mail' Terveen
and Hill survey content-based and collaborative filteriggtems in a human-computer
interaction (HCI) context [109]. Others classify recommensystems from a business-
oriented perspective [95], often based on how theyaike Forinstance, Schafer, Konstan,
and Riedl survey recommender systems in e-commerce basedace, technology, and
recommendation discovery [95]. These researchers alstheas aspects of recommenders
in a two-dimensional space of recommendation lifetime émpéral vs. persistent) and
level of automation (manual vs. automatic) which is relegtetiow they aremaintained
Recommender systems, however, have an inherently soeiakak and ultimately bring
people together—a viewpoint under-emphasized in thealitee—and therefore should be
surveyed from this perspective. Accordingly, in this syrwee take aconnection-centric
approach toward studying recommender systems.

To help illustrate the elusive presence of a social convigctelement, consider that
the process of recommendation in a ‘brick and mortar’ sgtisrinherently dependent on
knowledge of personal taste. For example, in a restaurahtanfriend, the following dia-
log might arise: ‘The menu looks enticing. Since you are arrehg patron, what do you
recommend?’ ‘Well, since you like spicy dishes, you may et chilli chicken curry.’

A mutually reinforcing dynamic ensues. The recommenderts@nal knowledge of her
friend’s interests are incorporated into the recommendatrocess. Conversely, after a
recommendation is made, the recipient’s personal knove@fighe recommender’s repu-
tation helps him evaluate the recommendation. Recommesydtegms attempt to emulate
and automate this naturally social process. This seemsigigle example speaks volumes
about the process of making recommendations. Not only doasoanmender system have
an underlying social element, but its effectiveness is ipetdd upon its representation of
the recipient. Therefore, recommender systems involveraseeling, which includes de-
veloping a representation of user preferences and ingerdser models can be constructed
by explicitly soliciting feedback (e.g., asking the userdte products or services) [55] or
gleaning implicit declarations of interest (e.g., througbnitoring usage) [110].

User modeling is directed toward developing a basis to caenpeerlap, and ultimately is
conducted to makeonnectionamong people to drive recommendation. Thus, once enough
users are engaged and modeled to sufficiently sustain arsysb@nections (recommenda-
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Figure 1. A connection-centric view of recommendation as bringingpe together into a social network (center).
(left) Formationof a social network bgxplicitly collecting ratings or profiles. (right) Identification adidcovery

of a network by exposing self-organizing communitieslicit in user-generated data such as communication or
web logs. Although not illustrated explicitly, these twgoapaches may be combined.

tions) can be made. Recommendations, thus, are not delivéttein a vacuum, but rather
cast within an ‘informal [community] of collaborators, tedgues, or friends’ [57], known
as a social network [115]. Explicit user modeling (and clating the resulting ratings) then
can be seen as directed toward forming such connected (coityngraph components.
Collecting implicit declarations of preference also carwviesved as directed toward induc-
ing social networks. This is analogous to techniques toodliscexisting social networks
from patterns embedded in interaction (transaction) dBf@refore an extension to tradi-
tional approaches to implicit user modeling, and an appréeward a basis to compute
recommendations, entails directly exposing these segluizing and self-maintaining so-
cial structures. Since social networks model social peegshese informal communities
with shared interests are implicit in data generated autically by electronic communi-
cations. This extension is corroborated by a recent trewdri exploring and exploiting
connections of social processes in graph representatice#f @rganizing structures, such
as the web, as a viable and increasingly popular way to gatigfrmation-seeking and
recommendation-oriented goals [24, 50, 51]. This lesssiweaapproach not only super-
sedes the need to explicitly model users individually, lbed eesults in more natural, reflec-
tive, and fertile organizations for recommendation. Exglion of identified existing social
networks fosters the discovery of serendipitous connes{ib06], social referrals [57], and
cyber-communities [56], and hence offers many opportesitor recommendation. The
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use of social networks has expanded to many diverse agphod®mains such as movie
recommendation [68], digital libraries [72], and commuy#itased service location [108].

This connection-oriented viewpoint and these two waysalfzing it provide the basis for
this survey. We posit that recommendation has an inhersaotiyal element and is ultimately
concerned with connecting people either directly as a regwdxplicit user modeling or
indirectly through the discovery of relationships imgiici existing data (see Fig. 1). We
make connection-based distinctions. Systems are chaeseidy how they model users
to bring people together: explicitly or implicitly. The gdaen of a recommender system
is to bring as many people together as possible, which alggests a novel evaluation
criterion (e.g., algorithmd connectse individuals while algorithmB connectsy) [68].
Thus, while Amazon may make better book recommendatiomsBlaanes and Noble, if
they arrive at connected user componentsin the same mémereimn this survey they would
be considered equivalent.

Reader’'s Guide The balance of this survey is organized as follows. Sectipne8ents
an historical perspective of recommender systems andhestlheir evolution from IR.
Section 3 showcases approaches to creating connectiorecfinmendation via explicit
user modeling while Section 4 describes approaches tofgieigtsocial networks implicit
in (usage) data to explore for recommendation. The reldgths of these two sections
reflect the emphasis each places on connections. Approtmbas] identifying implicit
communities and resulting systems make social networksnéadnd thus are treated in
greater detail. User modeling and the connection-cenievpoint raise broadening and
social issues, such as evaluation, targeting, and privaatyrast, which we cursorily address
in Section 5. We identify various opportunities for futuesearch in Section 6.

2. A Chequered History

While Amazon.com [59], a pioneer in the e-commerce revotytspear-headed a move-
ment toward recommenders and was instrumental in bringioly systems to critical mass,
recommender systems research is a result of a series af shiftformation systems (IS)
research. In the 1970s a great deal of IS research was fooaskrl In this era Salton
and his students developed the vector-space model [107ihen8MART system [84].
Researchers modeled IR systems with large sparse (andyamtiretric) term-document
matrices which permitted document similarity to be measung the cosine of the an-
gle between vectors in a multi-dimensional space. Pretiai recall became the two
quintessential IR metrics [96]. The emphasis of such rekeand systems was on sat-
isfying short-term information-seeking goals by retrigyiinformation deemed relevant
to queries. IR research flourished in this period and manpatipe techniques such as
relevance feedback [84] were developed, demonstratinifigdasuccess.

As the end of the 1970s drew near, electronic informatiombecmore abundant. The
1980s brought a rapid proliferation of information due tektep computers and applica-
tions such as word processors and spreadsheets. In additeomtroduction of e-mail
into the mainstream further exasperated the copious amairext residing in comput-
ers (termed ‘electronic junk’ by Denning [34]). The new fauease of information gen-
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eration ignited a shift in IS research initiatives. Reshars began to focus on removing
irrelevant information rather than retrieving relevarformation. Information categoriza-

tion, routing, and filtering became of immediate importang¢ais first shift spawned an

information filteringthread.

In 1991 Bellcore hosted a workshop on information filteritig) (vhich lead to the Decem-
ber 1992Communications of the ACKpecial issue on the topic [60]. In this issue Belkin
and Croft compared and contrasted IF and IR [14]. While IRiésteturning relevant in-
formation in response to short-term information-seekioglg via requests such as queries,
information filtering involves removing persistent ancelavant information over a long
period of time. Information filtering systems model docutrfeatures in user profiles [71],
which replaced terms in a modeling matrix as a result of thift ¢see Table 1). Infor-
mation filtering later became known esntent-basefltering to the recommender system
community and has been applied to recommend movies [4] aokkl{@1]. Content-based
systems model content features of artifacts, rather thatoofiments, and recommend
items by querying such product features against keyworgseaferences supplied by the
user [49]. SDI (Selective Dissemination of Informatiomewmf the first information filter-
ing systems, was based on keyword matching [45]. Contesdebfitering is most effective
in text-intensive domains, which account for only a portdthe artifact landscape. Since
we take a connection-oriented perspective toward recordatam, content-based models
and methods do not find place in this survey.

In addition to identifying these differences, articleshistspecial issue also reported new
research developments. Foltz and Dumais introduced latnantic indexing as a viable
technique to reduce dimensions in a term-document matfik [B81ore importantly for
recommender systems, Goldberg et al. coined the pleksdorative filtering[40] while
describing Tapestry, which later became known as the ficsimenender system [86]. Col-
laborative filtering, which can be defined as harnessingdhieides of others in satisfying
an information-seeking goal, introduced another shifSindsearch. Collaborative filtering
entails filtering items for a user that similar users filterlbtead of computing artifact sim-
ilarity (content-based filtering), collaborative apprbas entail computing user similarity.
The most salient difference between these two approachiesti; content-based filtering
users do not collaborate to improve the system’s model ahthehile in collaborative
approaches users leverage the collective experience ef offers to enrich the system’s
model. Collaborative filtering is predicated upon persisteser models, such as profiles,
which encapsulate preferences and features (e.g., mamagider than ephemeral queries.

This shift replaced features with representations of pe@b., rating or profiles) to filter
documents in a modeling matrix. While documents still citutgtd the other dimension of
the matrix, the word ‘document’ assumed a broader meanieg tie birth of the web. In
addition to its traditional interpretation, it also camertean webpages and bookmarks [25,
85, 110], as well as Usenet and e-mail messages [40, 55].

Collaborative-filtering is effective since people’s tastee typically not orthogonal. How-
ever, initially it was not embraced. Meanwhile, the advefithe web and its widespread
use, popularity, and acceptance, made reducing informatierload a necessity. Of par-
ticularimportance was social information filtering, a ceptdeveloped by Shardanand and
Maes [97]. Afew years later, in 1996, interest in collabivetiltering led to a workshop on
the topic at the University of California, Berkeley. Theuks of this Berkeley workshop
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Table 1.Shifts in matrix models outlining the evo-
lution of recommender systems from information
retrieval.

Concept Modeling Matrix

Information Retrieval terms documents
Information Filtering featurex documents
Content-based Filtering featuresartifacts
Collaborative Filtering people documents
Recommender Systems peopleartifacts

led to the March 199Communications of the ACBpecial issue orecommender systems
a phrase coined by Resnick and Varian in their article intoiray the issue [86].

Resnick and Varian choose the phrase ‘recommender systathsr than ‘collabora-
tive filtering’ because recommenders need not explicitiab@rate with recommendation
recipients, if at all (helping to reconcile the differendedween content-based and col-
laborative approaches) [86]. Furthermore, recommendagiers to suggesting interesting
artifacts in addition to solely filtering undesired objg¢tslping to reconcile the differences
between IR and IF). Resnick and Varian define a recommendesgstem which accepts
user models as input, aggregates them, and returns recahatiwers to users. Two early
collaborative-filtering recommender systems were Firgily bikeMinds. Firefly evolved
from Ringo [97] and HOMR (Helpful Online Music RecommendatService) and allows
a website to make intelligent book, movie, or music recomatagions. Firefly’s under-
lying algorithm [91] is now used to power the recommendagagines of sites such as
BarnesandNoble.com.

Collaborative approaches constitute the main thrust ofectimrecommender systems
research. Once users are modeled, the process of collaediléring can be viewed op-
erationally as a function which accepts a representatioperfs and universal set of artifacts
asinputand returns arecommended subset of those artifagtaput. More importantly for
this survey, recommender systems also are intended to cogrmeips of individuals with
similar interests and to leverage the collective expegeather than merely focusing on the
information-seeking goal of a specific individual (as inital IR setting). In order to make
connections, this function typically computasnilarity (e.g., closeness, distance, or nearest
neighbor). Making recommendations and thus connecti@rsehtails approximating this
function. Approaches to this approximation that have exikange from statistical mod-
els (e.g., correlating user ratings [55] or reducing dinems[41]) to attribute-value based
learning techniques (e.g., decision trees, neural nesye@ikd Bayesian classifiers) [83]
and have demonstrated qualified success [20]. Ultimatelyethechniques can be viewed
as ways to infer structure and induce connections in the timzdeatrix space.

This final shift replaced documents with artifacts in the wod) matrix. While the
evolution of recommender systems research is charadldrzthe shifts in matrix models
illustrated in Table 1, the sparsity and anti-symmetrigyemties remained constant across
each. As shown below, the web makes the matrix model symenedparsity is mostly
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Table 2.User modeling methodology of a collaborative-filteringaenender system.

user reluctance to rate items (compounded by volume & carmfgprivacy)
sparse modeling matrix (cold-start)
— explicit + implicit user modelingédxploratior)
representation of user (ratings, profiles) as basis forecion

T 1

— deliver recommendations & create connectiogp(oitation

sustain
(explorationvs. exploitation
—

attributable to the reluctance of users to rate artifactslu®ance results from a lack of
time, patience, or willingness to participate. Sometirhedtenefits gained from providing
constructive feedback are not apparent initially. Relncéamay be partially attributable
to a heightened awareness of privacy when divulging petsofamation. Therefore,

collaborative-based recommender systems must mediatecamaay (of connection) vs.
sparsity (of model) tradeoff. The following two sections devoted to strategies for filling
in cells of the initially sparse modeling matrix.

Since 1997 recommender systems research has advanced yndiregtions, such as
reputation systems [87] (e.g., eBay.com), and was placedanger context called ‘per-
sonalization’ [79]. The functional-emphasis of currerdammender systems makes them
‘templates for personalization’ [78].

3. Creating Connections: Explicit User Modeling

User modeling entails developing representations of useds, interests, and taste and is a
critical precursor to connecting people via recommendatin addition to personal char-
acteristics, users can be modeled by their assessmentediqts in the form of ratings,
which then become matrix entries. Sparse user feedback isitigle greatest bottleneck
of any collaborative-filtering algorithm: ‘Collaboratiiétering algorithms are not deemed
universally acceptable precisely because users are natgMib invest much time or ef-
fort in rating the items.’ [10]. These problems are compachith voluminous domains,
where a large cumulative number of ratings is required téicseitly cover an entire set
of items. Moreover, as the number of dimensions (e.g., geopproducts) grows larger,
the number of multidimensional comparisons grows. In suittasons techniques from
data warehousing and OLAP (On-Line Analytical Processarg)applicable [8]. In large
domains, users typically examine and evaluate only a sraedgmtage of all items. Shallow
analysis of content makes fostering connections diffidnttesopportunity for user overlap
is limited. While in the initial stages of a system, this dbafje has been echoed as the
‘cold-start’ problem [65] (also referred to as the ‘day-boe‘early-rater’ problem), it is
also ubiquitous during the lifetime of a system. For exanwlenllaborative recommender
has no platform to compute connections for a new user whodtds yate products or a new
item which has yet to be evaluated. Such problems in devadogbasis for collaboration
provide ample motivation for hybrid approaches which emmontent-based filtering in
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these specific situations. Hybrid systems have shown ingat@erformance over either
single focus (pure) approach [13, 32, 98]. Systems mustcialiser data which affords the
identification of differences, commonalities, and relasibips among people. In short, the
goal is to add more and more information to transform a spaiaeix to a dense matrix
with added structure.

Approaches to user modeling can be studied by how they hade¢s [86], either ex-
plicitly by asking users to submit feedback through sunj&$ or inferring user interest
implicit in (usage) data [28, 110]. Strategies for the formgproach are showcased in this
section, while those for the later are discussed in Sectidrhé most important tradeoff to
consider in user modeling is minimizing user effort whileximaizing the expressiveness
of the representation (as well as privacy). In other wordere should be a small learn-
ing curve. Explicit approaches allow the user to retain amiver the amount of personal
information supplied to the system, but require an investrimtime and effort to yield con-
nections. Implicit approaches, on the other hand, miniraff@t, collect copious amounts
of (sometimes noisy) data, and make the social element tomeender systems salient,
but raise ethical issues. The secretive nature of thes@agpipes often make users feel as
if they are under a microscope. The user-modeling methagdtar a collaborative-based
system is illustrated in Table 2.

In explicit user modeling, evaluations [55] and profiles][@&e provided directly by users
to declare preferences in response to solicitations fa siath as surveys. Evaluations of
recommended artifacts can be both quantitative (e.gngslj akin to relevance feedback
in IR and IF [69], and qualitative (e.qg., lengthy reviews girtions.com). They also can be
positive or negative. In a hand-crafted profile, a user staterests through items such as
lists of keywords, pre-defined categories, or descriptidiige system then matches other
users against this profile to recommend incoming artifaBigstems which take such an
approach to user modeling are SIFT [119] and Tapestry [40].

Without crossing over to an implicitapproach, researchave identified strategiesto deal
with reluctance to make an explicit feedback requiremessthmticeable and taxing [55, 86].
Possible approaches to motivate users to evaluate itersglageription services, incentives,
such as transaction-based compensations, and exclugibjpsgmploying a pay-per-use
model for recommender systems, where human experts rats,its a viable, though
less dynamic, option. While this approach connects usegfin experts and is thus
collaborative, it deemphasizes the naturally social (@&rdgnal) elementto recommenders.
Default votes are another way to deal with sparse ratings [B@veloping and tightly
integrating natural user interface (Ul) mechanisms toc#tadind capture feedback with
existing interfaces for recommendation delivery may lealks$s intrusive interaction and
thus more cooperation and data [39]. A similar approach mitlsl recommendation into
everyday systems, such as e-mail, news, and web clientsamnites like collaborative
spam detectors (e.g., Cloudmark’s SpamNet, http://mwvaudihark.com). In addition to
helping to collect more explicit ratings, building reconmmdation into common Uls may
help disseminate recommender systems to the masses. iRgasiers to evaluate clusters
of, rather than individual, items is another approach toimizing effort. Rather than
tackling sparsity from a user perspective in an explicitrapph, it also can be approached
from a system viewpoint. Filter-bots which automaticatiamine and rate all products
may occupy empty cells of a modeling matrix [93].
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Lastly, a problem endemic to the subjective nature of ekptiodeling techniques is that
some users are more effusive in their ratings than othefssikity in ratings refers to cases
of users who share similar preferences, but rate productompletely different scales.
Identifying variations in rating patterns is an approachdmbat effusivity [10, 37]

Other Considerations A variety of representations have been used to store usef2it
The lack of standards to represent such information andiisces (e.g., logs) in a uni-
form manner make interoperability among recommender systa challenge [19, 30].
Cookies are mechanisms for capturing and storing user ngrefes, often employed in
e-commerce [18]. While cookies combat the stateless HTBRpol, like many of these
techniques, they raise security and privacy concerns Ise¢hay are typically unknowingly
enabled and as a result personal information is divulged.

A challenge for any user modeling approach (explicit or iiplfor content-based or
collaborative recommendation) is the tradeoff betwegrploration (modeling the user)
andexploitation(using the model to predict future ratings or make recomragads and
connections), akin to that in reinforcement learning [88judying the connections which
can be made via recommendation and the resulting socialonietwduced in a random
graph setting provides technical insight into this prohldfirza, Ramakrishnan, and Keller
identify a ‘minimum rating constraint’ required to sustairsystem and predict values for
it based on various experimental rating datasets [68].

Ultimately the approachesto user modeling illustratetiimand the following section are
used to connect people. While a purely collaborative apgrt@mrecommendationis widely
accepted and employed, it is riddled with endemic problddser modeling must address
more than just sparsity. For example, itis difficult to makemectionsto users with unusual
or highly specific tastes. Furthermore, connecting usdtssimilar interests who have rated
differentitems (e.g., ‘we both read world politics onlibet he ranked BBC.com webpages,
while | ranked CNN.com pages’) is challenging. Over-spiasion of evaluated artifacts,
sometimes referred to as the ‘banana’ problem[26], arises frequently purchased items,
such as bananasin a grocery market basket, will always bewaended. Conversely, some
products are seldomly bought more than a few times in aiifetie.g., automobiles) and
thus suffer from a low number of evaluations. Over-spezagion which is grounded in the
exploration vs. exploitation dilemma can be addressed bagionally forcing exploration.
Forinstance, one can injectrandomness (e.g., crossosdenatation in a genetic algorithm
or epsilonin a reinforcementlearning algorithm) into a mlodRecommended artifacts also
can be partitioned inthot andcold sets, where the latter is intended to foster exploration
and increase the (rating) coverage of items in the systein [10

3.1. Review of Some Representative Projects

The following collaborative-based systems employ manyhef éxplicit user modeling
techniques showcased above and illustrate what can bevadhiath representations of
users. People are connected in the following systems thretadistical [41, 55], agent-
oriented [25], and graph-theoretic [10] approaches.
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GroupLens GroupLens recommends Usenet news messages [55]. The sysidais
users directly by explicitly eliciting and collecting ragjs of messages through an indepen-
dent newsreader. GroupLens is a project of the recommeyskeinss research group at the
University of Minnesota. Usenet news is a personal, volumé) and ephemeral media (in
comparison to movies) and thus an excellent candidate flatmrative filtering. A total of
250 people evaluated over 20,000 news articles [81]. Grenplakes a statistical approach
to making connections. The system predicts how a user sgpeé@ommendation would
rate an unrated article by computing a weighted averageeofatings of that message by
users whose ratings were correlated with the user seekbogmaendation. Correlation is
computed with Pearsoniscoefficient.

A research issue is deciding whether to provide persorthpredictions (as GroupLens
currently does) vs. personalized averages. Empiricadrebeaising Pearsonscorrelation
coefficientrevealed that ‘correlations between ratings@aedictions is dramatically higher
for personalized predictions than for all-user averagagat [55]. These results reinforce
the hypothesis that not all users are interested in the satictes even within a certain
newsgroup (e.g., consider a vegetarian vs. a meat-eatet.fiood.recipes).

Konstan et al. state that ‘predictive utility is the difface between potential benefit
and risk’ [55]. The potential benefit of making predictiosghe value of hits and correct
rejections. The risk involved in making predictions is tlostof misses and false positives.
Konstan et al. identify many of the approaches to increasitigg coverage in explicit
user modeling discussed above, such as filter-bots — pregfahautomatically read and
rate all articles [93]. They also identify implicit decléi@s of quality such as the time
spent reading an article. Konstan et al. recognize that sm®es are more effusive with
their ratings than others. The developers of GroupLensrbg#Perceptions (http://www.
netperceptions.com), a company employing collaboratiterifig to provide personaliza-
tion solutions.

Fab Balabanovi¢c and Shoham take an agent-oriented approaskticdocument rec-
ommendation in Fab, which grew out of a Stanford Universigytdl library project [25].
People are modeled in Fab through explicit (and some intpliechniques resulting in
ratings and profiles. The construction of accurate userlpsofirive various agents in
dynamically adapting the system. Fab is therefore a reptatee illustration of the impor-
tance and power of user modeling. The hybrid approach tameeendation in Fab retains
the advantages of both a content-based and collaboratpeagh while addressing the
disadvantages of each. Moreover the synergy yields newfitenEab treats each single
focus (pure) approach to recommendation as a special catelgforid of the two. ‘If
the content analysis component returns just a unique filantather than extracting any
features, then it reduces to pure collaborative recomntangé there is only a single user,
it reduces to pure content-based recommendation’ [25].

Fab consists of two processes: collection and selectiorrinBuhe collection phase,
agents gather web sources on topics discovered from dhugteser profiles. In the selection
process, an agent matches a user profile against what tleetamtl agent has gathered.
Thus, one user may be matched against many topics and rewi8prs may be interested
in the same topic. Users proceed to rate results. A useitgggaimodifies his profile and
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concomitantly helps the collection agent harvest morevegieinformation for an updated
profile. Fab uses

‘the overlaps between users’ interests in more than juktlootative selection. The
design of the adapting population of collection agents sak@vantage of these
overlaps to dynamically converge on topics of interestnd. providing the pos-
sibility of significant resource savings when increasing tlumbers of users and
documents’ [25].

Fab connects two users if a collection agent has clustemdtofiles in order to collect
more web sources of the central theme of the cluster.

Intelligent Recommendation AlgorithmA graph-theoretic collaborative filtering algo-
rithm developed as part of the suite of recommendation esgimthe Intelligent Recom-
mendation Algorithm (IRA) program at IBM Research is preedrin [10]. The algorithm
is motivated by sparsity; Aggarwak al. contend that most collaborative filtering algo-
rithms, such as those for Firefly, LikeMinds, and GroupLeaky, on too many ratings to
be successful because they connect udeestly (e.g., usersA and B are connected if
their ratings for at least items are correlated). These algorithms commldsenesdy
taking a weighted average ohly immediate neighborsRather than viewing sparsity as
a vice, Aggarwakt al. exploit it in their algorithm. The greatest contributiofitbeir
algorithm is its use of functionahdirection i.e., it allows recommendations to propagate,
via more than one intermediary, from a user to another whanbagated common items.
The idea is to form and maintain a directed graph, whereogstiepresent users and edges
represenpredictability. Since the graph is directed, recommendations are antirsfric.
When one user predicts another, ratings propagate in thilem@d he ultimate idea is that
predicted rating of item for useri can be computed as weighted averages computed via
a few reasonably short directed paths joining multiple sig&0]. This effectively makes
predictability more general then closeness and addrdssedftisivity of ratings.
Aggarwalet al. also partition the presentation of resulting recommendatinto hot
andcold sets. The hot set, which is two orders of magnitude smallen the cold, is
intended to increase commonality to provide better reconttaons while the cold set is
intended to foster more exploration and increase the ratirgrage of objects. While most
of the collaborative filtering systems with explicit useraeding deliver predictable recom-
mendations, this approach encouragrestivelinks which violate pre-existing hierarchical
classifications to introduce the possibilitysdrendipitousecommendations. Aggarwet
al. evaluated their algorithm as well as that for GroupLenseffyi, and LikeMinds, for
accuracy against synthetic data.

4. Discovering Extant Social Networks

Recognition of implicit declarations of user interest israqursor to discovering existing
communities of people. Implicit modeling techniques areatural extension of those
addressed in the previous section. We begin by discussirjggts which mine declarations
of interest in news [110] and bookmark [85] datasets to easimmendations and discover
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Table 3.Recommender systems research focused on discoverinqgx-sstial networks. The left column contains modeling
concepts, while the center column contains examples ofaihgeclarations of interest or connections mined fromsistems
in the right column. Notice that each system relies solelystoactural, rather than semantic, information. Note alfed the
emtpy cell in the lower right hand corner of this matrix is figetion that few systems take advantage of small-world nrtigs.

Concept Implicit declaration of interest System
Traditional Approaches to Implicit User Modeling URLs in&iet news PHOAKS
bookmarks Siteseer
Link Analysis and Cyber-Communities e-mail logs DiscomgrShared Interests
web documents Referral Web
Mining and Exploiting Structure movie ratings datasets pimg Connections
hits-buffs, half bow-tie
web link topology HITS
authorities and hubs CLEVER
bow-tie
Small-World Networks actor collaborations

author collaborations
infectious disease
the web

connections. Although these systems foster communitssdqall recommender systems),
they do not make social network identification salient. Wkhiktive effort is required
when extracting declarations of interest to identify cartios, natural connectivity among
people is self-evident in data. We therefore next discussngiconnections implicit in
communication [106] and news [57] logs to induce existingametworks to exploit for
recommendation. We then discuss mining and modeling ssiriadture in movie ratings
datasets [68] and on the web [52] via link analysis to helptifgcyber-communities. We
conclude by discussing small-worlds [118], a new class ofadmetworks which present
compelling opportunities for serendipitous recommerwhatiTable 3 outlines the landscape
of research showcased in this section.

4.1. Traditional Approaches to Implicit User Modeling

Implicit approaches toward modeling users were developadsponse to the pervasive
reluctance to evaluate recommended artifacts and, althesg emphasized, the possibility
of building richer representations than with explicit apgehes. The idea is to glean user
preferences, often secretively, by observation, to sesveuarogates for explicit ratings.
A cold-start is less evident in this approach as implicitngs bootstrap the model and
system. Most of the techniques for implicitly gathering asgloiting user information are
based on methods and algorithms from machine learning [24,775] and data mining,
which attemptto discover interesting patterns or trendiifiarge and diverse data sources.
These techniques are largely based on heuristics. Datagnatgorithms also have been
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Figure 2. PHOAKS’ model of connecting users. The three recommengdrsp2, and p3) have mentioned the
same URL in Usenet messages and thus that URL is recommemtiedrecipients (p4, p5, and p6) with a weight
of three. This illustration of the recommendation procesSBIHOAKS makes nine connections among people
(each recommender is connected to each recipient and visa)ve

subsequently used to make recommendations. Their exgdimiand space complexity is
acceptable for user modeling which can be conducted offlilséng data mining techniques
forrecommendation is a challenge because recommendatigst®ften be delivered in real
time [59]. In addition, although notthe focus here, inexgemand less complex techniques
for computing recommendations (e.g., correlating usengaj are relatively effective.
Sophisticated approaches to recommendation also sudfier yielding recommendations
which are difficult to explain or believe; recommendatioplainability and believability
are desired properties [46] (see Section 5).

A variety of data sources exist, teeming with and useful feaging information about a
user’s interests and background. Persistent keywordseantbacted from previous user
gueries. Clickstream data, such as (web) access logsyvataaitle for monitoring, captur-
ing, and chartering a user’s interaction with a system, eddled ‘footprints’[116] (e.g., ac-
tions during web browsing, links followed, or amount of tispeent on each product page).
Web log mining techniques [90] are therefore relevant ts tipproach and have been
used to create a platform to recommend webpages based osibgogimilarities with
previous users [64]. Web log mining also has been used te fratterns of navigation to
restructure [76] and evaluate [99] websites in a broadesgoelization context [62]. Other
techniques harness Ul events such as scrolling and mogkegl{42]. Alternate implicit
indicators of preference include market baskets and psectransaction data, which are
typically exploited by algorithms for mining associatiomes [2]. Other, less obvious,
implicit, self-organizing, and social declarations ofdrgst are bookmarks [85]. The fol-
lowing two projects mine data sources containing impligtidration of interest for user
modeling. Based on their mined implicit ratings they idgntionnections and make rec-
ommendations. Although as a result of implicit user modginrtual communities are
identified, these projects do not make identifying such camities salient.

PHOAKS Like GroupLens, PHOAKS (People Helping One Another Knowff${d10]
recommends Usenet news messages, but unlike GroupLemgiaterimplicit, rather than
explicit, user modeling. PHOAKS interprets the inclusiohumiform resource loca-
tors (URLSs) in messages as an implicit declaration of irsier&€he recommendation pro-
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cess in PHOAKS entails mining URLS, filtering irrelevant apiirious URLSs via heuris-
tics (e.g., remove links embedded into an e-mail signatang)computing aweight for each.
A link’s weight is its occurrence frequency in messagesrogther words, its number of
distinct recommenders. This metric was later extendedhdtized, and termed ‘authority
weight’ by Kleinberg [52]. Finally, relevant recommende&Ls and associated weights
are returned to the user. Precision and recall are appéidabthe URLs that PHOAKS
recommends and thus were computed. The recommendatioassroEPHOAKS, which
is illustrated in Fig. 2, connects a recommender with a ienipf the recommender has
included a URL in a message in the recipient’s search topitadio, and if that URL is cited
with a high frequency in that domain.

Terveen et al. evaluated their weight metric by comparin@RKS recommendations to
those provided in frequently asked question lists (FAQsEwhre created by human judges
of quality. Their evaluation approach suggests a noveliegjubn of PHOAKS,; it also can
be used to semi-automatically create FAQs or recommencbivepnents to extant FAQs.
In addition, Hill and Terveen present an idea for improvihg guality of search engine
results called community sorted search [48]. The idea isi@rkeyword search and cluster
the results based on the newsgroups which mention eachliotder to disambiguate the
qguery. URLSs could be presented sorted by frequency withissaxges of each cluster.

Siteseer Siteseer models users through their bookmark folders [88lokmarks are a
rich data source to exploit for user modeling because thejatdbthe need to collect ex-
plicit ratings and are an implicit declaration of interes|f-maintained, and less noisy in
comparison to other implicit rating sources such as a mdige(which could be random)
or a URL embedded in a newsgroup message (e.g., [URL] isfamimative!’) [110]. Fur-
thermore, the binary nature of a bookmark (presence or abjyefiminates the possibility
of partial preference. Bookmarks do not capture lack ofgmazice as do other data sources.
Most importantly bookmark folders are the basis for the fation of a virtual community.
Siteseer computes set intersection between input bookioldeks. A user who has a folder
with the greatest overlap with the seeking user’s folddrédxest qualified recommender for
that seeker in the context of that folder. Furthermore eadividual URL can be assigned
more weight based on the number of folders that it appear&irina virtual community,
akin to the authority weight metric of PHOAKS. Siteseer maooends a set of bookmarks
in context (i.e., a folder). The system connects people inectdd, non-reciprocal manner
akinto IRA[10]. Itis pertinentto note that Siteseer doesmark on any semantic informa-
tion such as bookmark title and is therefore an illustratibhow indicative purely (social)
structural information can be. Siteseer suffers from protd endemic to a purely collab-
orative approach. For instance, both a new user to the syatehan existing user who
want to create a new folder provide Siteseer no input basisnpute overlap. Conversely,
no collective experience is available to leverage untillaerycommunity has been discov-
ered. In addition, bookmarks are typically not public domai readily available. Siteseer
therefore requires trust and buy-in.
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Figure 3. A friendship social network graph. Vertices represent peapd an edge between two vertices denotes
the ‘friend-of’ relation.

4.2. Link Analysis and Cyber-Communities

Siteseer is on the cusp of directly identifying communitieglicit in data. A natural exten-
sion of Siteseer is to proactively mine data which saliergilyeals social connections among
people. In addition to explicit communities, such as disauslists, e-groups, and com-
munity portals [33], many communities also are implicit @ta, such as communications
logs [106] and webpages [57], which are fertile reflectiohsatural connectivity among
people. These communities are available to be identifiegloexd, and exploited [38].
Identification is also worthwhile since, unlike connecanduced via explicit modeling
approaches and the corresponding systems in the previcligsémplicit social networks
foster the attractive possibility aferendipitouscollaborators and recommendation. For
example, consider the editor of a journal interested in fognan impartial committee of
reviewers for a submitted paper. A social model of autholabalrations is an invaluable
resource for such a task. Furthermore, unlike other recamderesystems which require
users to create and maintain profiles [25], approaches whatdtel people connections or
social organization implicit in rich, self-generating daésult in representations which are
likely to be more accurate reflections than a user’s pereet his own connections [57].
These communities are typically modeled as social netwjd4] and thus research from
the social network analysis community is relevant to (awttically) discovering and ex-
ploring these networks. In this section we emphasize auiorsacial network induction,
exploration, and exploitation, especially since the maidentification and formation of
such communities, collaborators, and referral chainsiisspaking, error-prone, and time-
consuming.

Social Networks The study of social network analysis dates back to the 196@sial
networks, which derive their name from social associatamsng people, model a social
process, or specifically, connections among individuatshpects. A social network graph
is a unipartite undirected graph, where vertices represbjeicts (typically people) and
edges represent relationships between those objects‘fgemnd-of’). A social network
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graph is thus characterized by heterogeneous verticesanddeneous edges, i.e., while
each vertex represents a unique entity, each edge repeksergame relationship. Fig. 3
illustrates a friendship social network reproduced andrgeld from the center of Fig. 1.

Although not the focus of this paper, it is relevant to notat thhnany interactions and
associations in existing web information spaces are mdde#ea social network naviga-
tion metaphor [57, 113]. Two popular examples are the Iteffovie Database at http://
www.imdb.com and the DBLP bibliography website at httpwiwinformatik.uni-trier.de/
~ley/db/, a collaboration graph of authors, papers, jorald conferences. In contrastto
hierarchical classifications, where users systemati¢dtlif-down’ to hone in on desired
information, in sites based on social network navigatioarsisnteractively ‘jump con-
nections’ in support of an exploratory information-segjgoal. Support for foraging in a
network, modeling connections among entities, may have bem out of Vannevar Bush’s
1945 essayds We May Thinkvhich foreshadows the web [27]. In this article Bush states
that selection by associations among items more closelghmathuman perception of
information foraging than selection by hierarchical indgéxictures.

The increased interest in the concept of social networksléthgo the formation of
communities and journals devoted to the subject. The latemnal Network for Social
Network Analysis (INSNA), which was founded by Wellman in7B3(http://www.heinz.
cmu.edu/project/INSNA), has emerged as an authority ciakoetwork analysis. Journals
onthetopicinclud&ocial NetworksConnectionsand thelournal of Social StructureNote
however, that the main thrust in the above forums remaigetad toward the sociological,
rather than the computing, community. Studying algorithvhich identify and exploit the
combinatorial structure of social networks is a newly erireggomputer science research
area being actively investigated by Kleinberg at CornelMersity. We refer the interested
reader to [51, 113] for a succinct introduction.

Following are examples of projects which mine connectiam$ exploit the resulting
social network discovered for various recommendation psep. The research projects
showcased here attempt to identify social networks in da@dajarious heuristics, implicit
in naturally generated data, rather than mining user peafsss to form them; they also
emphasize modeling connections which distinguishes threm those in the previous
subsection. The following two projects emphasis socialvogk induction, exploration,
and exploitation.

Discovering Shared InterestsOne of the earliest yet untouted attempts at inducing social
networks by link analysis entailed analyzing e-mail comination logs, based on heuris-
tics, to uncover an extant social network [106]. In the idf@d communication network,
two individuals share an edge if an e-mail was exchangeddsetihe two. Spurious con-
nections were pruned by heuristics. The discovered soeiaark was intended to help
people (vertices) identify others with similar interestslaencourage cross-fertilization
among the cluster participants. The authors defined thespaéclosenesbetween two
vertices with the following function:

InterestDistance(ny,ng) =
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whereC'(n;) is the set of vertices directly connected to ventgx A value of zero for this
interest distance metric indicates that the two input gegthave all neighbors in common.
Conversely, avalue of one indicates that the two inputeesthave no neighborsin common.
Such a function is useful for information-seeking actestsuch as locating a known expert
on a particular subject. The authors contend that otheviihaiils within close proximity
of that expert vertex are also recommenders on the pantisulgect. This research was
not embraced when published in 1993. However, ten yeans taipious amounts of log
data as a result of the ubiquitous nature and extensive ube efeb has made this work
attractive. It is now frequently cited in both the recommemnslystems and social network
analysis literature.

The Hidden Web: Referral WebAkin to the work described in [106], the Referral Web
project at AT&T Labs also implicitly models users to form &dmetworks, where an
edge exists between two individuals if their names appeatdse proximity in a web
document [57]. Again, the underlying assumption is thasteted vertices correspond to
people who share similar interests. The Referral Web prajec builds on many ofthe ideas
first introduced in [106] by, e.g., exploring the resultimg®l networks to find experts or
recommenders on a particular subject. Kattl. intended for users to interactively explore
the implicit, existing social network in web documents tifi&tir mining made explicit. The
authors discuss three types of information-seeking gasdssucould attempt to fulfill in
the resulting network—finding referral chains, searchimgeikperts, and proximity search
near known experts—which are reflected in the context of aderscience researchers in
the following information-seeking questions, respedyiyg7]:

e Whatis my relationship to Marvin Minsky?

¢ What colleagues of mine, or colleagues of colleagues of pkinew about simulated
annealing?

e List documents on the topic ‘annealing’ by people close totS€irkpatrick.

Kautzet al. also have developed the complementary concepasadfiracyandrespon-
sivenessn a social network [58]. They hypothesized that the acouica referral is
inversely proportional to the number of intermediate libk$ween the individual seeking
recommendation and the expert providing the recommendétiderred to as ‘degrees of
separation’ — the length of the shortest path connectingvisvtices in a social network
graph). Kautzet al. refer to this in the model they developed as tekerral factor A,

a real number between 0 and (A4,d) = A4, wherea is a fixed scaling factor and
d is the number of steps from the vertex to an expettis the probability that a vertex
will refer in the direction of an expert. Likewise, the fuethremoved an expert is from
a requester, the less responsive the expert is expected tdehez et al. refer to this in
the model they developed as tlesponsiveness factdt, again a real number between 0
and 1.p(R, d) = R%?, whereg is a fixed scaling factor representing the probability of an
expert responding to a requestklinks away. Kautzt al. ran a series of simulations on
this model with various values for each of these parametédrs results of the experiments
reveal a tradeoff betwees and R [58]. Through simulation, Kautet al. discovered that
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automatic methods can outperform manual referral chaimugomatic referral chaining
however requires sending more messages and thus demargesatich of more vertices.
Identifying the effects of certain parameters of a devettpedel for social network graphs
is invaluable for setting such parameters when designiggtas. Such experimental anal-
ysis has been conducted on movie rating datasets [68]. Aneodémo of Referral Web is
available at http://weblab.research.att.com/refwebfimg/temp/RefWeb.html.

4.3. Mining and Exploiting Structure

Mining social networks from existing data is a method of imiplLser modeling for collab-
orative recommendation. Social networks also can be folmgexpplying transformations
on other, typically bipartite, graph representations idiend in datasets. Entertaining the
possibility of inducing social network graphs from biptetgraphs fosters social network
analysis in domains where the presence of such networkg isatient. Consider that a
ratings dataset can be modeled as a bipartite graph ratireatmatrix. In social network
theory, a bipartite graph is referred to asadiiliation networl{114] (other researchers refer
to them a<collaboration graphg44]). In social network theory enodeis defined to be a
‘distinct set of entities on which structural variables areasured’ [114]. A social network
graph consists of only one mode (e.g., ‘people’ in Fig. 3)tamning vertices which share
a unifying feature, while an affiliation network has two medeaprimary mode and a
secondary—each corresponding to a disjoint vertex set in the bigagiaph.

A classical example of an affiliation network is the actorsecollaboration graph (also
known asthe ‘Hollywood graph’ [43]), where actor and moviethe primary and secondary
modes, respectively. In order to induce a social networblgranembers of the primary
mode can be brought together via their relationships witmbers of the secondary mode.
The role of the secondary mode is then to bring objects of timegry mode together. This
process can be viewed as collaborative filtering. For exangpinsider that the community
of authors of computer science publications is implicit is@anputer science corpus or
digital library. This social network, where vertices reggat authors and two authors share
an edge if they have coauthored a paper, can be mined fromtharanaper affiliation
network representation of the corpus. The Institute foetific Information (ISI) maintains
such networks and provides associated products and setwibelp facilitate the discovery
process for researchers. An editor of a technical journglwigh to employ arecommender
system which models this network to facilitate her formatd an impartial committee of
reviewers to evaluate a paper submitted by a particular taddmuthor. In such cases,
candidates would be those with moderate closeness to timve. While an impartial
reviewer is one who has never coauthored a paper with thewee, a prime candidate
also should have moderate knowledge of the submitted Eajogric and thus be slightly
close to the reviewee in the resulting social network. Irhstases, the editor may want
individuals within two or three degrees of separation frowm author whose paper is to be
reviewed. When applied to such activities, recommendéeryswhich model such social
connections among individuals are compelling and appliédaka variety of other important
information-oriented tasks (including some studied infiklel of ‘bibliometrics’ [73]) such
as granting tenure to a faculty member of a university.
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Figure 4. Inducing a social network graph (b) from an affiliation grappresentation (a) of a movie rating dataset
via a skip jump. Re-attaching movie vertices to the sociaoek graph yields a recommender graph (c) which
forms a half bow-tie structure. Figure used from [67] withirpission.

Inducing or identifying social networks entails mining Edtructure in representative
datasets which typically results in a graph model. That lgrtdyen can be explored and
exploited to support many information-seeking and recomuaéion-oriented activities.
Mining structure typically entails identifying charadsgics, such as the degree of connec-
tivity or clustering to make statements with certainty atiha underlying domain and social
process. Investigating why structure arises in the firstgklso is useful for gathering in-
sight into the underlying social process and its impligagion recommendation. Exploring
and exploiting graph structures of social processes isldevand increasingly popular way
to satisfy information-seeking goals as reflected in [24580. The following two projects
entail explicitly identifying structure, such as conneityi and level of clustering, and in
turn exploit it for recommendation. The main idea of thistgetis to mine, model, and
exploit social structure for recommendation.

Jumping Connections Mirza, Keller, and Ramakrishnan developed a graph-theoret
model to design and evaluate recommender systems [68]r &ppfoach is connection-
centric and entails inducing social networks and idemifyvarious structural properties
therein from public domain movie rating datasets. EachngatidataseR used, namely
EachMovie (collected by the Digital Equipment Corporajiand MovieLens (developed
by the recommender systems researcher group at Univefditjinaesota for the Movie-
Lens project which is based on the ideas from GroupLens;tp@/movielens.umn.edu),
was a matrix (people< movies) of ratings and was modeled as an undirected bipartit
graph, where the two disjoint vertex sets correspond to lpd®}) and the moviesi/) they
have rated (Fig. 4a). An edge between a vertex of each setatathe ‘rated’ relationship.
In these affiliation networks, people and movies are the gnynand secondary modes,
respectively.

Mirza et al. induced various social networks by applying various ‘jusgecifications
of how individuals in the affiliation network representatiof R are to be connected in the
resulting social network grapfis (Fig. 4b). A jump is a function7 : R — S, where
S C P x P. The elements of (unordered people pairs) represent the edge§ of
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There are many ways of jumping. #kip jumpdirectly connects persan and persory

in G, if they have rated a common movie. The skip jump is a speci# cdahammock
jump, which induces & s where two people are directly connected if they have evatliat
w movies in common, where is termed thenammock width A jump can be thought
of as a recommendation algorithm and therefore, all recomimesystems bring people
together, in one form or another, via jumps, albeit eachesysnay jump in strikingly
different ways. Systems then can be classified by how thep jmd the number of people
each jump connects in the resulting. Mirza et al. also propose the number of people
connected by a jump as an evaluation metric for recommendterss (see Section 5).
Finally, re-attaching the movie vertices to the peopleivest of G (Fig. 4b) produces
a recommender grapt, (Fig. 4c), where directed paths from people to movies may be
discovered.

After applying a jump, Mirzaet al attempt to identify structural properties 1, and
G,.. They have identified a half bow-tie structure@.. This higher-order structural
observation is analogous to the identification of the (fblhw-tie structure in the link
topology of the web [21], which arises since the web’s nugleansists of a strongly
connected component (SCC, the center of the bow-tie), wgdspavhich link only into
it (the left side of the bow-tie), and pages which are onliéid to from the SCC (the right
side of the bow-tie). Iid7,., theG is the SCC (the center of the half bow-tie) while the movie
vertices ofG.., the right half of the bow-tie, are only linked from this SG%ig. 4 illustrates
the entire process by which@; is induced from an affiliation network representiRg
via a skip jump and subsequently augmente@'tdy reattached vertices of the secondary
mode of R (movies) toG,. Note that people are brought together via movies analogous
to Kleinberg’s authorities being brought together via himhe affiliation topology of the
web [52].

While both data sets studied by Mirzd al. are extremely sparse>03%), both are
connected. Another interesting discovery was that eactsdaexhibited aits-buffstruc-
ture, i.e., some people (buffs) rate all movies while some&ie®(hits) are rated by all
people. This intriguing structural property is attribuako both the underlying domain
and the hypothesized power-law distribution [29] follovilydmovie ratings (and other self-
organizing systems, e.g., the web and airports). Noticendbat this structural discovery
resembles the mutually reinforcing relationship of Kle2ndps authorities and hubs.

The power law distribution of movie ratings has other imafions. For example, as
w increases(z, becomes more disconnected. A hammock width of seventeereatey
disconnectd; in the MovieLens dataset. What is surprisingly interestigvever is
that at that breaking point the graph has one large SCC play mealated vertices rather
than many small SCCs. Mirzzat al. refer to this process as ‘shattering’ the graph. This
phenomenon is again attributable to the power-law didtigbun movie ratings. One large
SCC and many small SCCs (i.e., communities) do not emerga Whebreaks because
movie viewers typically do not have strong biases in thestea. Mirzaet al contend
that in other domains, such as books and music, small conti@singpresenting the many
diverse genres (e.g., country or jazz) in such domains visleasw is increased. Thus, the
group hypothesizes that books and music ratings do notwal@ower-law distribution.
Such hypotheses have yet to be verified due to the inabilitybtain datasets in such
domains, and thus leave scope for future work.
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Akin to the tradeoff between the referral and responsivefagor in Referral Web [58],
Mirza et al report the effect of the hammock width on the minimum rating constraint
k (i.e., the minimum number of items users must rate prior ¢eikéng recommendations)
and the various shortest paths used to route recommensasioch as,,, (shortest path
length inG,), I, (shortest path length i&8,.), andl,,,,, (shortest path length from people to
movies inG,.). Identifying an optimal number of evaluations requiredtistain a system
is invaluable from a design perspective. Random graph yheglawys a large role in this
analysis since movie ratings do not correspond to a paatigwhph, but rather a family of
graphs. Thus, while graph algorithms, such as Dijkstraiglsisource and Floyd's all pairs
shortest path algorithms, can be applied, they will notataay interesting properties in
R. The researchers thus study random graph models for recodendataset graphs and
associated attributes such as degree distributions. Ragdaph models typically accept
an edge probability and number of vertices as input and ¢@pandom graph meeting
such properties and constraints.

The ultimate goal of the Jumping Connections project is tebg a model wherein the
implications of certain parameters (e.@.pr <) on the structural properties 6f; andG..
guide the design of a recommender system. Development bfesowdel entails studying
the effects certain jumps have on the properties of the iegul7;. Based on random
graph models the researchers would like to say €hais connected if some condition
holds (e.g.,x > 20). Being able to make such statements with high probaisigufficient
from a theoretical computer science point of view. Suchnmfation is critical not only
to comparing various recommender systems but also to grayidesigners answers to
questions such as ‘If | know that | only need a hammock widttioofr to effectively
make recommendations, to what should | set the minimumgatimstraint of our new
recommender?’

Future work includes incorporating user ratings. ThusHardgroup has only been con-
sidering the binary nature of ratings (presence or abseoncejake connections. This
again reflects that substantial insight into recommendatam be achieved with purely
structural information, as in Referral Web [57] and Site488], rather than semantic in-
formation such as ratings. Mirza et al. also would like tanfafly test their hypothesis
that jumps (i.e., recommendation algorithms) never brisgahnected components of the
recommender dataset graph together. The researcherdbgjzatthat in certain patholog-
ical cases, such as when the dataset graph contains tworishimsubgraphs, the singular
value decomposition [104] (also known as latent semantiexing to IR researchers [15])
will connect disconnected portions®&f. Jumping Connections is a novel research project;
it helps make a science out of recommender systems whichtreigonally lacked any
sophisticated model to design and evaluate systems.

HITS Inaddition to mining bookmark, communication, and newsdets, recently much
research has been conducted on mining the link topology efuteb [31]. The most
significant and compelling contribution in this area is Kieerg's observation, through
mining link structure, that the web is an affiliation netwedasisting of arauthoritymode
and ahubmode. Authorities are authoritative sources on a topic (EGA.com for golf)
while hubs are collections of links to authorities (e.g.okmarks or favorite links pages).
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Hubs and authorities mutually reinforce each other: godldaities are linked to by many
good hubs, while good hubs link to many good authorities.[52]

The identification of this compelling structural propertasvimportant since the web
was widely believed to be a unipartite graph where all pager®werceived to be of the
same type. This observation gave birth to search engineshwély exclusively on purely
structural information to navigate and search the web. déetification of a second mode of
webpages, namely hubs, was required in order to conneairéigk who would otherwise
not be linked due to competitive reasons (e.g., the webphalykonosoft does not link to
the webpage of IBM, yet both are computer companies). Kkxigb HITS (Hyperlink-
Induced Topic Search) algorithm exploits such structurfalrimation to search the web for
authoritative sources.

The HITS algorithm attempts to identify good hubs and aiitiesrby assigning hub and
authority weights to webpages based on a (QR [104]) matnixgpdteration. A similar
project [56] approaches trawling the web for cyber-comriesias mining structure in
bipartite graphs. These researchers however describal€ej’s hubs and authorities
as fans and centers, respectively. The two groups haveboodited on a survey of the
measurements, models, and methods of the ‘web graph’ [S@lero, Terveen, and Hill
experimentally measured whether authoritative sour@gaod predictors of quality [9].

As a result of mining the link topology of the web, the HITS ailighm is the most
illustrative and powerful example of what can be done puwéth structural information
akinto Referral Web [57], Siteseer [85], and Jumping Cotinas [68], rather than semantic
information, such as text indexed on a page. Specificallyy3His evidence that link
structure is sufficient to correctly characterize, aggtegand leverage the interests of a
large population.

The CLEVER search engine of IBM [31] was designed based orsHG@oogle, devel-
oped at Stanford University, is another search engine wticisiders link structure [23].
PageRank, the algorithm of Google, only computes authenitights, however, and thus
does not connect authorities via hubs. The Google enginaaklyzes textual information
in addition to link structure. It therefore involves a hybaipproach (i.e., both structural and
semantic information is incorporated). The most saliefieténce between the PageRank
and HITS algorithms is that PageRank analyzes the link straof the web offline while
CLEVER mines the web on a per query basis. An implication & thfference is that
Google is a much more practical application than CLEVER duthé expensive matrix
operations required for HITS in real-time.

4.4. Small-World Networks

While typical examples of social networks are the actoratmiration graph and author
collaboration graphs, a new class of social networks (asaddasted random graph models)
has emergedsmall-world network§44]. These networks naturally model the small-world
phenomenon. In the late 1960's, Harvard social psychdl&janley Milgram paved the
way for small-world network analysis by conducting a unighain letter experiment [66].
As opposed to the other projects discussed in this secttirerrthan attempting to discover
a social network, Milgram hypothesized that a social nekveaisted and tested both if that
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Regular Network Small-World Network Random Network

Increasing randomness

Figure 5. The Watts-Strogatz model for small-world graphs. Edgesfaaegular ring lattice (left) are randomly
rewired based on a rewiring probability yielding a small-world network after only a few random rengs (cen-
ter). Whenp=1, all edges are rewired yielding a completely random gi(aigiht). Figure used from [67] with
permission.

network exhibited small-world properties and, more imaotly, if individuals, with only
local views of the network, could successfully construarsbhains between members.

The experimentinvolved source individuals in Nebraskaangas delivering a letter to a
target person in Boston, MA via intermediaries. Sourceviddials were given only a few
cursory biographical characteristics of the target andnitezd to forward the letter only
through individuals to which the source was on a first naméshkasd so on. As letters
propagated east across the US, the experiment revealeahthdwo individuals in the ac-
guaintance network of the United States could be connebtedgh a few intermediaries;
or more formally that the acquaintanceship network of thekt8bited small-world proper-
ties. Milgram’s experiments specifically revealed thatawmyrandomly picked individuals
residing in the US were connected by no more than six inteia@dcquaintances. The
small-world phenomenon later became popularly known aslsgrees of separation,’ after
which both a play and its movie adaptation have been named.d&brees of separation
between two vertices in a social network graph is the lenfitheoshortest path connecting
the two vertices. The problem of reducing the number of mestiaries in a social network
has historically been referred to imformation routing

When put into context the small-world phenomenon does revhszutlandish. Consider
that a college student in a large state university might lmmeoted to the president of the
United States through five intermediaries on a first namesl{asy., student — professor
— department chair — dean — university president — goverrmesident of the US) in a
connection path of length six. The impact of the small-wgtdknomenon is ominous
when studied from the perspective of infectious disease.

A small-world is a graplz which exhibits certain structural properties while modgli
some natural phenomenon. Small-world graphs are struigtutgaracterized by sparse
edges (i.e., many more vertices than edges), highly ckbtezrtices, and relatively short
paths between any two vertices. Random graph models hangbagosed to study small-
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world networks [3, 6, 12, 35]. Watts and Strogatz have dgeda random graph model for
small-world networks based on a rewiring probability (siee 5) [118]. The Watts-Strogatz
model for small-world graphs interprets a small-world natvas a hybrid between a
completely ordered ring lattice (wreath) and a completalydom graph, leaning closer
to the lattice. Theaverage minimum path length of G is ‘the minimum path lengttl
averaged over all pairs of vertices’ [44]. Watts and Strogefer to average minimum
path length as ‘characteristic path length’ [118]. Tdhaestering coefficient of a vertex
in G is the degree of the vertex divided by the maximal number giesdvhich could
possibly exist between the vertex and all its neighbors. r&haristic path length is a
global property of a network, while clustering coefficiemtilocal property measuring the
‘cliquishness’ in a neighborhood. Watts and Strogatz disoed that by replacing some
local contacts with arbitrary ones (called ‘random rewgf)nthe clustering coefficient of
a network remains high, close to that of the initial comgietedered network, while the
characteristic path lengthis drastically reduced. Theehlbegins with a regular ring lattice
where vertices are highly clustered with large averagemmimi path lengths between any
two vertices (Fig. 5, left). In the model, from this latticeéges are randomly rewired based
on a rewiring probabilityy. Randomly rewiring only a few edges (less than ten percent of
total edges) renders a small-world graph where vertexaingt remains relatively high, but
average minimum path length is drastically reduced in caispato the ring lattice (Fig. 5,
center). When all edges are rewired the model produces aletetyrandom graph where
vertex clustering is low and average path length is smad).(&j right). The replacement
of local links with random links (random rewiring) manifgstself in the real world when
someone moves to a new city, starts a new job, or joins a club.

Watts and Strogatz hypothesized that small-world properixist in diverse domains
and that the small-world phenomenon arises in many selifozing systems such as the
actor-collaboration graph, the power grid of the Western &8l the nervous system of
the nematode worm Caenorhabditis elgans. They examined tieal world networks to
test the existence of small-world properties. All threeaslisd networks exhibited small-
world properties. These conclusions suggest that the amgalt phenomenon is common
in many large networks found in nature and not merely anaattiéf an idealized world.
Small-worlds also are believed to exist in the spread ofadiseand most importantly as of
recently, the web [44, 118].

The research of Watts and Strogatz has peaked interestdyirsgumany other diverse
social domains via small-world graphs. By conducting anagigtive survey of the actor-
collaboration graph implicit in the Internet Movie Databa$jaden at the University of
Virginia found the maximum degrees of separation from angran Hollywood to Amer-
ican film actor Kevin Bacon, termed the ‘Bacon Number, to been (four on average,
and eight from all film actors and actresses of any nationdlit12, 44]. Tjadan main-
tains a website called tHehe Oracle of Bacoat http://www.cs.virginia.edu/oracle/ which
provides an interface to compute Bacon numbers.

Determining the impact the small-world phenomenon has erd§mamic behavior of a
distributed system is an open research issue. If small @satman edge set of a graph
can have a dramatic impact on its global structural propgrthe same changes might
affect its behavior as well. This issue was studied in theedrof infectious diseases
and games. With infectious diseases, shortest path lenygtliess faster spreading of the
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disease. Therefore, global dynamics do depend on couppajdgy. Games on graphs,
such as the Prisoner’s Dilemma reward game, can be siméadiyzed. When a low level
of ‘hardness’ in players exists, cooperation dominates,tte timescale depends quite
sensitively on the fraction of shortcuts. When the level afdmess in players is average,
the amount of cooperation which succeeds depends on thiefratshortcuts. Cooperation
is more difficult to sustain when the number of shortcutséases due to those individuals
who do not desire to cooperate. One would like to optimizé ltieé spread and sustenance
of cooperation.

Another important open research question is whether iddals with only local knowl-
edge can effectively navigate in a small-world [53]. In dubati to identifying small-world
properties in the acquaintance network of the United Sthdgram’s experiment, more
importantly, illustrated that people with only local kn@slge of the network (i.e., of their
immediate acquaintances) were actually successful at afigroonstructing acquaintance
chains of shortlength. An openresearch question is if caerpras opposed to humans, can
construct short referral chains via an algorithmic procedileinberg developed a decen-
tralized algorithm which is capable of constructing pathstwrt length in a small-world
for one particular model of small-world networks which heveleped [54]. Electronic
communications (e.g., e-mail) have made Milgram’s experitand research results easily
replicable. For example, the Small World project (http@diworld.columbia.edu), which
is led by a group of researchers including Watts, is an ordkperiment to test Milgram’s
six degrees of separation hypothesis.

Adamic tested the web and discovered through experimentttat it is a small-world,
where vertices correspond to websites, as opposed to dudiivebpages, and hyperlinks
are considered to be undirected [1]. She also addressethfiiieations these properties
have on searching the web and on discovering the structurertsin social communities
with a web presencel, was estimated by averaging the paths in breath-first seBFE®)(
trees. L was small (about 3.1 hops) ard was 0.1078 compared to 2:3 10* for a
corresponding random network with the same number of \we=rimid edges. A second case
study considered directed links. The largest SCC was cozdpant the graph. BFS trees
were formed on a fraction of the vertices to sample the tistion of distances.L was
slightly higher due to the directed links adtwas 0.081 compared to 1.05 10° for a
corresponding random graph with the same number of verticdsdges. This empirical
evidence reveals that there is a small-world network of vtebs A third case study was
performed on the .edu subgraph of the web which is consitlesafaller (i.e., distances
between every vertex could be actually computed). Agamldtgest SCC was computed.
L was found to be 4.062 and was found to be 0.156 vs. 0.0012 for a corresponding
random graph with the same number of vertices and edges. iHap$oster short average
path lengths between two randomly selected (authoritypagbs and thus may be integral
to small-world properties in the web. ‘In summary, the latgg@CCs of both sites in general
and the subset of the .edu sites are small-world networks svitall average minimum
distances’ [1].

Adamic discusses how search engines could take advantdigesef small-world prop-
erties. The idea of capitalizing on these structural festuf the web for web search is
that it is more advantageous to return good starting paaited ‘centers,’ ‘index pages,’
or ‘hubs; i.e., where ‘the distance from them to any othecudnent within the group is
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on average a minimum’ [1]. Search results thus can be groapearding to such good
starting points. An application built around these ide&sents a user with a list of centers
sorted by the SCC size and allows the user complete freederpinring these SCCs.

The next important research question is, aside from ideatifin and navigation: Can a
small-world topology reveal clues to the structure of reatledl communities, via the struc-
ture of the connections between documents which membdrssd communities manually
created? Adamic contends that a small-world topology cawige clues to the structure of
real-world communities. She states that ‘exploring th& §tructure of documents which
belong to a particular topic could reveal the underlyingtiehship between people and
organizations’ [1]. Adamic discovered, via the applicatghe developed, that the pro-life
community in the real world is larger, more closely knit, dmetter organized than the
pro-choice community by calculating the number of sitestaimed in each SCC. Such
an observation can have significant implications for mankestrategies and red ribbon
campaigns.

In summary, small-worlds present opportunities for recander systems. If identified,
not only do they help model users and communities implidittyevealing social structure,
but also help connect people via short chains. For exanfdearch engines could take
advantage of the web’s small-world property, then users wiitly local knowledge of the
web may actually be able to find and construct short pathsdmtypwairs of webpages. Since
Albert, Hawoong, and Barabasi have shown the diametereoivisb to be nineteen [3], if
one knows where one is going, then one can get there fasdidahmeterd of a graph’z is the
‘shortest path between the most distant vertices’ [44] réntty web search engines do not
exploit short path lengths between webpages. Finding dumft gaths within information
abundant spaces, akin to using a compass, reduces infommtéerload and expedites
recommendation. In conclusion, the main point to take froismisection is that knowledge
of the existence of certain, typically social, structuras @roperties (e.g., connectivity,
bow-tie, or small-worlds) can be exploited by recommengdsuish as search engines, to
intelligently provide more effective results.

5. Broadening I ssues

As we have illustrated, recommender systems are not usadlatipn but are rather cast
in a broad social context. In this section we briefly discusmbening issues regarding
recommender systems, such as evaluation, targeting, aratynd trust. This cover-
age of broadening aspects of recommendation is not meaet ¢alaustive. While each
issue warrants survey in isolation, we only make some cynsmnarks here. This sec-
tion is intended to provide pointers to authoritative sesrto the reader interested in how
recommendation affects these topics.

5.1. Evaluation

While evaluation is critical to the success of a recommengstem or algorithm, rigorous
evaluations are rarely performed, mainly due to the lackroversally accepted formal
methods for system evaluation. Analyzing a recommendatigorithm from a functional

perspective is the most popular approach to evaluation [30ch an approach typically
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involves measuring ‘predictive accuracy’ via a trainiegttset analysis [41]. An alternate,
more personal and social, approach is to conduct HCI studtbuser participants [101].
The former approach is employed more frequently than therlaThese two approaches
are at opposite ends of an evaluation spectrum and areedferas off-line vs. on-line
evaluation [47].

Functional-oriented Evaluations Most evaluations of recommender algorithms use stan-
dard IR metrics like precision and recall [110]. The Groupteecommender systems
research group has evaluated recommendation algorithnesdommerce [94]. They in-
vestigated traditional data mining techniques (e.g.,@ation rule mining in transactional
data [2]), nearest-neighbor collaborative filtering, amdehsionality reduction. Again, the
evaluation metrics discussed are traditional: supporcamfidence [2], and precision and
recall [96].

After [86], the second most highly cited article in the recnender systems literature is
a paper describing empirical evaluation of the predicta@igacy of collaborative filtering
algorithms [20]. Breese, Heckerman, and Kadie focus onigtied accuracy rather than
efficiency. Their approach to evaluation is purely statadti They developed two classes of
evaluation metrics to characterize accuracy: averagdwbsteviation of predictions and
utility of ranked lists of recommended items. Breesal compute these metrics across
popular functional approaches to collaborative filterisgch as correlation, Pearsom’s
vector similarity, inverse user frequency, and statitBegesian methods, in variousratings
datasets, including the EachMovie dataset. Although husatisfaction is not considered
in this analysis, the evaluation techniques introduceg@hijave become a de facto standard
for recommender systems [41].

While there is nothing intrinsically bad about these fuoistil-oriented approaches to
evaluation, they do not capture the underlying social pps@volved in recommendation.
As echoed repeatedly in this survey, recommendation is laerémtly social process and
recommender systems ultimately connect people. Evalyatrecommender system via a
purely mathematical analysis of its functional approximma{predictive accuracy) ignores
this integral social process [47]. In addition, recommeiatis must be explainable [46]
and believable to users. Functions are not always expl&nalfunction could be a black
box to a user, which provides no transparency [46]. Theegfyaditional training/test
set approaches [41] and associated metrics, such as preaisi recall, and support and
confidence, are inadequate for algorithm evaluation frowcéasperspective.

Social-oriented Evaluations Swearingen and Sinha posit that the effectiveness of a rec-
ommender system transcends the predictive accuracy ohdsrlying algorithm [101].
The opposite end of the recommendation evaluation spedsymrely social and entails
conducting satisfaction surveys and studies. Such stadésare largely because of the
high cost involved. Sinha and Swearingen conducted studithsusers, as part of the
HUBRIS (HUman Benchmarking of Recommender Systems) prajedC Berkeley, di-
rected toward comparing recommendations given by frieadhdse by six commercial
and widely available recommender systems [100]. Theinsalsb addressed the degree to
which assessments of overall recommender system perfomveere correlated with the



28 PERUGINI, GONCALVES AND FOX

quality of the recommendations or the user interface. Ttimate objective of their study
is to develop a user-centered design approach toward reeadensystems. Their initial
results indicate that an effective recommender inspires tigst in the system, provides
explainable recommendations w.r.t. system logic (terrtraci$parency’) [102], and makes
serendipitous connections.

A Hybrid Approach In partto reconcile these two extreme approaches towafdatian,
Mirza, Keller, and Ramakrishnan developed the Jumping Ectimns model to evaluate
recommendation algorithms based on the number of peopjecttrenect. For example,
recommendation algorithrd can be compared to recommendation algoritBnby the
number of people connected by the jump thahodels vs. the number of people connected
by the jump thatB models. Such an approach places an emphasis on the undextgiial
element to recommendation and the social network inducedesult.

The most striking contribution of their approach to evahmts that it resides at the
fringe of HCI. Using ‘the number of people brought togethgy’a particular jump as an
evaluation metric for recommender systems is not as congplegphisticated as studying
evaluation from a traditional functional-oriented perspee, but is more cost effective than
an empirical study. Moreover, it is not as social-orientecgédull blown study with user
participants.

5.2. Targeting

Targeting answers the question ‘for who or what are we hugidihis system?’ and can be
critical to the success of a recommender system. Systentsedangeted to, e.g., all users,
a particular user, a set of topics, or per user per topic. tkckainduced by these choices of
targeting dimensions is shown in Fig. 6. We briefly mentioreaample of each strategy
in the targeting lattice. Other possible targeting dimensiinclude geographic location or
genre.

Top-N lists and FAQs are designed to provide recommendationsttddp all users (Fig. 6,
bottom; the greatest lower bound). ‘My Sites,” such as My 70] are customizable
web portals targeted to the individual (Fig. 6, left). Thewselects areas of interest from
several content modules, such as news, stock quotes, weaitesports, and the system in
turn provides recommended links to these topics. Indexdifith] adapts websites based
on various niche topics (Fig. 6, right). The system autocaditi synthesizes index web-
pages (i.e., hubs) consisting of links to other webpagesrimy a particular common topic.
The synthesis of index pages is conducted by mining userdingwpatterns implicit in
web logs and conceptually clustering webpages to indudegof he ‘Syskill & Webert’
project [77] combines the individual and topic targetinmmdnsions by targeting per user
per topic (Fig. 6, top; the least upper bound). A user ratsited webpages on a three point
scale and the system induces a user profile by analyzingfilvariation on each webpage.
The system then recommends interesting websites to usszd ba the learned profile and
webpage topic.
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targeting per user per topic
(e.g., Syskill & Webert)

T T

targeting by user targeting by. topic
(e.g., MyYahoo!) (e.g., IndexFinder)

—

targeting all users
(e.g., Top-N lists or FAQs)

Figure 6. Targeting a recommender system. A lattice structure isdgedby choices of targeting dimension: to
all users, a particular user, a topic, or per user per topic.

5.3. Privacy and Trust

As expressed throughout this paper, recommendation liagess of privacy and trust [80].
Both an explicit and implicit approach to user modeling suffom privacy issues with the
latter assuming more responsibility for evoking concerae tiuits elusive nature.

A tradeoff exists between collecting and leveraging as nuseh information as possible
and inspiring trust between the user and system. Storing'ys@files and background
leveraged for recommendation on the client-side is an amirto empowering users with
more control over their personal information and degreeiwbpy. Users then control the
tradeoff between benefit and risk by deciding on their dddigeel of involvement. This
sentimentis corroborated by Singh, Yu, and Venkatrama8][@®o compare community-
based networks and recommender systems to suggest tha¢ peally want to control
who sees their ratings and understand the process of recodati@n. Belkin however
argues that with sufficient reason to trust recommendatisess are willing to give up
some measure of control and accept suggestions [16]. Scsearohers even advocate
exposing user profiles to build trust [120]. Other researshbentend that understanding
why a recommendation was made cultivates trust in a syst@®2].[1Trust also can be
designed into online experiences [92].

The issue of user privacy in general is not specific to a purellaborative approach.
Privacy and trust issues however are compounded in a collib®setting as user interests,
background, or identity may be exposed to other users fating in a social network in
addition to the system. Moreover, issues of privacy are nofined to a user and a rec-
ommender system, but rather cascade across the socialrketsueh systems induce or
identify. Recall that when a recommender ratings datasdtests, many isolated commu-
nities take form. As the hammock width increases initiadlysters tend to be fuzzy with
many vertices bridging across each cluster. As the hammadik wontinues to increase,
however, clusters will crystallize with only one or two \ieels serving as bridges across
SCCs. Often one or two users span such communities and prihddasis for a serendip-
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itous recommendation. Such users or bridge vertices aledcaleak ties’ in the social

network analysis community [114]. Small-worlds are teegniith weak ties which are

critical to the small minimum average path length of the ek Weak ties help connect
two or more strongly connected components. While weak tiesnaportant to providing

serendipitous recommendations, just knowing that onesfpessibly by receiving an un-
expected recommendation) compromises the privacy of threopegthe weak tie) which

fostered the connection [82]. For example, consider anravisic fan who only rates CDs
of Italian operas. A recommendation of Indian classicalimfer such a user implies that
there exists at least one individual spanning these two aamities. The rare nature of the
tie compromises identity.

6. FutureWork and Conclusion

The field of recommender systems is young and evolving. We fdntified some direc-
tions for future work.

e Distributed Recommendation Infrastructure and Interoper ability: Taking recom-
mendation out of specific systems and casting it in a broaitgrjbuted information
infrastructure is a direction for future research [61]. I$an infrastructure [30] fos-
ters the possibility of users managing and maintaining then client-side user model
and context to share at their discretion with participatecgommenders. Addressing
and resolving technical issues, such as interoperabiliystandardization, and social
issues, such as buy-in, is essential to the realization®fikion.

e Formal Recommendation M odeling and Design M ethodologies: As with any young,
evolving, and multidisciplinary field, recommendatiorasking unified methodologies
to study, design, and evaluate systems. Without such mekbgiés, unsystematic
development will continue to persist resulting in kludgeéhwéonsequential problems
of cost and interoperability. Initial steps toward such mlsdare reflected in projects
such as Jumping Connections [68] and the on-line evaluféomework [47]. Design
patterns and languages may help capture solutions to estturrodeling problems,
such as sparsity and privacy, and foster the semi-auto@titruction of systems.

e An HCI Approach: Designing for Interaction: Developing and integrating less in-
trusive and salient interfaces for explicit product evéitugs and ratings with recom-
mendation delivery interfaces is a compelling line of fetoesearch. The interest and
need for such research, including possibly usability eatabms, on extant and new
streamlined Uls for recommenders systems, is reflected iAGM Transactions of
Computer-Human Interactiocall for papers [111]. Furthermore, studying user inter-
actions with recommender systems is becoming an increggingular way to design
such systems [103]. HCI researchers involved in this eHiogtoptimistic that results
of such studies will lead to general design guidelines. &has directions present op-
portunities for the HCI community to make inroads to recomd® systems research
which needs such expertise.

e Information Appliances. Computing is becoming increasingly ubiquitous. Physical
computing devices and ‘information appliances,’ competeinanced devices dedicated
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to a restricted suite of information-oriented tasks, aréomger a vision, but rather a
reality [17]. The scope of information appliances is no lenfimited to handheld
computers, PDAs, and mobile phones, but has extended to Mi8rp and watches.
In addition, ubiquity is enriched by voice applications qudtals (e.g., Tellme, http://
www.tellme.com), collectively called the ‘voice web’ [8@vatars [5], and information
kiosks [63]. These devices present compelling opportemity deliver ‘recommenda-
tions on demand.’ For example, consider delivering a reatauecommendation and
associated coupon on a cell phone to a businessman in sdaachegetarian meal
while waiting in an airport. Leveraging the ubiquity of suebtification systems for
user modeling and recommendation delivery is an open relsésaue.

In conclusion, we have provided a survey of recommendeeBystesearch according to
the way they model users and resulting connections thegeelbir identify. We feel this is
a more holistic approach to recommendation as it captueasrtterlying social element in
all recommenders. The reader will have noticed that imgfeiit techniques to model users
are slowly being augmented with approaches to exploit timebieatorial social structure
implicit in usage data. The future of recommender systerisitimately lie in mediating
these two approaches and developing unified methodolag®stematize the process of
representing users and building systems.
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