
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

2004

Program Transformations for Information
Personalization
Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/cps_fac_pub

Part of the Databases and Information Systems Commons, Graphics and Human Computer
Interfaces Commons, OS and Networks Commons, Other Computer Sciences Commons,
Programming Languages and Compilers Commons, Systems Architecture Commons, and the
Theory and Algorithms Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion
in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Perugini, Saverio, "Program Transformations for Information Personalization" (2004). Computer Science Faculty Publications. Paper 41.
http://ecommons.udayton.edu/cps_fac_pub/41

http://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub/41?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

Program Transformations for

Information Personalization

Saverio Perugini

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Advisory Committee:

Naren Ramakrishnan, Chair
Edward A. Fox

Mary Beth Rosson
Manuel A. Pérez-Quiñones

A. Lynn Abbott

May 14, 2004
Blacksburg, Virginia

Keywords: Program Transformations, Personalization, Partial Evaluation, Program Slicing,
Out-of-turn Interaction, Hierarchical Hypermedia, Web Modeling, Information Retrieval

Copyright c© 2004 by Saverio Perugini
ALL RIGHTS RESERVED

Program Transformations for

Information Personalization

Saverio Perugini

Abstract

Personalization constitutes the mechanisms and technologies necessary to customize
information access to the end-user. It can be defined as the automatic adjustment of
information content, structure, and presentation. The central thesis of this dissertation
is that modeling interaction explicitly in a representation, and studying how partial
information can be harnessed in it by program transformations to direct the flow of the
interaction, can provide insight into, reveal opportunities for, and define a model for
personalized interaction. To evaluate this thesis, a formal modeling methodology is de-
veloped for personalizing interactions with information systems, especially hierarchical
hypermedia, based on program transformations. The predominant form of personalized
interaction developed in this thesis is out-of-turn interaction, a technique which em-
powers the user to take the initiative in a user–system dialog by providing unsolicited,
but relevant, information out-of-turn. Out-of-turn interaction helps flexibly bridge any
mismatch between the user’s model of information seeking and the system’s hardwired
hyperlink structure in a manner fundamentally different from extant solutions, such as
multiple faceted browsing classifications and search tools. This capability is showcased
through two interaction interfaces using alternate modalities to capture and commu-
nicate out-of-turn information to the underlying system: a toolbar embedded into a
traditional browser for out-of-turn textual input and voice-enabled content pages for
out-of-turn speech input. The specific research issues addressed involve identifying and
developing representations and transformations suitable for general classes of hierar-
chical hypermedia, providing supplemental interactions for improving the personalized
experience, and studying user’s (out-of-turn) interactions with resulting systems.

For my parents and grandparents,
for love, support, and presence.

In Loving Memory of

Olimpia Verde DeVito
(1898–1994)

sister,
wife,

mother,
grandmother,

great-grandmother,
matriarch, and

friend.

iii

Acknowledgments

‘ ‘You can’t run with the hares and hunt with the hounds.”

Anonymous, but popularized by N. Ramakrishnan

I pay all homage to Jesus Christ, my Lord, Savior, and Redeemer, through whom all
things are possible.

Pursuing a Ph.D. is like a boxing match. During the course of the match, the boxer is
expected to take some really good shots (the agony of the quals, the sleepless nights spent
preparing a proposal), but persevere, and prevail victoriously (bringing structure to amor-
phous research issues). This match has been a labor of love, the best experience of my life,
one which no money or fancy company stock options could buy, one which I would trade for
no other. As the popular advertising slogan goes: ‘completing an undergraduate degree: ex-
pected; aspiring to get a Master’s: ambitious; pursuing a Ph.D.: priceless.’ Moreover, there is
a certain intangible and irresistible camaraderie and solidarity among Ph.D. students which
permeates and enriches the soul. Few things in life are as beautiful. Thus, special thanks
are due to several instrumental people for making this process possible and so enjoyable.

Chief among them is my thesis advisor, Naren Ramakrishnan. Naren is a special person.
Anyone who has ever interacted with him knows that he is cut from a different cloth. I admire
Naren’s wisdom and creative approach to research and thank him for sharing it with me.
Our relationship flourished from the traditional advisor–student nature, when I first joined
his group, to assume a three-dimensional nature today: advisor (mentor), father-figure (role
model), and friend (peer). He has been my best friend throughout my graduate studies. I
would have never survived my graduate program were it not for the energy and inspiration
that I draw from him, mostly by example. He always challenged me to ask tough questions
of myself and aspire for ‘high-hanging fruit.’ His dedication to his profession is reified by his
concern for his graduate students. He has been a tremendous source of ideas, especially by
recommending that I look at program slicing which ultimately became a major ingredient
in my research. In addition, Naren knew exactly when to let me struggle with my research
and when to intervene. I’d be remiss if I did not mention the countless hours he spent, often
into the early morning or at the Mill Mountain café (Naren’s second office), working with me
to push out papers; especially working patiently with me for several hours, despite having
many of his own personal issues to tend to, in the Math Emporium the night before this
document went to the committee. I will never forget those sessions Naren; they were my
best times in school. I hope that some day I can express my appreciation by mentoring my
students in his image. This world needs more Naren Ramakrishnans.

iv

I also have been fortunate to work with an energetic, supportive, and encouraging advi-
sory committee, comprised of researchers regarded as experts in their fields. Professor Ed
Fox is the most down-to-earth professor I have ever met. His concern for the well-being of
his students is not only reflected in his support for and feedback on their work, but also
in his development of respectable computing professionals. Professor Fox went out of his
way during the holidays to review my application materials for faculty positions. His feed-
back was invaluable to presenting a well-organized, focused, and polished dossier. I also
thank Professor Fox for the suggesting the usage of ‘structural’ and ‘terminal’ information
to qualify interaction sequences.

I thank Professor Mary Beth Rosson for ideas and feedback on the HCI aspects of my
work, especially the study presented in Chapter 6. I have always left Professor Rosson’s
office enamored by the connections she draws. I also thank her for introducing Mary Pinney,
an ISE graduate student, funded by NSF SGER grant IIS-0136182, to our research. I
thank Dr. Manuel A. Pérez-Quiñones for bringing his expertise in dialog-based computer
systems, especially from an HCI perspective, to bear upon my work. He has been actively
engaged in our research since its birth and has contributed to papers describing the study in
Chapter 6. Dr. Pérez-Quiñones also lent me his Ph.D. dissertation for several months. Since
his dissertation already marries dialog notions with programming language concepts, it was
foundational to my work. Lastly, I thank Dr. A. Lynn Abbott for joining my committee
as an external faculty member and contributing suggestions from an intelligent systems
perspective.

Several other faculty and colleagues have helped in various ways. Thanks are thus due to
Don Goelman (Villanova University); Charlie Aull, Reza Barkhi, Rex Hartson, Lenny Heath,
T. M. Murali, Alexey Onufriev, Cal Ribbens, Layne Watson, and Chad Wingrave (Virginia
Tech); and Craig Struble (Marquette University). Special thanks to John Lewis at Villanova
University who mentored me as an undergraduate and encouraged me to pursue a Ph.D. John
has always believed in me and supported my endeavors. Much of my success is a reflection of
his guidance. I thank Mary Pinney for conducting the user sessions for the study presented
in Chapter 6 and all the Virginia Tech students who participated. Many thanks are due to
Chris Williams, MS grad student and programmer extraordinaire, for building the interaction
manager through which my transformation engine personalizes interactions for end-users. I
also thank him for the many hours he spent debugging code as well as babysitting me on how
to produce slick screen captures for several of my papers, including this dissertation. I also
would like to thank Rob Capra, a fellow Ph.D. student, who occupied the carrel adjacent
to mine. He has continually provided feedback on my work, especially its HCI aspects, and
been a great person off whom to bounce ideas. My thanks go to my dear friend and fellow
graduate student Padmapriya Kandhadai who not only proofread several of my manuscripts,
many of which she was not a co-author, but also provided needed emotional support and
love. Thanks to Dan Moisa, an MS grad student, who assisted me with my TA grading duties
during the most demanding times of my final year. I also thank the administrative assistants
in the CS Department, particularly the soft-spoken, lovely, and generous Carol Roop, who
always went out of her way to help me, especially in preparing my faculty applications.
Finally, I express my thanks to the illustrious director of the Terascale Computing Facility
at Virginia Tech, Srinidhi Varadarajan (‘the hatted one’), for nonchalantly recommending
that we name our toolbar Extempore, highlighting its, in addition to his, extemporaneous

v

nature.
I acknowledge NSF SGER grant IIS-0136182 for funding this research. In addition, NSF

DUE-0136690 and DUE-0121679 grants supported the CITIDEL project which I used as a
case study for my techniques. Moreover, several computing organizations have recognized my
work with awards and associated grants. Acknowledgments are thus due to ΥΠE/IEEE-CS
for the Academic Excellence Award, the Washington, D.C. Chapter of the ACM for the
Samuel N. Alexander ACM Fellowship, the Virginia Tech College of Engineering for the
P. E. Torgersen Graduate Student Research Excellence Award, and the Virginia Tech Grad-
uate Student Assembly for Research Development Project and Travel Fund Program grants.

Apart from those directly engaged in my work, my life has been influenced by interactions
with several other amazing people who have helped in various ways. I have been blessed
with the best friends one could ever wish for. This thesis would not have been brought
to successful fruition without my strong support network of friends—Chris Barbee, Greg
Burnett, Tim Costello, Reverend Jim Griffin, Surya Kodukula, Joe Ruscio, Dimitri Savvas,
and Omar Vasnaik (local to Blacksburg); Joe Ciarleglio, Nicky Guerrera, Dan McMillan,
and Ryan Murphy (local to Connecticut and Villanova)—who I could always count on when
faced with a crisis. I am proud to say that the best times of my life were shared with you.

Three of them merit special remarks. Dimitri Savvas has been in my corner since my
first day at Virginia Tech in 1998 when I met him. He has invested a lot of time and energy
in believing in me. Thank you Dimitri for keeping me focused by reminding me, often and
when necessary, that getting my Ph.D. was the most important priority in my life. Many
thanks to Dan McMillan, the closest I have to a brother, whose unrelenting support and
encouragement was vital to this thesis. Thank you Dan, most of all, for your presence in my
life, the experiences shared, and ‘the wonderful memories.’ Thanks for implicitly opening my
eyes to the paradox: ‘While life is short, it must be approached as a marathon, not a sprint.’
And special thanks to my spiritual advisor, Reverend Jim Griffin who has shepherded me
beyond my wants, beyond my fears, from death unto life. I never thought I would find the
most influential Catholic priest in my life at a large state university in southwestern Virginia.

Lastly, I extend my deep appreciation to my family for everything they have done for
me. I was fortunate to grow up with seven primary role models—my parents (Saverio and
Georgeanna Perugini), four grandparents (Nicola and Giuseppina Perugini; and George and
Lucia Daloia), and uncle (Guido Guerrera)—who have unconditionally loved and supported
me throughout my life. I am proud that you all are here in good health to see me pass this
milestone. My success is a testament to your lives. Thank You.

Saverio Perugini
Blacksburg, Virginia

May 14, 2004

This document was typeset in LATEX2ε on a 15” Apple PowerBook G4.

vi

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1
1.1 My Thesis . 2
1.2 Setting . 3
1.3 Research Questions . 4
1.4 Outcomes . 5
1.5 Reader’s Guide . 5

2 Personalizing Websites with Mixed-Initiative Interaction 7
2.1 Dialogs: Fixed- and Mixed-initiative . 7
2.2 Mixed-initiative Interaction . 8
2.3 Solution Approach: Out-of-turn Interaction 10

2.3.1 Extempore . 10
2.3.2 Camera Dialog Revisited . 10
2.3.3 What does it mean to interact out-of-turn? 12
2.3.4 Why would users interact out-of-turn? 12

2.4 Program Representation and Transformation:
a Model for Out-of-turn Interaction . 13

2.5 Using XSLT for Personalization . 15
2.6 Prototype Implementation . 21

3 Survey of Related Research 23
3.1 Background . 23

3.1.1 Why Personalize? . 23
3.1.2 Approaches to Studying Personalization 24
3.1.3 Organization of this Survey . 24

3.2 Templates for Personalized Interaction . 25
3.2.1 WSQ/DSQ . 26
3.2.2 Probabilistic Relational Algebra . 27
3.2.3 Web Query Languages . 27
3.2.4 Personal Information Spaces . 31

3.3 Operators for Personalized Interaction . 32

vii

3.3.1 Search and Results Refinement . 32
3.3.2 Scatter/Gather . 35
3.3.3 Dynamic Taxonomies . 36
3.3.4 RABBIT . 38
3.3.5 DataWeb . 38
3.3.6 Web Browser Command Shells . 40
3.3.7 AKIRA . 41
3.3.8 Complete Answer Aggregates . 42
3.3.9 BBQ and MIX . 43
3.3.10 Operators for Interactive Visualization 43
3.3.11 Interactive Data Mining and Analysis 46
3.3.12 Social Network Navigation . 47

3.4 Representing and Reasoning about Interaction 48
3.4.1 Why Model Interaction? . 49
3.4.2 Information-Seeking Strategies . 49
3.4.3 Structures of Interaction: Scripts, Cases, and Goal Trees 51
3.4.4 Modeling Interaction on the Web . 53
3.4.5 PIPE: Personalization is Partial Evaluation 53

3.5 Making It Work: Systems Support and Enabling Technologies 57
3.5.1 Data Modeling . 57
3.5.2 Requirements Gathering . 58
3.5.3 Transformation Algorithms . 60
3.5.4 Delivery Mechanisms and Intermediaries 60

3.6 Niche Domains . 61
3.6.1 Adaptive Hypermedia . 61
3.6.2 Mobile Environments . 61
3.6.3 Voice Interfaces and Multimodal Interaction 62

3.7 Discussion . 63

4 Formalizing Out-of-turn Interaction 64
4.1 Research Theme . 64

4.1.1 Objectives of this Chapter . 65
4.1.2 Methodology . 65

4.2 Graph-theoretic View of Out-of-turn Interaction 67
4.2.1 Syntactic and Semantic Notions . 67
4.2.2 Support Terms and Tools . 69
4.2.3 Interpretations of Out-of-turn Interaction 71

4.3 Program-theoretic View of Out-of-turn Interaction 76
4.3.1 Modeling Interaction Programmatically 76
4.3.2 Program Slicing . 76

4.4 Evaluation Criteria . 81
4.4.1 Soundness of a Model: M; I → I ∈ P 81
4.4.2 Completeness of a Model: I ∈ P → M; I 81

4.5 Graph-theoretic Classes of Hierarchical Hypermedia 83
4.6 Additional Support Terms and Tools . 88

viii

4.6.1 Path-term-co-occurrence . 88
4.6.2 Leaf-term-co-occurrence . 89

4.7 Automatically Identifying the Classes . 90
4.8 Mining Functional Dependencies for Input Expansion 92

4.8.1 Tools for Mining Positive FDs . 94
4.8.2 Tools for Mining Negative FDs . 99

4.9 Mining FDs by Program Transformation . 102
4.10 A Duality in Uses of Program Slicing . 103
4.11 Discussion . 105

4.11.1 Enriching the Out-of-turn Paradigm: Multiple Terms per Utterance . 105

5 Supplementary Interactions, Generated Interfaces, and
Software Framework 107
5.1 Supporting Supplementary Interactions . 107

5.1.1 Meta-enquery: What May I Say? . 107
5.1.2 Restructure Classification . 108
5.1.3 Collect Results . 109
5.1.4 Inverse Personalization . 109
5.1.5 Example . 110
5.1.6 Program Transformations for Supplemental Interactions 112

5.2 Automatically Generating Personalized Interaction Interfaces 112
5.2.1 Out-of-turn Toolbar Markup Language and Translator 112

5.3 Putting It All Together: Building a Robust Transformation Engine 113

6 Exploring Out-of-turn Interactions with Websites 115
6.1 Methods . 115

6.1.1 Participants . 115
6.1.2 Tasks . 116
6.1.3 Design . 117
6.1.4 Modeling Choices . 117
6.1.5 Equipment, Training, and Procedures 118

6.2 Results . 119
6.2.1 General Usage Patterns . 119
6.2.2 Classifying Interaction Sequences . 119
6.2.3 Detailed Analysis of Interaction Classes 120
6.2.4 Cascading Information across Subtasks 121
6.2.5 Rationale and Qualitative Observations 122

6.3 Discussion . 123
6.3.1 How do Users Know What to Say? 123
6.3.2 From Interaction Techniques to Interaction Interfaces 124

7 Discussion 127
7.1 Future Significance and Broader Impacts . 127
7.2 Future Work . 128

ix

Bibliography 130

A XSchema OTML Language Definition 149

B Some Miscellaneous Program Transformations 150
B.1 Dynamic Slicing . 150
B.2 More Variants of Slicing . 151
B.3 Variants of Partial Evaluation . 152

C Program Transformation Systems 153

D Problem-Solving Task for Evaluating Interaction Interfaces 154

Vita 156

x

List of Figures

1.1 Example of a personalized interaction with a website using a toolbar embedded
into a traditional browser. The top window of the interface supports tradi-
tional browsing functionality. At any point in the interaction, in addition,
the user has the option of supplying personalization parameters out-of-turn
(using the toolbar at the bottom) to conduct personalization. 3

2.1 Two organizations of a camera catalog: by maker–type (left) and by type–
maker (right). Only two levels are shown for ease of illustration. The vertices
are webpages, the edges denote hyperlinks, and labels on edges represent the
text anchoring the hyperlinks or selections made by a navigator. 9

2.2 The Extempore out-of-turn interaction toolbar interface for personalized in-
teraction with websites. I embed this interface into extant web browsers to
augment hyperlink interaction. At any point in the interaction, the user has
the option of supplying personalization parameters (in the toolbar’s textfield)
and conducting personalization. Here, the user has supplied SLR presumably
out-of-turn. 10

2.3 Example of a personalized web interaction for a user with a hypothetical
camera catalog. At the beginning of the interaction, the user decides to not
pursue any of the presented hyperlinks for camera maker. Instead, he uses
the Extempore interaction toolbar to specify his choice of lens type out-of-
turn (left). The results of processing this input cause the Canon option to be
removed from the list of available makers (right) because Canon does not offer
the specified type of lens. Once again, the user opts to employ Extempore to
provide warranty information out-of-turn (results not shown). 11

2.4 Modeling website interactions in a program. Original website (left) can display
differently as the result of browsing for ‘Nikon’ (center) or supplying ‘SLR’ out-
of-turn (right). 13

2.5 Illustration of the partial evaluation technique. A general purpose power func-
tion written in C (left) and its specialized version with exponent statically
set to 2 to handle squares (right). Such specializations are performed auto-
matically by partial evaluators such as C-Mix [JGS93c]. 14

2.6 Modeling website interactions in an XML format. 16
2.7 Stylesheet generated for a user interested in SLR cameras (specified by XML

element SLR). Running this stylesheet through an XSLT processor with the
XML document shown in Fig. 2.6 emulates partial evaluation for personaliza-
tion and transforms the document to reflect the site shown in Fig. 2.4 (right). 16

xi

2.8 Stylesheet for pruning dead-ends. I use this stylesheet in conjunction with
other stylesheet transformations to post-process a resulting specialized XML
document. 17

2.9 Personalizing a browsing hierarchy w.r.t. ‘Democratic Senators.’ (top left)
Original schematic of the Project Vote Smart Congressional website, depicting
information about members of the US Congress (only the first three levels are
shown for ease of presentation). (top right) Personalized hierarchy w.r.t. the
criterion ‘Democrat.’ Notice that not only the pages, but also their structure
is customized for (further browsing by) the user. (bottom left) The hierarchy
in the top right personalized w.r.t. ‘Senate.’ Notice that the hyperlink la-
beled ‘Virginia’ is a dead-end. This is because Virginia has only Republican
Senators. (bottom right) A post-processing step removes all dead-ends. . . . 18

2.10 An in-turn interaction experience with Project Vote Smart. 19
2.11 An mixed-initiative interaction experience with Project Vote Smart. 20
2.12 Staging dialogs using partial evaluation. The top series of transformations

mimic an in-turn dialog with the user specifying (Georgia: Senate: Democrat),
in that order. The bottom series of transformations correspond to a mixed-
initiative dialog where the user specifies (Democrat: Senator: Georgia), in
that order. 21

3.1 Three approaches to personalized interaction surveyed in this chapter: (a) tem-
plates for personalization, (b) operators for personalization, and (c) represent-
ing and reasoning about interaction. 25

3.2 A WSQ query to rank states by how often they appear on the web. This
query has traditional SQL semantics. States and WebCount are relations.
The schema of States is States (Name, Population, Capital). The WebCount
relation, whose schema is WebCount (SearchExp, T1, T2, . . . , TN, Count), is
populated by the results of a web search request. T1, T2, . . . , TN are values
for parameters in SearchExp. Notice that all aspects of information seeking
necessary to determine an answer are provided in one stroke. 26

3.3 (left) A book search interface at Amazon.com. This interface contains multiple
category-labeled text-fields, expecting input to belong to a category. Such a
design attempts to hide hyperlink enumeration in websites. (right) A power-
search facility at Amazon.com that allows multiple query terms from different
categories, but still requires categorical information. 28

3.4 A search facility of Amazon.com that allows the entry of free-form text. . . . 28
3.5 (left) Directed graph model of XML input to the StruQL query shown in

Fig. 3.6. The publications are ordered by research area. (right) Directed
graph model of XML output from the StruQL query shown in Fig. 3.6. No-
tice that publications are now ordered by year. Such XML data sources
can be easily converted into a set of browsable webpages with tools such
as XSL/XSLT [Cha99, Wid99]. 29

3.6 A StruQL query. Notice that enough parameters have been specified in order
to produce a reconstructed answer. 30

xii

3.7 The content template for personalization of My Yahoo!. In this form web-
page, users select desired content within categories to appear on a My Yahoo!
personalized webpage. Users may similarly customize layout and color in a
personalized webpage. 31

3.8 Static browser toolbar plugins: (top) The Yahoo! toolbar called Yahoo! Com-
panion provides ubiquitous access to bookmarks, e-mail, and web search. (bot-
tom) The Google toolbar provides direct access to web search operators such
as within site search, search term highlighting, and word-find. 32

3.9 (top) Free form query interface for the search-within results operation in
Google. (bottom) The interface to Yahoo!’s search-within category. Designs
such as these provide a simple form of integrating personalization and browsing. 34

3.10 Interaction with Scatter/Gather. 35
3.11 Illustration of the zoom operation in Dynamic Taxonomies. (left) A multidi-

mensional dynamic taxonomy. (center) Extensional inference of all concepts
related to node D. (right) The reduced taxonomy after a zoom operation on
concept D. 36

3.12 An AKIRA query. The semantics of this query are to i) locate and frag-
ment the specified webpage, ii) load each webpage that the specified webpage
references, and iii) search all collected fragments for the text ‘Microsoft.’ . . 41

3.13 Illustration of a possible reconstruction operator on a UDH. The UDH de-
scription of the hierarchy on the left is modified to restructure the levels of
the hierarchy to that shown on the (right). 44

3.14 Adding a person to a management polyarchy. (left) The path from the root
‘Luther, Linus’ to ‘Lowell, Lucy.’ (right) The polyarchy resulting from adding
‘Williams, Victor.’ This figure illustrates how a user can incrementally add
entities to a polyarchy which reveal resulting relationships. Such relationships
are difficult to observe with a general overview of an extremely large hierarchy. 44

3.15 A tree containing data about states. 45
3.16 Illustration of the slide operator to adjust weights of attributes in treemaps.

(left) A possible treemap for the hierarchical data shown in Fig. 3.15. (right)
Resulting treemap, which displays the recalculated state weights, from moving
the sliders in (left). 45

3.17 An association in the social network at DBLP. Jumping from a author web-
page (left) to a conference webpage (right). 48

3.18 Preamble sequence for interaction scripts. 52
3.19 Communicating multiple terms (‘Democrat Senate’) in a single utterance. . . 54
3.20 Automatic input expansion by functional dependency. 56

4.1 The connection between the web and program-theoretic domains. 64
4.2 Example of a DAG model of a hypothetical hierarchical web directory with

characteristics similar to those in Yahoo!. 67
4.3 Illustration of forward-propagation (FP) and back-propagation (BP) on the

DAG in Fig. 4.2. (left) Forward-propagation w.r.t. the term ‘music’: FP (D, music).
(right) Back-propagation w.r.t. the leaf vertices highlighted green in left:
BP (D, FP (D, music)). 70

xiii

4.4 Results of interpretation 1 of out-of-turn interaction with the DAG D shown
in Fig. 4.2 w.r.t. the term ‘music’: OOT1 (D, music). Alternatively, one can
think of this DAG as the result of shrink edges with the DAG D

′

in Fig. 4.3
(right), i.e., SE (D

′

, music). Notice that this graph is no longer a DAG,
according to my definition, since vertex 4 is the source of two edges with the
same label and target. I defer addressing this issue until later when it will be
better motivated. 71

4.5 (left) Results of applying select paths to the DAG D
′

shown in Fig. 4.3 (right)
w.r.t. the term ‘music’: SP (D

′

, music). (right) Results of interpretation 2
of out-of-turn interaction with the DAG D shown in Fig. 4.2 w.r.t. the term
‘music’: OOT2 (D, music). Alternatively, one can think of this DAG as the
result of shrink edges with the DAG D

′′′

(left): SE (D
′′′

, music). 72
4.6 Schematic of proof for Lemma 1. 74
4.7 Modeling interaction programmatically. (left) PD, programmatic representa-

tion of interaction with the website modeled by the DAG D in Fig. 4.2. (cen-
ter) PD′ , results of applying the zoom transformation to (left) w.r.t. ‘music.’
This program is the representation of interaction with the website modeled
by the DAG D

′

in Fig. 4.3 (right). (right) PD′′ , results of applying partial
evaluation to (center) w.r.t. ‘music = 1.’ This program is the representation
of interaction with the website modeled by the D

′′

in Fig. 4.4. 77
4.8 Illustration of program slicing (simplified for purposes of presentation). (left) A

program which takes the radius and height of a cylinder as input and computes
and prints the cylinder’s surface area and volume. (center) A static backward
slice w.r.t. (6, vol). (right) A static forward slice w.r.t. (1, h) (variable key:
r = radius; h = height; cArea = circle area; sArea = surface area; vol = vol-
ume). 78

4.9 Venn diagram highlighting the intersection between the set of sequences R (left)
staged by an incomplete, unsound model and its intended interaction paradigm
P (right). 81

4.10 Simple levelwise DAGs. (left) not-mutually-exclusive. (center) weak-mutually-
exclusive. (right) strong-mutually-exclusive. 84

4.11 An ‘almost’ strong-mutually-exclusive DAG. The crosslink is unlabeled here
to reinforce that its label is irrelevant. 86

4.12 Partial order of classes of hierarchical hypermedia. 88
4.13 A cumbersome out-of-turn interaction experience with the Kelly Blue Book. 93
4.14 Using FDs to expand out-of-turn user input. The resulting effect relieves the

user from manually clicking through a series of hyperlinks which all lead to
the same webpage. 95

5.1 A taxonomy of supplementary interactions. Directed arrows represent spe-
cialization relations. 110

5.2 A personalized dialog with CITIDEL involving interactions supplemental to
out-of-turn interaction. 111

xiv

5.3 Multimodal, mixed-initiative web personalization framework architecture. No-
tice the central role played by an interaction manager in mediating commu-
nication between the interaction interfaces and the transformation engine. . . 114

6.1 Minimum number of interactions (log10 scale) required to successfully sat-
isfy each information-finding task using in-turn (dark) and out-of-turn (light)
interaction. Note that Task F can be completed with just one out-of-turn
interaction, so its entry in the graph shows zero. 116

6.2 Classification of 177 (participant, task) interaction sequences. 120
6.3 Task H: the user is expected to first find ‘Vermont’ in one Interaction (third

window from left) and use it as input in another interaction (shaded area) to
find the party of the Senior Senator from that state. The two windows on the
right depict unnecessary and irrelevant interactions for this task. 121

6.4 Three dimensional space showcasing related research. Each of the shaded
clusters denotes a concerted group of projects discussed in the main text. . . 125

B.1 Illustration of dynamic slicing. (left) A program which computes the maxi-
mum of three integers. (right) A dynamic slice (of left) w.r.t. (a=1; b=3; c=2,
111, max). 151

B.2 A taxonomy of program transformations, including partial evaluation and
slicing. A directed arrow represents a specialization relation. An undirected
line represents an association, while a dotted line represents a range. 152

xv

List of Tables

3.1 Four-dimensional information-seeking strategy space. 49

4.1 My research methodology. 66
4.2 A list of graph-theoretic constructs and their web analogs. 67
4.3 Comparison of partial evaluation and program slicing along a syntax- vs.

semantic-preserving dichotomy. 79
4.4 Relating interaction techniques in DAG models of a websites to compositions of

program transformations. Notice that [[SL]] is a meta-program-transformation.
It represents any program transformation which returns a set of program
points containing the variable page. 80

4.5 Alternate illustration of classes of hierarchical hypermedia making the five
considered classes (leaves of the diagram in Fig. 4.12) salient. Symbols

√
and

⊥ denote ‘defined’ and ‘undefined,’ respectively. 88
4.6 Descriptive statistics of positive-path FDs mined in selected top-level cate-

gories of ODP. The column labeled ‘seq’ contains the browsing interaction
sequence frequencies. The column labeled ‘t’ provides the number of unique
terms in each category. The column labeled ‘(t, t)’ contains the number
of (term, term) pairs in the sub-tree, discounting those involving only one
term (i.e., (t × t) − t). The column labeled ‘cand. (t, t)’ provides the fre-
quencies of candidate FDs (term, term) pairs (i.e., the sum of the cardinality of
every path-term-co-occurrence set in the category). The column labeled ‘FDs’
provides the number of positive-path FDs in the sub-tree. Lastly, the column
labeled ‘%’ contains the percentage of FDs among the candidate FDs (i.e., FDs
÷ cand. (t, t)). 96

5.1 Program transformation techniques for and observations on the supplemental
interactions. (key: NWhat? = Naive What May I Say?; What? = What May I
Say?; RC = Restructuring Classification; CR = Collect Results; P-1 = Inverse
Personalization). 110

6.1 Breakdown of 177 interaction sequences in various categories. The total num-
ber of interaction sequences for out-of-turn-oriented tasks is 15 less than that
for non-oriented tasks; these were the sequences where the participant did not
complete the task successfully. 120

xvi

Chapter 1

Introduction

‘ ‘I believe that the role of the successful engineering researcher is to understand
developers’ problems, but to use the luxury of not having to meet short-term
deadlines, to look for the underlying causes and fundamental cures rather than
immediate, symptomatic, relief. Developers, who must meet pressing market
driven deadlines, do not have the time to look for long-term solutions. That is
the researcher’s job.”

D. L. Parnas, in [Par98]

The rapid growth of the World Wide Web (WWW) and the concomitant increase in online
content have greatly exacerbated information overload and ignited research in personaliza-
tion. Personalization constitutes the mechanisms and technologies necessary to customize
information access to the end-user. It can be defined as the automatic adjustment of inform-
ation content, structure, and presentation. Commercial websites increasingly employ person-
alization to help retain customers and reduce information overload. For example, Amazon’s
e-commerce site is estimated to have at least 23 different types of personalization [Rie01].
Elements of the personalization landscape include search engines [LG98], recommender sys-
tems [PGF04], and adaptive websites [Bru01]. Even a cursory survey of the articles in the
August 2000 Communications of the ACM issue on this topic [Rie00b] reveals that the scope
of personalization extends to many different forms of information content and delivery, and
transcends diverse application domains. The advent of multimodal and mobile computing
devices, with varying input and output (display) capabilities, has made personalization not
only attractive, but necessary; and as a result personalization technologies are now widely
believed to be critical to sustaining the Internet economy [SV99].

What does it mean for an information system to be personable? The WWW community
has interpreted personalization in multiple ways [Rie00b]. For example, some websites, espe-
cially e-commerce sites, welcome returning users and remember personal details (e.g., credit
card numbers). Other sites track purchase patterns and recommend specific products. Still
others provide browsing aids, such as top-10 visited links. Similarly, there are many ways
of studying personalization, e.g., by the level at which content is customized, relevance of
information displayed to the user, speed of information access, or more qualitative criteria
such as utility and customer satisfaction.

1

In this thesis, I argue that an information system is personable if a user can interact
with it in an expressive manner to achieve her information-seeking goals. Thus, my view of
personalization is oriented toward personalizing interaction. This approach is holistic and
has been influenced by the seminal work of Marchionini [Mar97]. At a time (circa 1995)
when information system researchers were focused on information retrieval (IR) models and
algorithms, Marchionini championed the study and representation of interaction as a basis
for designing systems. Pednault has declared that ‘representation is everything’ [Ped00]. My
broad research goal is to bring this viewpoint to bear upon personalization and develop a
modeling methodology for information personalization.

1.1 My Thesis

It is helpful to think of interaction with an information system as a dialog between the user
and the system. The goal of personalization then is to support a flexible dialog between the
user and information system, and to support the user in achieving his information-seeking
goals. For instance, dialogs are useful in refining imprecise requests [Roc71], clarifying task
goals [BCST95], and in general bridging the user’s mental model of the document space with
the information system’s representation [Wil84].

The central thesis of my work is that modeling interaction explicitly in a representation,
and studying how partial information can be harnessed in it by program transformations to
direct the flow of the interaction, can provide insight into, reveal opportunities for, and define
a model for personalized interaction. I evaluated this thesis by casting various forms of per-
sonalized interaction with hierarchical hypermedia as program transformations over suitable
representations and by studying user experiences with systems affording this interaction.

The context for my work arises from the PIPE (Personalization is Partial Evaluation)
project [Ram00]. PIPE is a modeling methodology for personalizing information-seeking
dialogs by transforming programmatic representations of such dialogs. In particular, PIPE
models personalization as a form of partial evaluation [Jon96], an automatic technique for
specializing programs given some, but not all, of their input. A sequence of such partial
evaluations corresponds to a personalized interaction for the user. Thus, the main theme of
my research is to programmatically represent interactions with information systems, and use
program transformation techniques for personalization based on partial user input:

Representation × Transformation × Partial Input ⇒ Personalized Interaction

One of the fundamental research issues in information systems research is the development
of models which allow the specification and realization of information-seeking interactions.
Besides formalizing important operations, such models provide a vocabulary to think and
reason about the information-seeking activity. In this sense, the PIPE methodology allows
us to model interaction with an information system as a program, uses partial assignments
of program variables to capture user input, and employs partial evaluation to realize user-
specified interactions. In addition, PIPE enables us to reason about how the programmatic
model should be structured, in order to realize a targeted set of interaction sequences.

2

− Nikon

Select a maker:

Partial input specification toolbar

Traditional browser

SLR

Select a maker:

− Nikon

− Minolta

5−year warranty

− Canon

− Minolta

Figure 1.1: Example of a personalized interaction with a website using a toolbar embedded
into a traditional browser. The top window of the interface supports traditional browsing
functionality. At any point in the interaction, in addition, the user has the option of sup-
plying personalization parameters out-of-turn (using the toolbar at the bottom) to conduct
personalization.

1.2 Setting

While the next chapter provides details of PIPE and specifics on the form of personalization it
achieves, I give a sneak peak into the basic idea here. I focus primarily on hierarchical hyper-
media (e.g., websites). In this domain interaction is typically characterized by a progressive
mode of information seeking (i.e., drill-down) where the content sought (e.g., a document,
webpage, or value) lies at the end of an interaction sequence. For instance, Fig. 1.1 depicts a
website which solicits choices of camera attributes to complete the specification of a camera.
The site initially solicits a choice of maker from the user. The user, however, decides to not
pursue any of the presented hyperlinks and instead supplies unsolicited, but nevertheless rel-
evant, information about lens type using a toolbar embedded into the browser (Fig. 1.1, left).
Such a partial, out-of-turn input from the user is used to partially evaluate a representation
of the camera dialog, revealing that the Canon manufacturer does not carry a camera with
the desired lens. This causes the manufacturer choices to be pruned (Fig. 1.1, right). The
site again prompts the user for his choice of maker, since there are still two options left. Once
again, the user opts to utilize the toolbar to provide a specification of warranty information
out-of-turn (results not shown). I call this technique of supplying unsolicited information,
out-of-turn interaction. It is a technique which empowers the user to take the initiative in a
web dialog by supplying unsolicited, but expected, information while browsing. A sequence
involving a mixture of responsive (via hyperlink clicks) and out-of-turn (by typing into the
toolbar) inputs corresponds to a personalized interaction for the user.

This seemingly simple example is actually a powerful demonstration of the importance
of an explicit representation of interaction used to stage the interaction. As I show in
the next chapter, both responsive and out-of-turn inputs are partial, and hence the same
transformation technique (i.e., partial evaluation) can support both browsing and out-of-turn

3

interactions through the same representation. In addition, since the transformation operator
is closed, the user is able to interleave these basic modes of information seeking in any manner
he desires, leading to a mixed-initiative mode of interaction, without the designer anticipating
all the forms of interactions which must be supported. Finally, by explicitly recognizing the
role of a representation, I am led to the attractive possibility of investigating alternative
programmatic representations and transformations and formally characterizing the classes
of personalized interactions which they enable. This aspect constitutes the creativity in my
work.

1.3 Research Questions

The crux of my research thus involves designing representations of interaction and developing
program transformation techniques to realize a desired form of personalization.

The semantics of an out-of-turn interaction are salient in a website such as the camera
example where levels of the site correspond to distinct facets of camera classification, namely
maker and model, and where values for these attributes are mutually-exclusive (e.g., ‘a
camera cannot be made by both Canon and Minolta’). The benefits of supplying partial
information out-of-turn are apparent, since these aspects can be communicated in any order.
Less obvious is how to support out-of-turn interaction in websites which are not organized
in such a levelwise, mutually-exclusive manner. In addition to being not-levelwise and not-
mutually-exclusive, many websites are properly modeled as DAGs (Directed Acyclic Graphs;
one simple example is in the presence of crosslinks such as those in Yahoo! whose hyperlink
labels are augmented with ‘@’). The primary research question of this dissertation is hence
aimed at formalizing interpretations of out-of-turn interaction in generalized websites:

RQ1: How can we model out-of-turn interaction with general classes of hierarchical hyper-
media?

I studied this question by capturing the processing of partial input in general classes us-
ing generalized program transformations such as program slicing [BG96] and modeling
crosslinks through program factoring techniques (e.g., procedural abstraction). This al-
lowed me to formally cast out-of-turn interaction with many classes of websites in a single
framework [NWPR04]. In addition, I built a purely functional (i.e., side-effect free), stateful,
and robust web transformation engine based on this more general concept.

In studying out-of-turn experiences of users, I was led to the importance of supporting
alternative dialog options, in particular meta- and dynamic dialog restructuring capabilities.
The next research question aims to supplement out-of-turn interaction with new personal-
ization primitives, without disturbing the program transformation viewpoint:

RQ2: What other program transformations are useful for personalizing interaction?

This question was studied by developing a taxonomy of program transformation techniques,
studying the interactions they support, and investigating how they can be combined to
augment out-of-turn interaction.

4

It is important to note that the use of an out-of-turn interaction interface as in Fig. 1.1
allows the user to circumvent any originally intended navigation flow at a website. This func-
tionality provides a form of personalization which flexibly reconciles any mismatch between
the user’s model of information seeking and the site’s hardwired organization in a manner
fundamentally different from multiple faceted browsing classifications [HEE+02] (e.g., Epi-
curious.com) and site-specific (e.g., power search of Amazon.com) or general search tools
(e.g., Google). Out-of-turn interaction is different from faceted browsing interfaces because
it does not hardwire all possible interaction sequences in the hyperlink structure. It also
is different from a search engine since, unlike the latter, it does not curtail the interaction.
As a result, an out-of-turn interaction interface supports a form of interaction not familiar
to web users. I built two interaction interfaces—a toolbar embedded into a traditional web
browser [PR03b] and a multimodal voice interface [NWPR04]—to capture out-of-turn input
and communicate it to the underlying system. My final research questions are aimed at
exposing users to out-of-turn interaction, and exploring how they employ it in conjunction
with their browsing interactions with a site.

RQ3: How do users employ out-of-turn interaction?

RQ4: What is their rationale for choosing out-of-turn interaction in information seeking?

I approached these questions through studies with users in a targeted website to determine
if users employ out-of-turn interaction for information-finding tasks, and gathering rationale
for doing so through think-aloud and retrospective protocols. I found that users were adept
at discerning when it is necessary to interact out-of-turn. I also observed that out-of-turn
interaction is better assimilated when introduced using multiple modalities [PPR+03]. In
addition to studies with users, to assess the research results, I developed evaluation metrics
which formally characterize many aspects of representations and transformations, e.g., their
soundness, completeness, sufficiency, compression ratio, and representational adequacy.

1.4 Outcomes

By studying personalization from a representational and transformational perspective, my
research (i) brings a formal, theoretical, and original approach to the subject, (ii) pro-
vides a systematic and functional approach to designing systems, and (iii) provides an
implementation-neutral way to study software frameworks for personalization. The previous
three properties are absent from the nascent field of personalization and thus the resulting
modeling methodology for information personalization is my most significant contribution.
In addition, supporting out-of-turn interaction via multiple and multimodal interaction in-
terfaces in devices with varying capabilities allows us to cast personalization in a variety of
contexts.

1.5 Reader’s Guide

This document is organized as follows:

5

Chapter 2: An introduction to the program transformation approach to information
personalization [PR03b].

Chapter 3: A survey of related research identifying three progressive tiers of systems,
classified by the interaction they afford to users [PR03a].

Chapter 4: A formalization of out-of-turn interaction, involving several lemmas, ex-
amples, and evaluation criteria [PRa, PRb].

Chapter 5: A description of interactions supplemental to out-of-turn interaction [PRF04],
and a software framework for out-of-turn interaction [NWPR04].

Chapter 6: An account of a study exploring out-of-turn interaction in a website and
users’ rationale for employing it [PPR+03].

Chapter 7: An overall discussion of the research presented, its contributions, and
future work.

Appendices:

A. XSchema OTML Language Definition.

B. A survey of program transformations.

C. A survey of program transformation systems.

D. A problem-solving scenario for evaluating interaction interfaces.

6

Chapter 2

Personalizing Websites with
Mixed-Initiative Interaction

‘ ‘I have observed that many good ideas start out by claiming too much territory
for themselves, and eventually, when they have received their fair share of atten-
tion and respect, the air clears, and it emerges that, though still grand, they are
not quite so grand and all-encompassing as their proponents first thought. But
that’s all right. That would be a fine start.”

D. Hofstadter, in Analogy as the Core of Cognition [Hof02]

Mixed-initiative interaction between two participants is one where the parties can take
turns at any time to change and steer the flow of interaction. In this chapter, I show how
mixed-initiative interaction with websites can be achieved using the novel transformation
approach alluded to in the previous chapter. This approach leads to a personalized experience
for users and, at the same time, naturally lends itself to a simple implementation strategy
for the website designer. This chapter describes the underlying approach, implementation
experiences, and many potential directions for supporting rich forms of personalization. It
serves as a foundation for the more complex interactions studied later.

2.1 Dialogs: Fixed- and Mixed-initiative

To see what a personable interaction with a website can be, consider the following human–
human dialogs between a camera consumer and a dealer:

Dialog 1

1 Dealer: How may I help you?
2 Consumer: I am looking to purchase a camera.
3 Dealer: Sure, is there a particular manufacturer you are interested in?
4 Consumer: Nikon.
5 Dealer: What type of Nikon camera would you like?
6 Consumer: An SLR model.

7

7 Dealer: Sure, we have those. Now, . . .
(conversation continues to ascertain more details)

Dialog 2

1 Dealer: How may I help you?
2 Consumer: I am looking to purchase a camera.
3 Dealer: Sure, is there a particular manufacturer you are interested in?
4 Consumer: Not really, but it has to be SLR.
5 Dealer: I see. Only Nikon and Minolta make SLR cameras.
6 Consumer: Okay, in that case, . . .
(conversation continues)

Both conversations involve the specification of camera attributes but differ in important
ways. In the first dialog, the consumer responds to the questions in the order they are posed
by the dealer. The dealer has the initiative at all times and such an interaction is thus
referred to as a directed or system-initiated dialog. In the second dialog, when the dealer
prompts the consumer about camera manufacturer, the consumer responds with information
about his choice of lens type instead (SLR (Single-Lens Reflex); see line 4 of Dialog 2). I say
that the consumer has taken the conversational initiative from the dealer. Nevertheless, the
conversation is not stalled and the dealer continues soliciting other aspects of the information-
gathering activity. In particular, the dealer registers that the consumer has answered a
different question than the one he was asked, and the dealer refocuses the dialog in line
5 to the issue of manufacturer (this time, narrowing down the available options). Such a
conversation—where the dealer and consumer exchange initiative—is called a mixed-initiative
interaction [ABD+01, NS97].

My goal is to provide the user with an interaction interface to take the initiative while
browsing a website. Such an interface, when used in conjunction with hyperlink clicks, helps
bring mixed-initiative interaction to the web.

2.2 Mixed-initiative Interaction

How can we have a similar flexibility of interaction with a website? More fundamentally,
what does it mean to take the initiative from a website? Users predominantly interact with
websites by clicking on presented hyperlinks. Any time a user clicks on a hyperlink, she is re-
sponding to the choices already put forth by the website. In other words, interactions between
a user and a website are primarily system-initiated and reflect directed dialogs. Browsing is,
hence, not mixed-initiative, because the initiative always resides with the site. As a result,
browsing only supports a strict, one-size-fits-all interaction paradigm. Site designs which are
hardwired to disable some interaction sequences can be called ‘unpersonalized’ w.r.t. the
user’s mental model of information seeking.

Given this handicap, in order to support rich interactions, website designers have tradi-
tionally anticipated every type of interaction sequence beforehand and hardwired multiple
(customized) browsing interfaces (or algorithms) to cover all possibilities (e.g., see Fig. 2.1).

8

Canon Nikon Minolta

35mm APS 35mm APS SLR 35mm SLR

SLR 35mm APS

Nikon Minolta Canon Nikon Minolta Canon Nikon

Figure 2.1: Two organizations of a camera catalog: by maker–type (left) and by type–
maker (right). Only two levels are shown for ease of illustration. The vertices are webpages,
the edges denote hyperlinks, and labels on edges represent the text anchoring the hyperlinks
or selections made by a navigator.

This usually implies creating and storing separate information hierarchies. Sometimes, the
site designer chooses an intermediate solution which places a prior constraint on the types
and forms of interaction sequences supported. This is frequently implemented by directing
the user to one of several predefined categories (e.g., ‘to search by Lens, click here.’).

For example, a website organization such as that shown in Fig. 2.1 (left) would be ap-
propriate for the first consumer, who thinks of cameras primarily by their maker and only
secondarily by lens type. Conversely Fig. 2.1 (right) would be appropriate for the second
consumer, who thinks of cameras by lens type first. Many websites are indeed organized
along such multiple facets and shift the responsibility to the user, who must employ the
right interface for his information-seeking activity.

Such designs present several problems. For independent levels of classification, such as
in Fig. 2.1, there exists a combinatorial explosion of scenario possibilities. If cameras are
distinguished by, say, six independent attributes of classification, then we have to support
6 × 5 × 4 × 3 × 2 = 720 possible browsing organizations! Some websites, such as Epicuri-
ous.com, a site which organizes recipes, described in [Hea00], actually take such an exhaustive
approach and support all possible ways of interacting with it. Such a solution also leads to
cumbersome site designs. In an attempt to customize information access, these solutions
exacerbate information overload and thus run contrary to the goals of personalization. The
more fundamental problem with such designs is that they over-specify the personalization
goals by anticipating in advance all the forms of interactions that the site must support.

Websites are not traditionally designed for mixed-initiative interaction; this is because
historically web interactions, in general, started out as simple means for retrieving pages from
a server. Moreover, the underlying HTTP access protocol is stateless because it does not

9

Figure 2.2: The Extempore out-of-turn interaction toolbar interface for personalized inter-
action with websites. I embed this interface into extant web browsers to augment hyperlink
interaction. At any point in the interaction, the user has the option of supplying person-
alization parameters (in the toolbar’s textfield) and conducting personalization. Here, the
user has supplied SLR presumably out-of-turn.

retain information about the current user interactions for future use. Because of this tradi-
tional usage paradigm and statelessness, few interaction interfaces exist for mixed-initiative
interaction on the web. Arguably the only interaction interface that allows the user to take
the initiative is the ‘Location URL’ box in web browsers – the user can choose to discard
the current site and enter a different site’s URL to browse. This form of mixing initiative is
restrictive and does not let users take the initiative within the current website.

2.3 Solution Approach: Out-of-turn Interaction

Out-of-turn interaction is my solution to support the user in taking the initiative in web
interactions. It is a technique which empowers the user to take the initiative in a user–
website dialog by providing unsolicited, but relevant, information out-of-turn.

2.3.1 Extempore

To realize out-of-turn interaction, I developed a toolbar, which I call Extempore (see Fig. 2.2),
to capture and communicate the supplied out-of-turn information to the underlying system.
I implemented Extempore using XUL (XML User-interface Language) [BSD01], a cross-
platform language for describing user interfaces of applications, as a plug-in to the Netscape/
Mozilla web browser. Extempore can be implemented for other traditional web browsers,
such as Internet Explorer, as well. However, IE currently does not support XUL.

An out-of-turn enabled website need hardwire only one design, but because a user, armed
with this toolbar interface, can take the initiative, the site can support any mixed-initiative
interaction. For the site designer, the advantage is that he is no longer plagued by the
thought of having to support all possible interfaces directly in the hyperlink structure. For
the website user, the interface appears less cluttered and the interaction resembles more of
a real dialog, with all its attendant advantages.

2.3.2 Camera Dialog Revisited

Fig. 2.3 illustrates how out-of-turn interaction works. Fig. 2.3 (top) illustrates the top level
of Fig. 2.1 (left) at the outset, which shows the three choices available for camera maker.
This site trivially supports the first consumer, since he can proceed to click on ‘Nikon’ first
and then specify that he is interested in an SLR camera. This amounts to simple browsing
or in-turn interaction (and I call ‘Nikon’ an in-turn input). Because the second user does not
wish to specify a maker at the outset, he uses Extempore to supply ‘SLR’ out-of-turn. The

10

⇓

⇓
...

Figure 2.3: Example of a personalized web interaction for a user with a hypothetical camera
catalog. At the beginning of the interaction, the user decides to not pursue any of the
presented hyperlinks for camera maker. Instead, he uses the Extempore interaction toolbar
to specify his choice of lens type out-of-turn (left). The results of processing this input cause
the Canon option to be removed from the list of available makers (right) because Canon
does not offer the specified type of lens. Once again, the user opts to employ Extempore to
provide warranty information out-of-turn (results not shown).

11

next stage of the dialog (Fig. 2.3, bottom) shows that this input has been taken into account
by revising the list of makers. Thus, out-of-turn interaction via Extempore now makes one
site support multiple modes of interaction. Similarly, I could have used Fig. 2.1 (right) to
support both users. Out-of-turn interaction makes an enumerative classification [AKB91]
appear to be an unenumerative faceted classification [Wyn00].

2.3.3 What does it mean to interact out-of-turn?

One interpretation of out-of-turn interaction is that, when the user enters ‘SLR’, she is de-
siring to experience an interaction sequence through the site involving ‘SLR.’ Later in this
thesis (Chapter 4), I develop and formalize multiple interpretations of out-of-turn interac-
tion. The implicit assumption in the current implementation is that what is entered into
Extempore is a hyperlink label (or variation thereof) nested deeper in the site, and hence
an in-vocabulary utterance. In other implementations, a more elaborate modeling of the
vocabulary could be conducted. Therefore, out-of-turn interaction is merely a mechanism to
address alternate aspects of the given activity, while postponing the specification of currently
solicited aspects.

2.3.4 Why would users interact out-of-turn?

There are several reasons why users might desire to interact out-of-turn. For instance,
what the site is requesting from the user may actually be what the user is seeking in the
first place! In Figure 2.3 (left), the site is soliciting camera maker, but the user might be
looking for makers with a certain property (those that offer SLR cameras). Being able to
supply information out-of-turn in an otherwise hardwired site permits the user to experience
interaction sequences not describable by browsing. This means that the site can support
all permutations of specifying camera attributes, without explicitly enumerating all in-turn
choices. If the specification of a camera involves n independent attributes of classification,
then we would require n! faceted browsing classifications to support all tasks (i.e., browse by
maker–lens–. . . , by lens–maker–. . . , and so on). Incorporating out-of-turn information does
not curb the interaction, i.e., the hierarchical organization is preserved, and situates future
interactions in the context of past ones.

More fundamentally, out-of-turn interaction is a novel technique for flexibly bridging any
mismatch between the user’s model of information seeking and the site’s hardwired hyperlink
structure. The site’s layout and design influences how a user interacts with it. However, a
user’s mental model indicates how her information-seeking goals are best specified and real-
ized. Notice that out-of-turn interaction reconciles this mismatch in a manner fundamentally
different from the existing state of the art solutions, such as multiple faceted browsing clas-
sifications and search tools. It is different than the interaction websites employing multiple
faceted browsing classifications (Epicurious.com) afford because it does not enumerate all
possibilities in the hyperlink structure. Extempore is not a site-specific (or general) search
tool that returns a flat list of results, akin to the power search functionality provided at
Amazon.com or the Google toolbar. It is important to note that Extempore is embedded in
the web browser, and not the site’s webpages. This design property thus makes the interface
and resulting out-of-turn interaction unintrusive and optional. In addition, these features of

12

if (Cannon)

if (35mm)

...

else if (APS)

...

else if (Nikon) if (Nikon)

if (35mm) if (35mm) ...

... ...

else if (APS) else if (APS)

... ...

else if (SLR) else if (SLR)

... ...

else if (Minolta) else if (Minolta)

if (35mm) ...

...

else if (SLR)

...

Figure 2.4: Modeling website interactions in a program. Original website (left) can display
differently as the result of browsing for ‘Nikon’ (center) or supplying ‘SLR’ out-of-turn (right).

Extempore permit the user to take the initiative at multiple points in a browsing session,
at his, rather than the site’s, discretion. Extempore is thus an interface which users can
independently bring to bear upon their browsing experience at multiple points and multi-
ple sites. Further, while search engines index webpages, Extempore relies on an internal,
explicit representation of the website and, when the user supplies out-of-turn input, uses
transformation techniques to stage the interaction, pruning the website accordingly. In sum-
mary, out-of-turn interaction is fundamentally different because it does not anticipate, via
enumerated hyperlinks or any other ad-hoc mechanism, when the mismatch might happen.

2.4 Program Representation and Transformation:

a Model for Out-of-turn Interaction

How exactly does out-of-turn interaction via Extempore work? It is helpful to think of
information as being organized along a motif of interaction sequences. With this thought I
can model interaction with a website as a sequence of conditionals to be evaluated, as shown
in Fig. 2.4 (left). Imagine these conditionals written in any programming language, such
as C. Notice that the nested structure of the program models the hierarchical hyperlinked
structure of the site. The hyperlink labels are represented as program variables and semantic
dependencies between links are captured by the mutually-exclusive if..else dichotomies.
The program’s control-flow, as written, models the browsing interaction within the site which
is, in this case, progressively drilling-down the hierarchy by making individual selections.

For the user who clicks on ‘Nikon’ (and, hence, responds to the initiative), Fig. 2.4 (center)

13

int pow (int base, int exponent) { int pow2 (int base) {
int product = 1; return (base * base);

for (int i = 0; i < exponent; i++) }
product = product * base;

return product;

}

Figure 2.5: Illustration of the partial evaluation technique. A general purpose power function
written in C (left) and its specialized version with exponent statically set to 2 to handle
squares (right). Such specializations are performed automatically by partial evaluators such
as C-Mix [JGS93c].

models what I want to happen. That is, the choices now reflect the three types of cameras
under Nikon: 35mm, APS (Advanced Photography System), and SLR. On the other hand,
Fig. 2.4 (right) models what the user who enters ‘SLR’ out-of-turn wants to happen. That is,
the choices should reflect the choices of makers, and only two, Nikon and Minolta, should be
available. We can think of Fig. 2.4 as capturing requirements for program transformations.
Interestingly, the same program transformation algorithm can support both browsing and
out-of-turn interaction!

This transformation algorithm is called partial evaluation [Jon96]. Partial evaluation is
a program specialization technique, familiar to compiler writers, which simplifies portions
of programs given some (but not all) of their input. The input to a partial evaluator is a
program and a partial (static) assignment of values to its variables. Its output is a specialized
version of this program (typically in the same language), which uses the assignments to ‘pre-
compile’ as many operations as possible. A simple example is how we can specialize the C
function power to create a new function, say pow2, which computes the square of an integer.
Consider the definition of power shown in Fig. 2.5 (left). If we knew that a particular user
will utilize it only for computing squares of integers, we could specialize it (for that user) to
produce the pow2 function (right). Note that pow2 is obtained automatically (not by a human
programmer) from pow by pre-computing all expressions which involve exponent, unfolding
the for-loop, and by various other compiler transformations such as copy propagation and
forward substitution. It is automatic, in that there exist off-the-shelf partial evaluators that
take programs such as that shown in Fig. 2.5 (left) and a partial assignment of its variables
as input and produce programs such as those illustrated in Fig. 2.5 (right) as output. Dozens
of partial evaluators are available for specializing programs written in languages such as C,
FORTRAN, Scheme, Haskell, Java, PROLOG, and several other important languages. I
refer the interested reader to [Jon96] for an introduction to partial evaluation.

As a concept in computing, partial evaluation is at least 30 years old. While the tra-
ditional motivation for partial evaluation is to achieve speedup or remove interpretation
overhead [Jon96] in highly parameterized environments, it also can be viewed as a technique
for simplifying program presentation, by removing inapplicable, unnecessary, and uninter-
esting information (based on user criteria) from a program. In this vein, the approach shown
here helps relate it to information personalization. In particular, I use partial evaluation to
non-sequentially evaluate expressions nested deeper in the program without evaluating their
lexical predecessors. Fig. 2.4 (center) is then the result of partially evaluating the input

14

program (Fig. 2.4, left) w.r.t. the variable ‘Nikon = 1’ (and ‘Cannon = 0’ and ‘Minolta =

0’). Similarly, Fig. 2.4 (right) results from partially evaluating Fig. 2.4 (left) w.r.t. ‘SLR =

1’ (and ‘35mm = 0’ and ‘APS = 0’). Since partial evaluation subsumes interpretation, I also
can use it to sequentially evaluate the program given an in-turn input. Hence, I use the same
program transformation to support both interaction techniques in a single representation.
This is beneficial because the representation my approach affords (notice the nesting of con-
ditionals in Fig. 2.4, left) is typically much smaller than expressing the same as a union of
all possible interaction sequences.

Since partially evaluating a program results in another program, the transformation op-
erator is closed. For interaction, this means that any modes of information seeking (such as
browsing, in Fig. 2.4) originally modeled in the program are preserved. In the above example,
personalizing a browsable hierarchy returns another browsable hierarchy. The closure prop-
erty also means that the original information-seeking activity (browsing) and personalization
can be interleaved in any order. Evaluating the program in the form and order in which it
was modeled (by using partial evaluation to sequentially evaluate it) amounts to the system-
initiated mode of browsing. ‘Jumping ahead’ to nested program segments (by using partial
evaluation to non-sequentially evaluate the program) amounts to the user-directed mode of
personalization. We can render and browse, in the traditional sense, the simplified programs
in Fig. 2.4 (center and right), or partially evaluate further with additional user inputs. My
use of partial evaluation is thus central to realizing a mixed-initiative mode of information
seeking [RCPQ02], without explicitly hardwiring all possible interaction sequences. With
this approach, it also is possible to encode miscellaneous application logic (about the inter-
action) and use it to drive the personalization.

To summarize, I have reduced the problem of personalizing websites to partially evalu-
ating a representation of interaction [Ram00]. My approach to mixed-initiative interaction
is to create a representation of the space of possible interaction sequences, and then to use
the technique of partial evaluation to realize individual (in-turn or out-of-turn) interaction
sequences. I model the information space as a program, partially evaluate it w.r.t. a partial
assignment of its variables representing user input, and recreate the personalized information
space from the specialized program. In addition, by working programmatic representations,
I can employ alternate program transformations, such as dead-code detection and elimina-
tion [CXY01, WZ91], to, for example, remove the Canon conditional after partially evaluating
w.r.t. SLR = 1 (and 35mm = 0 and APS = 0). Although I can use any partial evaluation
software to implement a web personalization engine, I present an approach here using the
transformation capabilities of XSLT (eXtensible Stylesheet Language for Transformations).

2.5 Using XSLT for Personalization

XSLT is a mature technology for transforming XML documents (to XML). It can implement
many transformations [Tid01], but I specifically use it here to support the partial evaluation
transformation. An XSLT transformation is specified as a set of pattern-action rules in a
stylesheet, which are then recursively applied, starting from the root of a tree-structured
XML document. Whenever a match is encountered, the stylesheet describes the particular
actions to take.

15

<site>

<Cannon>

<35mm>

...

</35mm>

<APS>

...

</APS>

</Cannon>

<Nikon>

...

</Nikon>

<Minolta>

...

</Minolta>

</site>

Figure 2.6: Modeling website interactions in an XML format.

<?xml version="1.0"?>

<!-- Template for the input: SLR -->

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="xml"/>

<xsl:template match="SLR">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="APS"/>

<xsl:template match="35mm"/>

<!-- matches any node, including the root -->

<xsl:template match="*|@*">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 2.7: Stylesheet generated for a user interested in SLR cameras (specified by XML
element SLR). Running this stylesheet through an XSLT processor with the XML docu-
ment shown in Fig. 2.6 emulates partial evaluation for personalization and transforms the
document to reflect the site shown in Fig. 2.4 (right).

16

<?xml version="1.0"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="xml"/>

<xsl:strip-space elements="*"/>

<xsl:template match="@* | *[child::node()]">

<!-- prunes dead-end nodes, -->

<!-- only retains nodes that lead to at least one text node -->

<xsl:if test="descendant::text()">

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates select="@* | node()"/>

</xsl:copy>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Figure 2.8: Stylesheet for pruning dead-ends. I use this stylesheet in conjunction with other
stylesheet transformations to post-process a resulting specialized XML document.

To use XSLT for personalization, I must first represent programs such as that in Fig. 2.4 (left)
in XML. Fig. 2.6 shows one possible approach to modeling the cameras website. Then, for
each user input, I prepare a suitable XSLT stylesheet, outlining the transformation, and
apply it on the XML source. For instance, the stylesheet of Fig. 2.7 would be appropriate
for the user interested in ‘SLR’ cameras. This stylesheet specifies that the ‘SLR’ hyperlink
can be simplified and the ‘35mm’ and ‘APS’ hyperlinks can be removed (because they are
mutually exclusive with respect to ‘SLR’). I then apply additional post-processing transfor-
mations to prune dead ends. For example, Canon has no SLR models so the transformation
can remove it. Fig. 2.8 shows an XSLT stylesheet for pruning dead ends.

XSLT also facilitates other post-processing activities, many aesthetic and originally han-
dled by ad-hoc mechanisms such as shell scripts. For example, typical partial evaluators
will rename variables in a specialized program. Although such conventions do not affect the
semantics of the resulting program, they do shatter the original symmetry between hyperlink
labels and program variables [Van01]. XSLT obviates the need to reconcile such differences
because it does not rename XML elements unless told to do so. In addition, using reflec-
tive capabilities to extract element names, I can easily implement an ‘Input so far: . . . ’
label (see Fig. 2.3) at every stage of the interaction, to help orient users. Lastly, high-level
XSLT functions, such as sorting, simplify tasks such as link label ordering on re-created
webpages.

The transformation can be implemented as part of a proxy server that is designed to pro-
cess input events communicated from the browser (either clicking on hyperlinks or specifying
inputs out-of-turn). Recall that one must convert the transformed XML document back into
a website for a user to browse. The user might then proceed to click on any remaining
hyperlinks or might require a further degree of personalization, both of which another XSLT
transformation can handle.

17

Georgia Virginia

House Senate House Senate

1

Democrat

2

Republican Republican

Georgia Virginia

House

1

Senate House Senate

Virginia

1

Georgia

1

Georgia

Figure 2.9: Personalizing a browsing hierarchy w.r.t. ‘Democratic Senators.’ (top left) Orig-
inal schematic of the Project Vote Smart Congressional website, depicting information about
members of the US Congress (only the first three levels are shown for ease of presentation).
(top right) Personalized hierarchy w.r.t. the criterion ‘Democrat.’ Notice that not only the
pages, but also their structure is customized for (further browsing by) the user. (bottom
left) The hierarchy in the top right personalized w.r.t. ‘Senate.’ Notice that the hyperlink
labeled ‘Virginia’ is a dead-end. This is because Virginia has only Republican Senators.
(bottom right) A post-processing step removes all dead-ends.

18

⇓

⇓

⇓

⇓

Figure 2.10: An in-turn interaction experience with Project Vote Smart.

19

⇒

⇓

⇐

⇓

Figure 2.11: An mixed-initiative interaction experience with Project Vote Smart.

20

Figure 2.12: Staging dialogs using partial evaluation. The top series of transformations
mimic an in-turn dialog with the user specifying (Georgia: Senate: Democrat), in that
order. The bottom series of transformations correspond to a mixed-initiative dialog where
the user specifies (Democrat: Senator: Georgia), in that order.

2.6 Prototype Implementation

To demonstrate these ideas, I designed a prototypical personalization system for the US
Congressional portion of the Project Vote Smart website (vote-smart.org). The site is orga-
nized in a hierarchical manner, where it requires the user to progressively make choices for
politician attributes—state at the first level, branch of Congress at the second level, followed
by levels for party, and district/seat—by browsing (see Fig. 2.9, top left). I extracted the
site’s hierarchy for presenting pages using a depth-first crawl of the site. A depth-first crawl
is merely a way to capture a site’s browsing hierarchy. While I represented the extracted
hierarchy in an XML notation, I use the programmatic rendition of the site for presentation
to reinforce my programmatic model of personalization. Thus, I abstract the situation in
Fig. 2.9 (top left) by the program of Fig. 2.12 (left). Figs. 2.10 and 2.11 show how you can
solve the following two tasks:

1. Find the webpage of the Democratic politician from Georgia holding the Senior Sena-
torial seat.

2. Find the webpage of each Democratic Senator.

A demo of this system is available at http://pipe.cs.vt.edu.
Fig. 2.12 illustrates how the same programmatic rendition of the PVS website is trans-

formed by the same transformation technique, partial evaluation, to stage the in-turn inter-
action sequence in Fig. 2.10 (top series of transformations) as well as the mixed-initiative
interaction sequence in Fig. 2.11 (bottom series of transformations) in a single framework.

I also am exploring the design of multimodal web interfaces to communicate partial
information where, for instance, the user interacts using both the traditional (textual) inter-

21

action interfaces (e.g., hyperlinks) and via voice. A voice interface more naturally resembles
a dialog where the user ‘takes the initiative’ by speaking to the browser.

In this chapter I provided the reader with an overview of the program transformation
approach to information personalization. The concepts I introduced and discussed here serve
as a foundation for the remainder of this document. Armed with the foundation provided by
this chapter, we are now ready to see how the program transformation approach is situated
in the landscape of personalization research, discussed in the following survey of related
research. To reinforce that out-of-turn information can be captured and communicated using
multiple modalities, I demonstrate the use of a voice interface to supply out-of-turn inputs in
the survey. My survey also addresses a wide range of support tools and technologies for use
at various points in the lifecycle of a personalization system, from requirements gathering to
implementation (e.g., the transformation support provided by XSLT presented here).

22

Chapter 3

Survey of Related Research

‘ ‘So, what is personalization?”

D. Riecken, in guest editor’s introduction to the
August 2000 Communications of the ACM

issue on personalization [Rie00b]

This chapter surveys personalization research. It covers mechanisms for information-
finding on the web, advanced information retrieval systems, dialog-based applications, and
mobile access paradigms. Specific emphasis is placed on studying how users interact with
an information system and how the system can encourage and foster interaction. This helps
bring out the role of the personalization system as a facilitator which reconciles the user’s
mental model [Bor86] with the underlying information system’s organization. Three tiers of
personalization systems are presented, paying careful attention to interaction considerations.
These tiers show how progressive levels of sophistication in interaction can be achieved. The
chapter also surveys systems support technologies and niche application domains.

3.1 Background

While the roots of personalization can be traced back to information filtering [BC92] and
recommender systems [RV97], the web has propelled personalization into a highly studied
and legitimate research area. The explosion of online content and the advent of ubiquitous
computing devices and information appliances [Ber00] have made personalization critical to
the success of Internet applications. Personalization is achieved in information systems which
afford complex, compelling, and user-adapted interactions. Studying how users interact
with information systems and understanding the frustrations they experience provides ample
motivation for personalization.

3.1.1 Why Personalize?

Let us begin with the quintessential information access paradigm on the web – brows-
ing [Mar97]. Bush is regarded as the godfather of browsing as known today [Bus45]. In
browsing, two distinct roles are seen.

23

‘The role of the author was to create the hypertext and the role of the user/reader
was to browse through it. Thus, the reader was faced with the task of under-
standing the author’s mental model [Bor86] of the hypertext documents in order
to navigate the collection of linked nodes (hyperbase) effectively’ [BC99].

Pre-defined, hardwired browsing interfaces in information systems have been succinctly
characterized with phrases such as ‘static hypertext’ [BC99], ‘strong authoring’ [BC99], and
‘one-size-fits-all’ [Bru01, Chi97]. Such a rigid model assumes that the author’s viewpoint is
correct. The resulting mental mismatch problem has been identified as a legitimate research
issue in [Bor86, Suc87]. The goal of personalization technologies is to help overcome this
mismatch. Essentially the same issue arises in other information access paradigms, and a
variety of delivery mechanisms.

3.1.2 Approaches to Studying Personalization

Operationally, the word ‘personalization’ is broad and open to many interpretations. Many
surveys of personalization focus on technical distinctions of how information is tailored to
end-users and the level at which it is targeted. Business schools have adopted terms such as
‘real time,’ ‘one-to-one,’ and ‘check-box’ personalization. Therefore, there are ‘personalized
views of personalization’ [Rie00b]. For instance, the articles in the August 2000 Commu-
nications of the ACM issue on personalization range from topics such as natural language
dialogs, to website restructuring, to manually customizable portals.

In this survey, I approach personalization from the viewpoint of personalizing interac-
tion. Interaction with an information system is thus the common thread among all systems
surveyed in this chapter. Distinctions are only made when they reveal differences among
interaction paradigms. For instance, Amazon’s recommender system might make better
recommendations of books than another bookseller’s but if they afford the user the same
interaction, they are considered equivalent for my purposes. In fact, many personalization
solutions do not even explicitly recognize the issue of interaction with a user; needless to say
they are not surveyed here. Distinctions such as content-based and collaborative—popular in
the recommender systems community—thus do not find place in this chapter. For a survey
making these types of dichotomies, please see [PGF04].

I posit that surveying personalization according to interactions of users [Mar97] is a
more holistic approach to studying this subject. To the best of my knowledge, this survey
is the first to employ this approach. The reader should keep in mind that I use the term
personalization synonymously with personalized interaction.

3.1.3 Organization of this Survey

Three main approaches to personalizing interaction are outlined (see Fig. 3.1). The first ap-
proach is the terminal case where the system provides no support for maintaining interaction
and the onus of personalization is shifted to the user. As shown in Fig. 3.1(a), the system
effectively behaves as a functional engine mapping users’ specification aspects into results.
It does not recognize the fact that information access occurs in the context of an interaction.

24

(a)
aspects

specification answers,

outputs
f()

Information
space

Information
space

Information
space

φ ψρ ϕ

(b)

representation of
interaction

(c)

Manager

Dialog Information
System

Figure 3.1: Three approaches to personalized interaction surveyed in this chapter: (a) tem-
plates for personalization, (b) operators for personalization, and (c) representing and rea-
soning about interaction.

Writing SQL queries in a database context is an example of a functional modeling. Al-
though the user might interactively explore the database through a sequence of such queries,
the system per se does not provide any support for interaction. These approaches, which I
refer to as template-based, have a functional-emphasis. I survey a sample of systems in this
tier as they relate to information access on the web. I pay particular attention to systems
which combine distinct modalities of information seeking and which are especially relevant
to the primary Internet access paradigms today.

Systems in the next tier provide a set of basic primitives for sustaining interaction. As
shown in Fig. 3.1(b), these primitives are typically in the form of operators which successively
transform an information space. The user is encouraged to apply these operators in a form
which is suitable to his information-seeking activity. I say that such systems recognize and
encourage interaction, but with an operational-emphasis.

The third tier of systems are novel in that they explicitly represent and capture interac-
tion. As Fig. 3.1(c) shows, interaction here resembles more a dialog between the user and
the information system. A natural dialog is one where both parties interact to achieve the
desired information-seeking goals. Systems in this tier are characterized by their represen-
tations, whose expressiveness and capabilities directly relate to the quality of personalized
interaction. They have a representational-emphasis and are most capable of reconciling the
mental mismatch issue introduced earlier.

Notice that systems in a given tier can trivially support functionalities at lower tiers.

3.2 Templates for Personalized Interaction

It can be argued that being able to set the background color for a desktop screen is a
rudimentary form of personalization. Here, the goals of personalization have become so

25

SELECT Name, Count

FROM States, WebCount

WHERE Name = T1

ORDER BY Count Desc

Figure 3.2: A WSQ query to rank states by how often they appear on the web. This
query has traditional SQL semantics. States and WebCount are relations. The schema of
States is States (Name, Population, Capital). The WebCount relation, whose schema is
WebCount (SearchExp, T1, T2, . . . , TN, Count), is populated by the results of a web search
request. T1, T2, . . . , TN are values for parameters in SearchExp. Notice that all aspects of
information seeking necessary to determine an answer are provided in one stroke.

over-specified that the responsibility of achieving the personalization is shifted to the user,
who must specify the settings.

A typical form of over-specification involves templates that are meant to be customized
by the user. Another involves providing an expressive web query language, not unlike SQL.
Their salient feature is a ‘one-shot’ [Bru01, MM00] style of personalization. This section
surveys such approaches. Specifically, I start from a database perspective and describe
the WSQ/DSQ project and probabilistic relational algebra. I next discuss web queries as
templates and the use of templates for constructing personal information spaces.

3.2.1 WSQ/DSQ

The WSQ/DSQ (pronounced ‘wisk-disk’) project [GW00] at Stanford University attempts
to bridge the gap between structured relational databases (DBs) and the unstructured web
in support of an information retrieval request. WSQ (Web-Supported Queries) incorporates
web search results into SQL queries over a database to enrich an answer. On the other
hand, DSQ (Database-Supported (Web) Queries), its complement, leverages DB relations to
enhance and explain web search results.

For the purposes of this chapter, it is sufficient to focus on the WSQ component. WSQ
leverages web search results to provide a richer set of input parameters for a query against
original relational data sources. In other words, the output of one query (the web search) is
provided as input, along with the extant DB relations, to a master SQL query. In WSQ the
primary mode of information seeking is thus an SQL query and the secondary mode is web
search.

The basic idea behind WSQ is to permit users to make references to web search requests
within a traditional SQL query. A user writes a query that makes reference to a web
search engine (WSQ/DSQ uses AltaVista and Google) and search terms, obtains an answer
– a new relation, and proceeds to the next independent query that may (e.g., join the
resulting relation with itself) or may not involve the resulting relation. A typical WSQ
query (from [GW00]) is shown in Fig. 3.2. Interaction in WSQ is hence limited to issuing
a query and obtaining an answer. This is referred to as a one-shot interaction [Bru01] or a
one-shot task [MM00]. Furthermore, traditional query processing cannot proceed until all
attribute values initially populated with calls to a particular web search engine are replaced
with corresponding URL answers.

26

Thus, interaction in WSQ is best modeled as a template for personalization. The order of
the two information-seeking interactions in WSQ are determined a priori at query-creation
time. This design of over-specification means that information-seeking parameters are pro-
vided in one stroke.

In fairness to the designers, the design in WSQ/DSQ is commensurate with the targeted
applications (i.e., answering questions regarding comparisons or frequencies of items on the
web, e.g., ‘Rank all countries in North America by how often they are mentioned by name
on the web.’). Nonetheless, WSQ is an interesting research project to study with respect to
personalization and combining aspects of information seeking. I view it as a limiting case of
a personalization system.

3.2.2 Probabilistic Relational Algebra

In [FR97], Fuhr and Rölleke approach the problem of integrating aspects of information
seeking from a different angle. Specifically, the designers weave canonical IR parame-
ters (e.g., weights, rankings, and probabilities) into a DBMS in order to enhance and improve
retrieval.

Integration here is motivated by the lack of seamless methods to incorporate IR parame-
ters into (relational) database management systems (DBMSs). For instance, DBMSs do not
adequately address vagueness, imprecision, and uncertainty which IR systems are designed
for. DBMSs are however strongly grounded in theory and relations afford expressive query
languages (QLs). IR systems, on the other hand, incorporate parameters well but have prob-
lems incorporating ground facts. In addition, there is limited expression in IR QLs that is
currently addressed with ad hoc methods.

In order to weave standard IR parameters into a DBMS, Fuhr and Rölleke general-
ize traditional relational algebra, where probabilities are either 0 or 1, to the continuous
range [0. . . 1]. Incorporating probabilities into tuples of DB relations is relatively straight-
forward. Ensuring that these probabilities are correctly propagated in an answer (after
possibly complex joins or other operations) is difficult, due to uncertainty about the inde-
pendence/dependence of tuples at query formulation time. Additional data could be modeled
in relations to make such constraints explicit. With large DBs, however, such constraints
and annotations embedded into relations may approach exponential levels.

Due to the explicit requirement to specify all information-seeking aspects at query for-
mulation time, I classify Fuhr and Rölleke’s work as a template for personalization. The
system they developed does not allow users to specify parameters over time or leave param-
eters residual. Information-seeking sessions of this system resemble interaction with WSQ,
with minor adaptations, e.g., instead of specifying which search engine to employ, the user
indicates a probability threshold or an index weight.

3.2.3 Web Query Languages

Search Interfaces: Precursors to Web QLs

In order to combat cognitive frustrations experienced in browsing, many sites provide within-
site search interfaces. I present three common user interface designs here. Fig. 3.3 (left) il-

27

Figure 3.3: (left) A book search interface at Amazon.com. This interface contains mul-
tiple category-labeled text-fields, expecting input to belong to a category. Such a design
attempts to hide hyperlink enumeration in websites. (right) A power-search facility at
Amazon.com that allows multiple query terms from different categories, but still requires
categorical information.

Figure 3.4: A search facility of Amazon.com that allows the entry of free-form text.

28

Root()

publications

DataMining InfoViz SE

papers papers papers papers papers

2002

year

2003

year

2004

year

Root()

Years()

Years

Year(2002)

Year

Year(2003)

Year

Year(2004)

Year

pubEntry(paper)

pubEntry

pubEntry(paper)

pubEntry

pubEntry(paper)

pubEntry

Figure 3.5: (left) Directed graph model of XML input to the StruQL query shown in Fig. 3.6.
The publications are ordered by research area. (right) Directed graph model of XML output
from the StruQL query shown in Fig. 3.6. Notice that publications are now ordered by year.
Such XML data sources can be easily converted into a set of browsable webpages with tools
such as XSL/XSLT [Cha99, Wid99].

lustrates part of a book search tool available at Amazon.com. This type of search interface
is typical and requires a user to associate search terms with categorical information (e.g., au-
thor, title, and publisher). The goal of such search interfaces is to avoid enumerating multiple
browsing paths to terminal information (in this case, a book webpage). An alternative de-
sign, shown in Fig. 3.3 (right), is called a ‘power-search’ and has gained popularity in many
e-commerce sites. A power-search more closely resembles a web query language. In other
words, such tools include a small language for communicating inputs involving multiple
query fields (possibly combined via ANDs or ORs). The power-search of Amazon.com shown
in Fig. 3.3 (right) still requires a user to specify categorical information, however. From a
user perspective, a less restrictive interface is a free-form text box (Fig. 3.4) that does not
require categorical information. In such a design, users’ query terms are matched against
all attributes of an information nugget (e.g., webpage, book, or movie). The search facilities
involved in the interfaces outlined above do not employ expressive QLs.

The systems presented below provide users with a sophisticated QL. Through the invo-
cation of a query, such systems combine aspects of information seeking with reconstruction
properties of an information space.

Restructuring Semistructured Data

The semistructured data [ABS00, FLM98] and XML communities have embraced the idea of
building, restructuring, and managing information spaces (e.g., websites) with adaptations
of traditional SELECT-FROM-WHERE queries. In this context, new and personalized
information spaces may be constructed from DB relations, structured files, or semistruc-
tured data (e.g., XML). In addition, extant information spaces, such as websites, may be

29

{ WHERE root in publications.xml,

root -> "publications".

("DataMining" | "InfoViz" | "SE")."paper" -> paper,

paper -> attribute -> attributeValue

COLLECT Root(), pubEntry(paper)

/* group by year */

{ WHERE attribute = "year",

attributeValue -> "PCDATA" -> yearValue

COLLECT Years(), Year(yearValue)

LINK Root() -> "Years" -> Years(),

Years() -> "Year" -> Year(yearValue),

Year(yearValue) -> "pubEntry" -> pubEntry(paper),

Year(yearValue) -> "year" -> yearValue

}
}

Figure 3.6: A StruQL query. Notice that enough parameters have been specified in order to
produce a reconstructed answer.

restructured via a declarative query. This latter application is more interesting to study for
my purposes.

For example, consider a researcher who disseminates his publications on his webpage via
a research area browsing dichotomy. The original data may be stored in XML files (see left
side of Fig. 3.5). If this researcher desires to restructure the hierarchical presentation with
respect to year, he could write a semistructured data query (see Fig. 3.6). The output of the
query is another XML file containing the publications of the researcher ordered by year of
publication (see right side of Fig. 3.5). I use the StruQL query language [FFK+98, FFLS97]
to illustrate the query example in Fig. 3.6, but there exist several other semistructured
and XML QLs such as Araneus, Florid, Lorel, WebOQL, WIRM, YAT, XSL/XSLT, and
XML-QL [FLM98].

A query to restructure an information space actually mixes two distinct modalities of
information seeking. Typically, the data to restructure is a subset of an information space
and retrieved via the WHERE clause of a semistructured data query. The WHERE clause
thus serves as a match operator. Once data is bound to variables in a WHERE clause,
manipulation of those variables within the CONSTRUCT clause of a query (the LINK clause
in the case of StruQL) restructures the space. Thus, reconstruction activities take place
following a retrieval or match operation. These operations are performed by the information
system at query execution time. Analogous to WSQ [GW00], user intervention is unnecessary
to realize the mixture of aspects of information seeking. Systems supporting reconstruction
via querying are best classified as templates for personalization, because users specify all
aspects of information seeking at query formulation time.

30

Figure 3.7: The content template for personalization of My Yahoo!. In this form webpage,
users select desired content within categories to appear on a My Yahoo! personalized web-
page. Users may similarly customize layout and color in a personalized webpage.

3.2.4 Personal Information Spaces

Yahoo! provides many tools, e.g., My Yahoo!, Yahoo! Companion, and Inside Yahoo! Search,
for managing one’s personal information space [MPR00]. My Yahoo! [MPR00], a manually
customizable web portal, has been freely available since 1996. With My Yahoo! users may
customize the content and layout of a personalized webpage. See Fig. 3.7 for the content
template for personalization of My Yahoo!. Interaction here entails filling in pre-defined
templates and is referred to as check-box personalization.

There are many such sites which provide templates for creating My sites. These types
of templates are simply an abstraction of a personal webpage with infrastructure provided
by a third party (e.g., Yahoo!). After exploring these tools for personal use, I conclude that
their usefulness is limited by the absence of interactivity and interaction.

Nevertheless, one of the main attractions to My sites is the ease with which they permit
users to manage centralized bookmarks. Personal user bookmarks provide fertile ground for
collaborative filtering [THA+97] if bookmarks may be shared. The Siteseer system [RP97]
mines overlap in bookmark folders to deliver personal recommendations of webpages to
users. In addition to serendipitous webpage recommendation, users who interact with many
computer systems and clients on a daily basis need central access to bookmarks.

Therefore, beyond providing templates for personalization, many of the My site providers,

31

Figure 3.8: Static browser toolbar plugins: (top) The Yahoo! toolbar called Yahoo! Compan-
ion provides ubiquitous access to bookmarks, e-mail, and web search. (bottom) The Google
toolbar provides direct access to web search operators such as within site search, search term
highlighting, and word-find.

including Yahoo! and Google, implement web browser toolbars. The main goals of these
toolbars are to provide ubiquitous access to bookmarks (stored in the My page), e-mail,
and web search. See Fig. 3.8 for examples of popular embedded toolbars for web browsers.
Interacting with a toolbar template for personalization is useful, but again limited. These
toolbars are static and only provide direct access to stored information. A toolbar that
facilitates a dialog between a user and browser is a vision for personal interaction.

3.3 Operators for Personalized Interaction

Recently, supporting the seamless integration, combination, and composition of many atomic
operators by the end-user in compelling ways has become popular [Rie00a]. In this section
I analyze several systems and projects which provide this functionality.

3.3.1 Search and Results Refinement

Many search systems provide users with operators to refine searches and improve search re-
sults. Typically, such operators are iteratively invoked during the course of an information-
seeking session. Some operators such as relevance feedback are broad and directed toward
helping users focus an initially imprecise query. Other operators, such as the ‘search with
results’ functionality provided in many web search engines, are focused to reduce a results
space. Some systems provide a hybrid of the two with a clustering operator. Users may clus-
ter to prune results or cluster an original information space to facilitate query formulation.

32

I expound on all three operators below.

Relevance Feedback

Relevance feedback is concerned with addressing the mental mismatch issue in query for-
mulation. Namely, the vocabulary which a user employs to specify an information-seeking
goal may not match the terms in the system representing the desired information. This
should not come as a surprise, since information seeking itself is ultimately concerned with
resolving a problem for which existing knowledge is inadequate [Bel00]. This problem has
been identified by many in the information systems community.

“The major problem in interaction for naive users is therefore the large semantic
gap between the user model (concepts) and the system model (words)” [Sac00].

Some systems provide static functionality supporting mnemonics to address this problem.
Other researchers however contend that interaction is an ideal vehicle by which to formalize
an information-seeking goal.

“. . . the essence of ‘interactive retrieval’ lies in the constant adjustment between ‘an-
swer evaluation’ and the ‘command formulation’ tasks to achieve user satisfac-
tion” [Chi97].

In the mid-1960s, Rocchio developed an interactive technique for tackling this problem
called ‘relevance feedback’ [Roc71]. Relevance feedback entails iteratively ranking search re-
sults by the user in order to correctly reformulate an information-seeking query. This helps to
distinguish relevant results from irrelevant results and aids in query refinement. The process
terminates when the user is satisfied that the query is ideal. Since the problem of finding
the correct words for a successful search is still endemic to information systems today, much
research has been conducted on interaction styles for relevance feedback. Belkin contends
that information foragers would rather take a laissez-faire approach (i.e., uncontrolled term
suggestion) toward query reformulation than explicit relevance feedback [Bel00]. I direct
the interested reader to [CCTL01, HR01] for treatment of relevance feedback in the context
of recommendation and personalization. Relevance feedback also has been employed as a
technique to model user interests [MMLP97].

Web Search

While visions for future web search engines include dynamically directing users with com-
puted links [Hea00], currently refinement operators are employed to provide aspects of per-
sonalization. Another results refinement operator, quite complementary to relevance feed-
back, is ‘search-within.’ While relevance feedback addresses a broader problem, a correctly
formulated query is implicit in search-within. The operator simply reduces search to the
scope of a particular information space, typically results. Search-within operators are pre-
dominantly seen in web search engines such as Google, HotBot, and Lycos. Fig. 3.9 (top)
shows Google’s interface design for searching within results. On the other hand, web tax-
onomies such as LookSmart and Yahoo! provide search capabilities at every step while

33

Figure 3.9: (top) Free form query interface for the search-within results operation in Google.
(bottom) The interface to Yahoo!’s search-within category. Designs such as these provide a
simple form of integrating personalization and browsing.

drilling-down categories in a hierarchical fashion. The interface design of Yahoo!’s free form
categorical search is shown in the bottom of Fig. 3.9.

Such search functionality integrates browsing and personalization; to support an inter-
active experience, however, search-within operators should be closed and applicable at any
point in the information-seeking session. The search-within results operators available in
Google, HotBot, and Lycos are closed. The search-within category operator, such as that
seen in Yahoo! and LookSmart, is however not closed. For example, if a user initiates a
search while browsing a category hierarchy in Yahoo!, interaction via hierarchical browsing
is disrupted and the user is returned a flat list of results without further search or hierarchical
browsing capabilities.

Lastly, integrating modes of information seeking is seen at other levels in Yahoo!. Since
Yahoo! provides a suite of specialized webpages (e.g., travel pages at travel.yahoo.com,
movie pages at movies.yahoo.com, and maps at maps.yahoo.com), designers envision per-
sonalizing searches according to the category of the request [MPR00]. For example, if one
searches for ‘Mission Impossible,’ Inside Yahoo Search can direct one to the appropriate page
within movies.yahoo.com.

Clustering

Clustering elegantly reduces information overload and prevents users from sifting through
many similar results. Results clustering can aid answer examination while initial clustering
familiarizes a user with an information space. In many search engines, including AltaVista
and Google, clustering of results is done by default so users do not see more than two pages

34

New York Times News Service, August 1990

Education Domestic Iraq Art Sports Oil Germany Legal

Scatter

International Stories

Smaller International Stories

Gather

Trinidad W. Africa S. Africa Security International Lebanon Pakistan Japan

Scatter

Deployment Politics Pakistan Germany Africa Markets Oil Hostages

Gather

Scatter

Figure 3.10: Interaction with Scatter/Gather.

from the same site.
Search-within functionality and clustering capabilities are just two of the many opera-

tors available in web search engines. Others include similarity and ‘from links’ searches.
I omit discussion of these here and refer the interested reader to Search Engine Watch at
seachenginewatch.com for details and comparisons. A cursory look at implementation details
and structural differences in search engines is given in [Tho98].

3.3.2 Scatter/Gather

I present the Scatter/Gather project [CKPT92] as an example of a system that provides
operators for personalized interaction. The two interactive information-seeking operations
being integrated are scattering (clustering) and gathering (browsing). I begin my discussion
with some motivation for the work in [CKPT92].

Several research projects have addressed the use of document clustering algorithms to
improve information retrieval. Due to accuracy constraints however, such algorithms have
poor, quadratic, run-time complexities. Therefore, these algorithms have not been widely
accepted by the IR community. The Scatter/Gather project employs document clustering for
different objectives. Instead of attempting to improve information retrieval via clustering,
it aims to enrich browsing experiences via clustering. Clustering facilitates the formulation
of an information-seeking goal by the user. Clustering in the context of Scatter/Gather is
more sophisticated that the clustering for web search results described above. For instance,
it entails more than collapsing webpages from the same site.

Interaction with the Scatter/Gather system is as follows. Essentially, a one-time, offline
clustering of a document corpus is performed. This initial step is expensive. Afterward,
clustering is done in an online, iterative, and interactive fashion. Clustering is the scatter-

35

A

B F I

C DE

a b c

GH LM

d

A

B F I

a b c d

C DE G H LM

A

BF I

C D

b c

G L

Figure 3.11: Illustration of the zoom operation in Dynamic Taxonomies. (left) A multidi-
mensional dynamic taxonomy. (center) Extensional inference of all concepts related to node
D. (right) The reduced taxonomy after a zoom operation on concept D.

ing component of Scatter/Gather. Clusters are described to users via terms and succinct
summaries. Thus, in addition to employing clustering algorithms, Scatter/Gather makes use
of summarization algorithms. These algorithms essentially consider the central words of a
cluster (i.e., those which appear most frequently in the group as a whole). After an initial
scatter, a user selects clusters which she wishes to explore further. This step comprises the
gather phase. After gathering clusters, the documents of those selected clusters are merged
and re-clustered. Then, the scatter phase resumes. This interactive and iterative process
continues until a user has honed in on a desired set of documents. The interleaving of
scattering and gathering operations drives the information exploration process. During this
process, themes of the corpus are extracted and presented to the user. One advantage of this
approach is that no browsing hierarchy is hardwired a priori. Rather, a hierarchy is created
quite naturally, on-the-fly, via clustering. Interaction with Scatter/Gather is illustrated in
Fig. 3.10 (regenerated from [CKPT92]).

The interactive nature of the personalization operators available in Scatter/Gather leads
us to categorize the project here. Modes of information seeking in Scatter/Gather follow a
strict, ordered sequence dictated by operation semantics. Interaction begins with a gather
operation and proceeds in a scatter, gather, scatter, gather fashion. One cannot arbitrary
intermix these operations. Two scatter operations in succession produce the same set of
clusters. Furthermore, gathering does not make sense if it is not immediately followed by
a scatter. While these two modes of information seeking may be specified and performed
over time, they are complementary and dependent on each other. Neither have semantics in
isolation because no hardwired hierarchical schema is in place from the onset.

3.3.3 Dynamic Taxonomies

Another project closely related to Scatter/Gather is Dynamic Taxonomies [Sac00]. The
motivation here is personalizing a taxonomy with set-theoretic operations (e.g., union and
intersection). In this context a dynamic taxonomy is a model of an information space which
can be browsed and simplified by set-theoretic operations. A user may drill-down a taxonomy
to arrive at an interesting node. At this point in the interaction the user may continue to

36

browse or perform a ‘zoom’ operation.
The adaptation, reduction, and dynamic nature of a taxonomy via the zoom operation

is computed by extensional inference. The zoom can reveal relationships in the original
taxonomy which even the designer may be unaware of. One caveat to this approach is that
the original taxonomy must be multidimensional (i.e., each atomic data item is classified
under more than one concept).

Interaction with a dynamic taxonomy, and adaptation and reduction of it proceed as
follows. Consider the multidimensional taxonomy shown on the left side of Fig. 3.11 (adapted
from Figs. 6 and 7 of [Sac00]). The zoom operation begins with extensional inference. When
a particular concept is selected (D in the case of Fig. 3.11), all the data atoms under this
concept are computed. Performing a zoom on concept D of the taxonomy in Fig. 3.11 (left)
infers the intensional relationships illustrated with dotted arcs in Fig. 3.11 (center). As is
shown, the zoom operation reduces the taxonomy to all the data items (i.e., concept nodes
and atomic nodes) classified directly under the node which the zoom was performed on (in
this case, node D). In addition, the taxonomy retains the other nodes and paths which lead
to the atomic nodes classified under the zoomed node. All nodes which do not lead to
those atomic data items are pruned from the taxonomy yielding a reduced taxonomy or a
conceptual summary (see Fig. 3.11, right). The zoom operator is closed.

With multidimensional taxonomies it is easy to see that a conjunction of the sets of
ancestor nodes of the corresponding atomic objects under which a zoom is performed thins
an information space. Furthermore, multidimensional taxonomies yield all set-theoretic op-
erations applicable and useful (of which intersection is the most powerful). If the inform-
ation base is restricted to monodimensional taxonomies (referred to as ‘conventional tax-
onomies’ in [Sac02]), conjunctions result in null sets, yielding set union as the only applica-
ble operator. Union operations however do not simplify the taxonomy, but rather expand
it and thus do not reduce information overload. Sacco compares conventional (monodi-
mensional) and dynamic (multidimensional) taxonomies and provides experimental results
in [Sac02].

The two modes of information seeking mixed in Dynamic Taxonomies are browsing and
zooming (also referred to as ‘taxonomic retrieval’ in [Sac00]). Sacco refers to this paradigm
of information access as ‘information thinning’ [Sac02]. While decision points at which to
browse or zoom are determined by the user, there is an ordering on such activities dictated
by operation semantics. For instance, two zoom operations in succession yield the same
taxonomy present prior to the second zoom operation. On the other hand, performing the
second zoom operation on a different node transforms the taxonomy. The new node being
zoomed upon must however be arrived at via browsing. It is clear that the zoom operation
is subservient to browsing. Browsing operations, however, can be performed independently
of zooming.

Since browsing and zooming are performed interactively and subject to constraints, the
interaction model of Dynamic Taxonomies is similar to that of Scatter/Gather [CKPT92].
In other words, in both systems, the application of available operators for personalization is
constrained. It is interesting to note that Sacco does not explicitly allude to this interaction
constraint in [Sac00].

A byproduct of Sacco’s approach is that dynamic taxonomies can be nicely integrated
with other retrieval methods (e.g., IR and DB queries). For example, Sacco states that ‘ex-

37

tensional inference can be applied to any subset of the information base, no matter how gener-
ated, and thus guarantees a tight, symmetric coupling with other retrieval methods’ [Sac00].
Such integration and associated distinctions do not alter my classification of Dynamic Tax-
onomies as affording operators for personalization. In conclusion, Dynamic Taxonomies is
simply a set-theoretic model to realize combinations of information-seeking activities. In
the following systems I investigate, no constraints exist on the composition or application of
available operators for personalization.

3.3.4 RABBIT

RABBIT is a novel information system that was well ahead of its time (circa 1984). Many
of the ideas motivating RABBIT are related to several of the papers and systems I analyze
in this section. There appears to have been a gap in the literature addressing the pertinent
issues (mental mismatch and combinations of interaction operators) from the time that
RABBIT was published up until nearly 1995.

Essentially, RABBIT provides a unique interface to a DB. Browsing an information space
is the main interaction motif. While affording compelling browsing experiences, the interface
is based on the paradigm of ‘retrieval by reformulation’ [Wil84]. Retrieval by reformulation
allows a user to incrementally specify and formalize an information-seeking goal. Specifically,
a user may interleave six closed transformation operators (called critiques) with browsing.
The idea is to iteratively refine a query following an operation based on how the system
responds to the previous operation. A user query is implicit in the interaction with the
RABBIT system. RABBIT distinguishes itself from other IR systems by exploiting partial
information. Therefore RABBIT is useful to novices in a particular domain. Specifically,
RABBIT assumes that a user knows more about the generic structure of the information
space than RABBIT does. RABBIT however knows more about the particulars. The six
critique operators available in RABBIT—require, prohibit, alternatives, describe, specialize,
and predicate—are expounded in [Wil84].

The most interesting aspect of the RABBIT system is that its reformulation opera-
tors (i.e., the critiques) may be specified and invoked at arbitrary points in the interaction.
Thus, in contrast to the personalization operators available in Scatter/Gather and Dynamic
Taxonomies, RABBIT’s operators may be applied in an unbiased fashion. An early interac-
tive information retrieval system similar to RABBIT, which embraces the idea of integrating
operators such as browsing and searching, is presented in [CT87].

The systems I present below also exhibit personalization operator independence. After a
long absence from the information systems literature (over 10 years after RABBIT appeared),
approaching mental model mismatches from an operation-combination perspective resurfaced
in [MTW95]. DataWeb motivates the need for personalization operator integration.

3.3.5 DataWeb

In 1995 researchers from IBM Almaden and the Ohio State University wrote a visionary
paper which outlines the issues surrounding the mental mismatch problem [Suc87] between
the designer and users of an information system [MTW95]. In addition to identifying and
expounding on a legitimate cognitive problem, the authors identify approaches to solving

38

the problem. Without using the phrase, the authors discuss aspects of ‘mixed-initiative
interaction’ [HM97], in the context of the interface and browsing taxonomies of Yahoo!, as
chief among possible approaches.

Mixed-initiative interaction is a flexible dialog management strategy where participants
may take turns at any time to seize initiative and direct the flow of interaction without
disrupting its contiguous and smooth flow. Mixed-initiative interaction is most commonly
observed in human conversations. For instance, the following conversation between a travel
agent and traveler illustrates one particular form of mixed-initiative, called ‘unsolicited re-
porting’ [AGH99].

Conversation

1 Agent: Where would you like to travel today, Sir?
2 Traveler: New York.
3 Agent: Which airline would you like to fly with?
4 Traveler: Actually, I’d like to sit in a business-class, aisle seat.
5 Agent: Very well.
6 Traveler: I also need a vegetarian meal please.
7 Agent: Sure.
(conversation continues)

At the beginning of the conversation the agent has the initiative (line 1) and the traveler
responds to this initiative (line 2). In line 4, however, the traveler specifies seat prefer-
ences ‘out-of-turn’ and hence takes the initiative. Notice that although the traveler does
not answer the agent’s airline question (line 3), the conversation progresses smoothly. The
traveler could have responded directly to the agent’s airline inquiry (as in line 2), but instead
shifted gears and addressed another aspects of the reservation. Such an interaction, where
the two parties can ‘mix’ these two modes of inquiry in such arbitrary ways, is referred to as
a mixed-initiative interaction; scenarios and systems which do so constitute the landscape
of mixed-initiative interaction.

Mixed-initiative interaction with the envisioned DataWeb system [MTW95] is as follows.
A user may initially enter a keyword query. The ensuing navigation and summarization of
an answer is used to refine the initial and possibly imprecise query. Thus, querying and
navigation activities are weaved to facilitate query refinement. One can browse (drill-down
or roll-up) or query to attain a different hierarchy at any point while interacting with the
DataWeb system. Transition from one operation to another is seamless. While in this
context queries induce hierarchies, there are also an initial set of pre-existing hierarchies
available as exemplars for a user to browse prior to querying. Similar functionality exists in
RABBIT where a user can browse pre-cached hierarchies to exploit ‘find one’ [Wil84] search
techniques. Thus, a user may begin an information-seeking activity in the DataWeb system
with a query or browse an extant hierarchy. As is seen, DataWeb is a highly interactive
system.

The authors make it clear that a user may invoke the available information-seeking oper-
ators on demand. There is no pre-determined ordering on the operations. For these reasons
and the interactive nature of the outlined system, I view DataWeb as a system affording
operators for personalization. The authors partially recognize that no constraints exist on
the application of their information-seeking operators.

39

3.3.6 Web Browser Command Shells

The UNIX operating system comes bundled with many useful, focused, and atomic software
development tools such as cat, grep, and sed. While these tools have merit in isolation,
much of the success of the UNIX can be attributed to the command shell which supports
the composition and communication of such powerful tools via pipes. Such composition
supports user interaction in creating a compelling and personal experience with the system
while developing software. In other words, the design of tools in UNIX has been carved
up at a comfortable and personable level of granularity. Furthermore, the communication
mechanism, which is provided by the shell, allows end-users to become programmers on-the-
fly. A similar approach to personalization is advocated in [Smi00]. The ideas presented here
are motivated in [Rie00a].

Interaction with a web browser also entails invoking atomic functions (e.g., clicking on
a hyperlink). Furthermore, many popular browsers integrate access to other tools through
fancy user interfaces. For example, many web browsers today provide one-click access to an
e-mail application. What browser vendors are yet to provide is a communication mechanism
to support the composition of these atomic web tools. Consider the following scenario of
interaction to motivate this idea.

Lucy launches her favorite web browser. The browser opens to her startpage –
the homepage of CNN.com. The headline highlights the summer heat wave on
the west coast and reminds Lucy of her trip to the Grand Canyon next week.
This reminder compels Lucy to open her mail utility from within the browser
to retrieve an e-mail sent to her last week regarding heat precautions. Upon
opening the mail client, Lucy uses the find command in the browser to retrieve
the message. After locating it, she opens the mail message and immediately
begins clicking on the URLs provided therein. These clicks spawn page loads in
her browser. After a series of mouse clicks on URLs, page loads, and invocations
of the find utility of the browser (to scan the page), Lucy realizes she has found
a webpage of interest. She next prints the webpage so she can take it with her on
the trip. Lucy closes her browser and terminates the information-seeking session.

The above scenario of interaction demonstrates that the web browser has provided easy
and central access to all the tools needed to complete the information-seeking interac-
tion (i.e., e-mail, HTTP requests, find, and print). Interaction with the browser is however
discrete and discontinuous in the information-seeking episode. Although Lucy knows what
she is looking for from the start, she has to go through a series of individual and painstaking
tasks. Providing a mechanism within the browser to coordinate the communication between
these autonomous tasks on demand would permit a user to create personal interactions. It is
the interleaving of these autonomous commands that is currently done by manual invocation,
and which would benefit from personalization.

LAPIS: Engaging Your Browser

Many of these ideas were first introduced in [MM00] and implemented in a browser shell
called LAPIS (Lightweight Architecture for Processing Information Structure). The ca-
pabilities of LAPIS include a pattern language, a scripting language, and the ability to

40

SELECT y.URL

FROM x in Fragment, y in Fragment

WHERE x.URL = ‘‘http://www.yahoo.com/headlines/tech/’’

x.HREF = y

y.CONTENT = ‘‘*Microsoft*’’;;

Figure 3.12: An AKIRA query. The semantics of this query are to i) locate and fragment the
specified webpage, ii) load each webpage that the specified webpage references, and iii) search
all collected fragments for the text ‘Microsoft.’

invoke external programs. Collectively these entities help cultivate a new shell interaction
model [MM00]. Extensions to this research include providing support in an interface for a
user to create a script ‘by example’ (also called ‘automation by demonstration’) [MM00] and
enriching captured context such as browsing history. With the advent of the XML suite
of technologies, I expect such approaches to become more feasible and subsequently gain
widespread acceptance. While toolbars such as LAPIS are a step in the direction toward
engaging a browser in a dialog, high levels of sophistication are not seen. I surmise that
more research on representing and reasoning about user interaction in information systems
will aid future systems [Mar97]. The following system employs elaborate data modeling to
facilitate combinations of information-seeking activities.

3.3.7 AKIRA

The AKIRA project [LSCS97] at the University of Pennsylvania has a theme similar to that
of WSQ. The project attempts to incorporate data on the web into a canonical DB query.
Instead of simply dealing with web search results as URLs and associated frequencies, the
AKIRA project models webpage content. Modeling webpage content gives users the freedom
to be expressive in queries. Within-webpage modeling can also affect the granularity of
answers. The model employed to capture the webpage data in AKIRA is object-oriented.
The information-seeking operators which are mixed in an interactive manner are browsing,
querying, and output restructuring. While I classified WSQ and web query languages as
templates for personalization, I view AKIRA as providing operators for personal interaction.
Information-seeking sessions with AKIRA are interactive and no constraints exist on the
order in which operators may be invoked.

A user interacts with the AKIRA system as follows. After the user poses a query (see
Fig. 3.12, a modified version of the query presented in [LSCS97]) and receives an answer,
she may browse the resulting pages or write another query to restructure the output. Fur-
thermore, points at which these information-seeking activities are engaged may be mixed in
any order. User interaction with AKIRA is similar to that with RABBIT. As opposed to
RABBIT however, querying (including output restructuring) and browsing are the only two
valid information-seeking operations available in AKIRA.

41

3.3.8 Complete Answer Aggregates

Meuss and Schulz’s complete answer aggregates [MS01] are tree based data structures used
to facilitate the integration of browsing, querying, and reformulation in an information-
seeking session. Meuss and Schulz define a complete answer aggregate as ‘a complete and
non-redundant view on all the possible target nodes, for each of the query variables, and on
all links between these candidates that contribute to some answer’ [MS01]. The approach of
complete answer aggregates is based on sets, relations, and tree theory.

Interaction with the system proceeds as follows. A user writes a tree structured query,
whose answers map tree query nodes to DB nodes. Since the number of answers to a tree
query may be exponential and thus possibly lead to information overload, a method by
which to summarize and compact the answer is required. The solution adopted is factor-
ization, which not only compacts the answer, but also arranges relevant data elements of
the answer in context. Such qualification was also the primary motivation for Dynamic Tax-
onomies [Sac00]. A terse but expandable answer is preferred over a long, flat, and monolithic
list of hits.

Aspects of information seeking are supported by information previews (e.g., counters)
to facilitate decisions on whether to construct and issue another query, drill-down, or refor-
mulate. Reformulation here is considered as a special case of querying. Meuss and Schulz
provide two closed reformulation operations: node rank by counter values and compaction
by attribute values [MS01]. Surprisingly, the two useful operations on answer aggregates do
not directly correspond to any of the six critique operations in RABBIT [Wil84]. The main
idea is that an initial tree query will present a useful starting point for active exploration
of an answer space. Meuss and Schulz contend that such exploration facilitates ‘interactive
knowledge discovery and hypothesis testing’ [MS01]. Subsequent browsing and reformulation
is employed to refine/enhance an initial, possibly under specified, query.

Connections from complete answer aggregates to Dynamic Taxonomies [Sac00] and RAB-
BIT [Wil84] is seen in that all three projects model an information resource and provide
canned, closed operations (including browsing) on that resource to transform, simplify, and
personalize it. The zoom operation is available in Dynamic Taxonomies. In RABBIT,
available operators are reformulations. Closure preservation in complete answer aggregates
fosters both an exploratory style of browsing and seamless integration with further query
type activities (reformulations). This browsing style is similar to that in some OLAP (Online
Analytical Processing) systems [HAC+99].

It is clear that the operators here (i.e., the specification of attribute values to collapse
by and the specification of counter values to rank by) are independent of each other and
need not arrive in an ordered or predetermined fashion. Furthermore, although not explic-
itly mentioned by the authors, I believe that another tree query may be written against a
complete answer aggregate (at a different time in the interaction). Such interaction exempli-
fies the interleaving of information foraging activities with browsing. While the authors do
not explicitly address this aspect of their approach, they do stress the exploratory nature of
complete answer aggregates. At different points in time, different aggregates may be viewed
via certain attributes. Since the available operations may be specified in an unbiased fashion
over time, interaction with complete answer aggregates is similar to that in the RABBIT
system.

42

3.3.9 BBQ and MIX

XML as a data format provides opportunities for mixing operations for personal interaction,
especially browsing and querying. Typically XML data elements are nested, making XML
documents conducive to browsing via drill-down and roll-up metaphors. In addition, most
XML query languages such as XML-QL are closed [DFF+99]. Thus, interactively blending
browsing and querying of XML is quite natural.

Blending Browsing and Querying (BBQ) [MLP00, MP00] is an information system which
achieves precisely this objective. There are no system semantics dictating the order in which
a user may apply the two information-seeking operations. Querying in BBQ [MLP00], as
opposed to more traditional XML query languages [DFF+99], may be performed by example
via a drag and drop interface. Thus, querying in the BBQ system is interactive, as opposed
to the one-shot style of interaction seen in other systems [FR97, GW00]. After a query
is answered, the system infers a document type definition (DTD). This DTD assists the
processing of subsequent queries.

I view BBQ as an information system which affords operators for personalization since
querying is interactive and combined independently and at any interaction point with brows-
ing in BBQ. The designers of BBQ do not recognize this aspect of their system. BBQ is
currently absorbed by a larger project called MIX [MP02]. MIX is a mediator-based ap-
proach to integrating querying and navigation. While BBQ incorporates visualization, there
also exist systems, focused solely on visualization, which afford operators for personalization
as a convenient by-product.

3.3.10 Operators for Interactive Visualization

Interactive information visualization is the main thrust of the systems I discuss in this section.
These systems provide operators to bring aspects of interactivity to bear upon a visualization.
Ultimately and as a by product, such operators tackle the mental mismatch issue [Suc87],
which is endemic to personalization research. Therefore, I showcase these operations here in
the context of the personalization they achieve. While there are several interactive inform-
ation visualization systems, I focus on three which provide operators which affect user percep-
tion of an information base. Specifically, I analyze three data structures: user-defined hierar-
chies [WB99], polyarchies [RCCR02a, RCCR02b], and treemaps [Shn92, SW01]. A unifying
theme among these systems is their ability to provide visualizations and views which expose
semantic relationships in an information base.

User-Defined Hierarchies

User-Defined Hierarchies (UDHs) are dynamic hierarchies. Systems incorporating UDHs
champion multiple visual layouts of a single hierarchy and therefore support dynamic hier-
archy specification and visualization. Multiple layouts facilitate the discovery of semantic
relationships in data. Various different layout algorithms, each with support for discover-
ing different properties (e.g., level of clustering) efficiently, are discussed in [WB99]. Such
algorithms modify a hierarchy dynamically based on user interaction. Dynamic hierarchies
are generated directly from data and not as a result of operations or transformations on

43

2003 2004

Ford VW Ford VW

1

blue

2

red

3

blue

4

red

5

blue

6

red

7

blue

8

red

blue red

2001 2002 2001 2002

1

Ford

3

VW

5

Ford

7

VW

2

Ford

4

VW

6

Ford

8

VW

Figure 3.13: Illustration of a possible reconstruction operator on a UDH. The UDH descrip-
tion of the hierarchy on the left is modified to restructure the levels of the hierarchy to that
shown on the (right).

Green, Paul

Luther, Linus

Lowell, Lucy

Jones, Mary

Luther, Linus

Lowell, Lucy Williams, Victor

Green, Paul

Figure 3.14: Adding a person to a management polyarchy. (left) The path from the root
‘Luther, Linus’ to ‘Lowell, Lucy.’ (right) The polyarchy resulting from adding ‘Williams,
Victor.’ This figure illustrates how a user can incrementally add entities to a polyarchy
which reveal resulting relationships. Such relationships are difficult to observe with a general
overview of an extremely large hierarchy.

an ‘unpersonalized’ hierarchy or representation. Modeling interaction is thus not stressed
in [WB99]. Fig. 3.13 illustrates a possible reconstruction operator. A UDH, whose first,
second, and third levels pertain to automobile year, model, and color, respectively, is shown
in Fig. 3.13 (left). Fig. 3.13 (right) might be the output of a goal-oriented reconstruction
of the UDH description of Fig. 3.13 (left). This reconstruction reorganizes the hierarchy by
making automobile color, year, and model the first, second, and third levels, respectively.

Polyarchies

Polyarchies [RCCR02a, RCCR02b] deal with predetermined (static) hierarchical structures.
A polyarchy groups multiple intersecting hierarchies which share at least one node into a
single hierarchical structure. Again, the main focus here is on visualization. A polyarchy
helps to visualize both a single hierarchy and understand the relationships between multi-
ple entities within that single hierarchy. In addition, a user may visualize more than one
hierarchy simultaneously for a clear understanding of the relationships between multiple

44

100

50

cold

50

hot

SD(25)

low

MA(25)

high

MS(25)

low

TX(25)

high

Figure 3.15: A tree containing data about states.

MS

Root

0 1004020 8060

TX

SD
MA

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

25

hotcold

25

25

low low

high high

25
MS

Root

0 1004020 8060

SD
MA

TX

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

cold
low

high

low

40

20

high

20
20

hot

Figure 3.16: Illustration of the slide operator to adjust weights of attributes in treemaps.
(left) A possible treemap for the hierarchical data shown in Fig. 3.15. (right) Resulting
treemap, which displays the recalculated state weights, from moving the sliders in (left).

hierarchies. To facilitate these goals, manipulations such as sliding and pivot points are
provided. Fig. 3.14 (adapted from [RCCR02a]) illustrates adding a new object to a pol-
yarchy. Fig. 3.14 (left) shows one path in a management hierarchy – the path from the root
‘Luther, Linus’ to ‘Lowell, Lucy.’ Fig. 3.14 (right) shows the result of adding ‘Williams,
Victor’ to the polyarchy – an additional path to the root. The use of this addition operator
in this example illustrates the discovery of relationships between the selected entities. This
approach distinguishes relationship discovery in polyarchies vs. that from a general overview
of an extremely large hierarchy.

Treemaps

Treemaps are yet another data structure approach to inferring relationships in an information
base. Similar to polyarchies, treemaps deal with predetermined structures – trees in this case.
The traditional two dimensional treemap approach is discussed in [Shn92]. The treemap3
system (see www.cs.umd.edu/hcil/treemap3/) extends this by allowing users to choose the
aggregation order to form a tree of their choice. Layout difficulties in visualizing treemaps as
opposed to supporting multiple aggregation orders are discussed in a newer article [SW01].

The tree in Fig. 3.15 (adapted from [Jon98]) models attributes of states. The first level
of the tree involves values for climate while the second level contains values for population.

45

The number in a node represents the weight of the node which is equal to the sum of the
weights of all the descendants of the node. Fig. 3.16 (adapted from [Jon98]) illustrates di-
rect manipulation of treemap attribute weights to recompute the value of objects (e.g., the
weight of states in Fig. 3.15). The left of Fig. 3.16 displays a possible treemap and state
weights for the data in Fig. 3.15. Users may adjust the weight of attributes in this treemap
by manipulating the dotted sliders. A user may move the sliders to explore the cumulative
effect that different attribute weight values have on the objects (states, in this case). In
Fig. 3.16, moving the sliders corresponds to adjusting the relative importance of preferences.
Such an interface helps the user decide on, for example, relocation options. After manip-
ulation, the value of each object (e.g., state) is automatically recalculated as illustrated in
Fig. 3.16 (right). Such manipulations are critical to decision support systems as seen below.
I now turn to interaction as a vehicle to analyze massive data sets.

3.3.11 Interactive Data Mining and Analysis

Close examination of data analysis in DBMSs, decision-support systems, and data mining
packages from a user perspective reveals that analysis calls for iteration, intuition, and explo-
ration. I have established that a query in a DBMS is a one-shot activity. Such an approach
is effective when a user knows what he is seeking, but is not conducive to exploration. Thus,
a user experiences frustration when using a query information-seeking strategy to search for
information that the user does not know [Bel00]. This problem is endemic when DBMSs and
IR systems are used as interactive systems. As discussed above, results refinement techniques
such as relevance feedback are typically employed to combat this problem.

This issue is exasperated in decision-support systems and data mining applications for the
following reasons. Typically batch analysis of large data sets is costly and time consuming.
Often the success of algorithms which discover patterns in data is predicated on and highly
sensitive to algorithm-specific parameters (e.g., support and confidence) tuned by users. A
poor choice of parameters may lead to useless results. The results of the first few runs on
massive data sets may be correct, but undesirable or difficult to interpret. Furthermore,
knowledge that a choice of parameters is poor is often unknown until results are returned.
In summary, in traditional analysis systems, not only is querying, computation, and anal-
ysis one-shot, it also takes place in a ‘black-box’ [HAC+99]. Computation is conducted as
efficiently as possible, but users have no control over it, once begun.

A classic chicken and egg problem ensues. The difficulty is that users can neither pre-
cisely formulate their analysis goals nor tweak algorithmic-sensitive parameters until implicit
properties of a dataset (e.g., dimensionality) are progressively revealed to them. While much
research has been conducted on improving the efficiency of data analysis and mining algo-
rithms in decision-support systems, little research has addressed improving usability and
personalized interaction in such systems.

Applying techniques from human-computer interaction to data analysis is an approach.
The goal of the Control project [HAC+99] is to afford users direct interaction with compu-
tation in order to refine results and control processing ‘just-in-time.’ Interaction tightens
the data analysis process loop. Analogous to the nature of the operations of personalization
of the information systems discussed in this section, Hellerstein et al. [HAC+99] provide
users of analysis tools with canned operations to facilitate interactive exploration. Rather

46

than computations assuming a black-box model, operators for personalized interaction in the
Control project afford users direct insight into the ongoing analysis. Such operators trade
quality and accuracy of results for direct control. A data mining user is typically willing to
accept approximate and partial results in return for a handle into the computation.

The Control project supports many interactive algorithms for data analysis. The sup-
ported operations include online aggregation or drill-down online enumeration through user
interface widgets to support ‘eyeballing’ and ‘panning,’ online data visualization through a
technique called ‘clouds,’ and online data mining. Control employs random sampling and
reordering to achieve online interactivity. In addition, Control implements ripple join algo-
rithms to tackle online query-processing problems entailing multiple inputs.

Projects such as Control lie within the scope of data warehousing and OLAP. Data ware-
housing and OLAP technologies are critical to the success of decision-support systems which
currently constitute a large segment of the database industry [CD97]. As OLAP technolo-
gies and resulting systems gain widespread acceptance, I expect the need for personalized
interaction with them to increase. I view the design of systems such as Control as initial
steps in this direction.

3.3.12 Social Network Navigation

While many sites on the web are organized along a hierarchical browsing motif, sites in
certain domains are more effectively based on a social network navigation metaphor. A social
network is a graph in which nodes represent entities (e.g., people, books, or movies) and edges
represent relationships between entities (e.g., is-a-friend-of or have-co-authored-a-paper).
Social networks are characterized by heterogeneous nodes and homogeneous edges. A simple
example of a social network is one’s network of family and friends. Examples of websites
based on a social network navigation metaphor are the Internet Movie Database at imdb.
com, Barnes and Noble at bn.com, and the online computer science bibliography DBLP
at www.informatik.uni-trier.de/∼ley/db/ (see Fig. 3.17). The increased popularity in the
use of social networks has led to projects such as FOAF (Friend of a Friend; foaf-project.
org) which attempt to build a web of machine-readable homepages describing people, the
relationships between them, and the things they create and do. FOAF utilizes several W3C
recommendations, such as RDF (Resource Description Framework) and OWL (Web Ontology
Language) and is an application of the ‘Semantic Web.’

Social networks can be induced from an existing information base for later exploration
and exploitation. An early project on social network analysis induced a communication
network from e-mail logs in order to discover shared interests [SW93]. For purposes here,
I am interested in operators to explore and exploit pre-induced social networks, in order
to discover products of interest, serendipitous collaborations, or network resources [SYV01].
Such operators enhance personalized interaction and expedite the personalization process.

ReferralWeb [KSS97] is a collaborative filtering recommender system which provides users
with operators for exploration and exploitation in a person-person social network. Associ-
ations between people nodes are mined from close proximity of names in web documents
subject to a set of heuristics. An induced network facilitates the search for experts, commu-
nities, or documents. ReferralWeb contains operators for several types of searches including
a referral chain search (e.g., a user may be interested in finding the relationship chain be-

47

Figure 3.17: An association in the social network at DBLP. Jumping from a author web-
page (left) to a conference webpage (right).

tween herself and a colleague and thus ask, ‘What is my relationship to Graham Smith?’), an
expert search (e.g., by specifying a topic and a social radius a user may ask ‘What friends of
mine or friends of friends of mine know about tourist attractions in Italy?’), and an expert
controlled search (e.g., ‘List documents on the topic ‘human factors and user interface com-
ponents’ close to Don Norman.’). The examples of searches given here have been adapted
from those in [KSS97].

Consider how an editor of a journal may exploit a social network of authors in computer
science to find an unbiased committee of reviewers for a communicated article. The editor
surely does not desire individuals within close proximity of the author under review. The
editor does however seek effective reviewers who must be close enough to the reviewees’
research area to be qualified. The editor may therefore apply the available operators on a
social network induced from a corpus to find all individuals within three degrees of separation
from the author subject to review. Systems consisting of a social network and a suite of
expressive operators foster relationship discovery and are thus classified here.

3.4 Representing and Reasoning about Interaction

Thus far this chapter has espoused the theme that personalization is advantageously ap-
proached by studying and understanding interaction [Mar97]. In the previous two sections,
the onus of personalization was on users. Templates are so over-specified that interaction is
limited to filling out a form or writing a query to communicate an exact level of customiza-
tion. While operators for personalization afford more freedom, interaction remains stifled by
constraints on the applicability and composition of the available operators. If interaction is
to guide the design of personalization systems, then beyond understanding and studying it,
interaction must also be explicitly modeled and exploited. In other words, personalization
should be approached from a user-centered design perspective [KNV00]. In my opinion,
representing and reasoning about interaction is the holy grail of personalization. The main
premise of this section and chapter echoes that of Marchetti et al. [MVPB93], namely that

48

Dimensions
Method Goal Mode Resource

ISSs Scan Search Learn Select Recognize Specify Information Meta-information
1

√ √ √ √

2
√ √ √ √

3
√ √ √ √

4
√ √ √ √

5
√ √ √ √

6
√ √ √ √

7
√ √ √ √

8
√ √ √ √

9
√ √ √ √

10
√ √ √ √

11
√ √ √ √

12
√ √ √ √

13
√ √ √ √

14
√ √ √ √

15
√ √ √ √

16
√ √ √ √

Table 3.1: Four-dimensional information-seeking strategy space.

‘. . . information retrieval is an inherently interactive process, and that support of users should
be support of their interaction, with all of the system resources.’ The following two chapters
reinforce the theme of representing and reasoning about interaction as I illustrate advantages
to my representations, in addition to those described here, w.r.t. the interaction they enable.

3.4.1 Why Model Interaction?

Ultimately, models of interaction serve as a representational basis to design an interactive
system. They are more expressive than templates and operators and are thus at a finer
level of granularity. Care must be taken however to ensure that interaction is not modeled
too tightly. In other words, over-representation and excessive modeling can lead to bulky
designs. Systems which fall victim to this trap run contrary to the goals of personalization.
Representations which are too general should be avoided for obvious reasons as well. This
problem suggests the need for structures of interaction at a personable level of granularity.
Pednault motivates this issue as:

“The representation should be as rich and fluid as the interaction itself, but at a
level of abstraction that allows the relationships among stimuli and responses to
be readily observed in the data collected” [Ped00].

3.4.2 Information-Seeking Strategies

Prior to designing an interactive system, one must first study, understand, and characterize
the interactions which users desire of their information systems. Eventually designers shift
from such understandings to system design representations which structure, support, and
enhance interaction [BCST95]. I begin by characterizing information-seeking behavior.

Belkin, Marchetti, and Cool [BMC93] describe an information-seeking strategy (ISS) as
a behavior a user engages in while interacting with a system. They have contributed a
binary, four-dimensional ISS space (see Table 3.1) containing 16 (24) strategies [BMC93].

49

Each dimension can be considered as a factor of information seeking and describes a di-
chotomy. The ISS space factors are method of interaction (scan or search), goal of interac-
tion (learn or select), mode of retrieval (recognize or specify), and resource (information or
meta-information).

For instance, ISS15 is indicative of a highly specified search [BMC93]. A user is searching
through an information base with the goal of selecting relevant items which match specifi-
cation aspect input. ISS2, its complement, represents a prototypical example of a fuzzy and
loose strategy. Here a user scans meta-information such as an index to learn to recognize
where topics are situated. Depending on specific strategy instances, the information-seeking
strategies (ISSs) in this space may overlap. More importantly, users typically shift between
ISSs in the course of an information-seeking session, called an episode in [BMC93].

The following example illustrates such a shift. Consider a student who interacts with
a university library information system to check out a reserved book for a course. If the
student does not know the title of the book, he may interact with a directory indexed by
course number to learn the title of the book (ISS12). After the student knows the title, he
can use a search tool to find the book in the title-alphabetized reserve pages (ISS15).

Capturing and modeling such shifts is a way to support compelling experiences in inform-
ation systems. The classification the space provides can be used to describe movement from
one ISS to another. Design techniques to support combination through seamless movement
from ISS to ISS are faithful to my vision of personalization through mixture of information-
seeking activities as advocated throughout this chapter.

The most notable aspect of this work is that Belkin et al. [BMC93] view an ISS as an
interaction with an information system. In other words, an interaction with an IR system
is a dialog between a user and a system. Others projects divorce the two and view each
ISS as a query or functional requirement of a system. Therefore, such systems do not
take advantage of the interaction inherent in use. Rather than supporting interaction, such
systems constrain, tolerate [BMC93], or react to it. This distinction goes to the heart of the
difference between a one-way, reactive, interaction and a two-way, cooperative, dialog.

Most designers make provisions for personalization in systems from the onset rather than
supporting it through interaction. This trend is most salient in templates, but also is seen in
operators designed to implement personalization. Due to these reasons, Belkin [Bel97] feels
that intelligent, agent-based approaches which circumvent the need for personal interaction
with information resources are unlikely to be embraced by users.

These arguments have significant implications for the design of a system. Belkin et
al. [BMC93] prefer the design of a system to explicitly support such interaction, both at the
individual ISS and inter-ISS level. The work of Belkin et al. is thus visionary in making
these novel observations and contributions.

Details of the transition from high level ISSs and interaction models to concrete im-
plementation details need to be pinned down. Through the construction of a prototypical
interface to an IR system, Belkin et al. [BMC93] explored this transition. The resulting sys-
tem, called BRAQUE (BRowsing And QUEry formulation), is a two-level hypertext model
of IR system DBs [MVPB93]. The system supports and validates the feasibility of the im-
plementation of interaction as described here. In addition, and commensurate with systems
presented above, BRAQUE blends query formulation and reformulation with browsing.

50

3.4.3 Structures of Interaction: Scripts, Cases, and Goal Trees

There are formalisms applicable to modeling interaction. The goals, operators, methods
and selection rules (GOMS) model of human-computer interaction, introduced by Card,
Moran, and Newell [CMN80a, CMN80b, CMN83] in the early 1980s, is accepted as a
mature formalism. Since then, three variations of the original GOMS formulation have
been developed—the keystroke-level model (KLM), natural GOMS language (NGOMSL),
and cognitive-perceptual-motor GOMS (CPM-GOMS)—and are surveyed in [JK96]. Since
GOMS is more of a formalism for modeling cognition than interaction, I do not discuss its
details here.

Several models which describe the structure of the dialog between a user and an in-
teractive information system have been developed. Three predominate classes of dialog
models are transition networks, grammars, and events. They are comparatively surveyed
in [Gre86]. Other dialog models, such as language, hybrid, and structural models, are show-
cased in [PQ96]. Dialog models form the underlying notations used in user interface man-
agement systems [Gre86].

Belkin et al. [BMC93] use a formal model called COR (Conversational Roles Model)
which involves transition networks to represent dialog structures for information seeking.
The model defines types of dialog structures between two actors: the information provider
and the information seeker. These structures capture turn taking, jumping out of dialogs,
termination, and error recovery. COR models high-level dialog structures while omitting
details at the domain, task, and strategic levels. Therefore, a prescriptive interaction model
in addition to the descriptive COR dialog model is needed. Cases and scripts fill this void.

A dialog is a specific instance of communication between a user and an information
system. Dialogs may consist of many moves within a single ISS. For example, while employing
an ISS, one user may decide to terminate interaction prematurely, while another may see
the information-seeking goal to fruition. In either case, neither user has deviated from the
particular ISS. The following is an example of a dialog related to ISS12 of the course textbook
example above.

Dialog

1 System: May I have the course number please?
2 User: Yes. CS4604.
3 System: The title of the reserved book is A First Course in Database Systems.
4 User: Thanks.

Intra-strategy shifts however make dialogs a poor model of interaction for system design.
An interaction script, which is better suited, is a pattern in a two-party interaction or

dialog. Belkin et al. [BCST95] describe a script as a plan for dialog between a user and
an information system. Scripts are prototypes which model a class of concrete dialogs.
Therefore, an actual dialog is a specific instance of a script. A script is prototypical in that
it implements an ISS. Scripts structure user interaction for the design of a system similar
to how an interpreter structures the interaction of a program. The level of expressivity in

51

1 System: Here’s what we can do (offers choice).
2 User: Let’s do this (chooses one).
3 System: OK, here’s how we’ll do it.

(presents plan and means for accomplishing script).
4 User: a. OK. → 5

b. No, I don’t like this. → 1

Figure 3.18: Preamble sequence for interaction scripts.

scripts is correct for design. Scripts are written in plain English and intended to be easily
understood by the layman as opposed to COR models.

An alternate representation of interaction is a goal tree. A goal tree is arranged as
a hierarchy of goals which organize the set of necessary moves in an ISS. Goal trees are
represented in a PROLOG-style notation with goals corresponding to predicates. There are
goal trees associated with each ISS. Furthermore, to model rich interaction, some goal trees
may contain sub-goals (predicates) which represent jumps to other regions of the ISS space.

In a simple system design, scripts may be stored in a dialog manager. Upon entrance,
a user and the system execute a preamble script to determine and retrieve the desired or
appropriate script. Such introduction, which is not specific to any ISS from [BCST95], is
given in Fig. 3.18 (from [BMC93]). Combinations of scripts also can be used to achieve more
expressive dialogs.

In practice, knowledge of how the dimensions of the ISS space affect each other is invalu-
able to reduce the number of script combinations which a system must support. Knowledge
of these dimensional relationships also makes the prediction of moves between the ISSs at
decision points easier. Thus, these relationships help stir user interaction and form com-
plex scripts. Xie [Xie02] addresses how interaction intentions relate to ISSs. Xie identifies
patterns of interaction revealing the circumstances under which certain ISSs are employed.

Another approach to interaction shifts is to mine patterns of usage in systems to anticipate
which subset of the remaining 15 possible ISSs users will most desire to follow. For instance,
if the leaf node in a goal tree cannot be simplified, it can be expanded and replaced with the
goal tree of an alternate ISS. This leads to the broader question of where scripts come from.

Belkin et al. outline two approaches for deriving scripts in [BCST95]. The first entails
‘a general characterization of information-seeking goals and a related cognitive task analy-
sis.’ The second is driven by empirical observation of interaction patterns. This approach
involves inducing patterns in system use akin to web log mining. Belkin et al. use case-based
reasoning (CBR) for this purpose. The end-goal is to collect, analyze, and characterize cases
in the ISS space.

In such an approach, the system and cases bootstrap each other. After collecting an
initial set, the ISS space induces a partition on the gathered cases. Designers then attempt
to select a prototypical case from each partition which leads to a script. Due to the iterative
nature of CBR, it is acceptable to start the system with a prototype. MERIT [BCST95] is

52

an interactive IR system which embodies these ideas.

3.4.4 Modeling Interaction on the Web

Modeling web interaction is becoming important as information systems migrate online.
Such modeling has been done to combat the stateless HTTP protocol. A theoretical ap-
proach to dealing with this state maintenance problem is based on the concept of continu-
ations [FWH01] from programming languages. In such an approach, a program is used as
a novel model of interaction. The authors of [GFKF01, Que00] model interaction with a
web application as a program in Scheme, a language which supports the user in explicitly
capturing and manipulating continuations (via call/cc, call-with-current-continuation).

In order to maintain state, designers save continuations within these programs at certain
points in the interaction. Stored continuations have several applications within the purview
of state maintenance. For example, they can be used to maintain state when the user desires
to explore alternate options by clicking the ‘back button’ or cloning a new browser window.
In addition, if a user’s interaction with a web resource is prematurely terminated due to a
lost network connection, when the connection is restored, rather than starting the interaction
from scratch, the user may resume a saved continuation.

3.4.5 PIPE: Personalization is Partial Evaluation

PIPE [Ram00] is a research project which employs representations of interaction similar to
those discussed above for capturing and supporting information-seeking interactions. PIPE
extends the script-based approach by transforming representations using program transfor-
mation techniques, to achieve personalized interaction. Similarly, it can be seen as extending
the web continuation approach because rather than sequentially evaluating programs, PIPE
non-sequentially evaluates programs.

Since I cover the details of the PIPE approach in the previous chapter and since repre-
senting and reasoning about interaction is the emphasis of this tier, rather than reinforcing
the PIPE approach with additional, but similar, examples, such as those presented in the
previous chapter, I appropriately illustrate additional advantages to modeling interaction
programmatically here.

PIPE is cast as a modeling methodology for information personalization. However, it
makes no commitments to a particular algorithm, format for information resources, type of
information-seeking activities or, more fundamentally, the nature of personalization deliv-
ered. Instead, it emphasizes the modeling of an information space in a way where descriptions
of information-seeking interactions can be represented as partial information. Such partial
information is then exploited (in the model) by partial evaluation, a program specialization
technique popular in the programming languages community [Jon96]. I model the inform-
ation space as a program, partially evaluate it w.r.t. a partial assignment of its variables
representing user input, and recreate the personalized information space from the special-
ized program to realize user-specified interactions. If interaction with an information system
can be modeled programmatically and captured with partial information, then PIPE can
personalize it.

53

⇓

Figure 3.19: Communicating multiple terms (‘Democrat Senate’) in a single utterance.

54

While in the previous chapter I used a toolbar interface to capture and communicate
partial information, here, I illustrate the use of a voice interface called SALTII (SALT
Interaction Interface; pronounced ‘salty’) to the same effect. I implemented SALTII using
SALT 1.1 (Speech Application Language Tags) [SAL02] to support out-of-turn voice input.
SALT is a standard which augments HTML with tags for speech input/output to create
webpages which can talk and listen, rather than just passively display content. It employs
SRGS (Speech Recognition Grammar Specification) to specify the underlying grammar. Such
technologies, including X+V (XHTML plus Voice [ACL+01]), are a playing a key role in the
emergence of the speech-enabled web [Lai00]. SALTII enables multimodal interaction when
used in conjunction with hyperlinks. SALTII is thus the analog of Extempore in a voice
modality (see Fig. 3.19 for the Project Vote Smart (PVS) example revisited). However,
while Extempore captures out-of-turn input as a bag of words (hence supporting phrases),
currently the SALTII-enabled pages do not accommodate lengthy constructs (for ease of
speech recognition). The SALTII and Extempore interaction interfaces are available for
download from our project website at http://pipe.cs.vt.edu.

Modeling in PIPE

PIPE provides many modeling options, beyond the simple ‘processing of partial inputs in
nested conditionals’ approach given in the previous chapter. For instance, I can exploit
interesting dependencies underlying politicians’ attributes in PVS. For instance, if the user
says ‘senior seat,’ I can infer by functional dependency that he is referring to a member
of the Senate and not the House. So, I can partially evaluate w.r.t. these additional vari-
ables. As another example, entering ‘South Dakota’ and ‘Republican’ in the current political
landscape defines a unique member of Congress because South Dakota has only one Repub-
lican congressional official, so the interface does not need branch of Congress or seat/district
information (see Fig. 3.20).

It is important to consider such facets to deliver a compelling personalized experience.
The net effect of such considerations will be the initialization of multiple program variables
based on the user’s input, and the site created at every stage reflects an accurate summary
of the remaining dialog options. These simple examples illustrate not only the importance,
but also the power in forming an explicit representation of interaction as a basis for person-
alization.

In addition, a variety of other information spaces and corresponding information-seeking
activities can be modeled in PIPE. Modeling options for representing information integra-
tion, abstracting within a webpage, interacting with recommender systems, modeling click-
able maps, representing computed information, and capturing syntactic and semantic con-
straints pertaining to browsing hierarchies are described in [Ram00, RP01]. Opportunities
to curtail the cost of partial evaluation for large sites also are described in [RP01]. I do
not address such modeling aspects here except to say that the effectiveness of a PIPE im-
plementation depends on the particular modeling choices made within the programmatic
representation (akin to [Wil84]). I cannot overemphasize this aspect. I can deliver a higher
degree of personalization in an example such as PVS by conducting a more sophisticated
modeling of the underlying domain. For example, individual congressional official webpages
at the leaves could be modeled by a deeper nesting of conditionals involving address, educa-

55

⇓

Figure 3.20: Automatic input expansion by functional dependency.

56

tion, and other attributes of the individual. In other words, a single page could be further
modeled as a browsable hierarchy and ‘attached’ (functionally invoked) at various places in
its programmatic rendition. Conversely, I can deliver a lesser degree of personalization in
the PVS example by requiring categorical information along with user input. For instance,
replacing if (Democrat) with if (Party == Democrat) implies that the specification of
the type of input (namely that ‘Democrat’ refers to the ‘name of a party’) is required for the
expression to be partially evaluated. Such a modeling would not help a consumer shopping
for a Harry Potter book who does not know if ‘Harry Potter’ is the book’s author or title.
Personalization systems built with PIPE can thus be distinguished by what they model and
the forms of personalization enabled by applying partial evaluation to such a modeling.

3.5 Making It Work: Systems Support and

Enabling Technologies

I briefly mention some systems support technologies to bring personalization solutions into
mainstream adoption and use.

3.5.1 Data Modeling

Researchers have identified data modeling as critical to the degree of personalization deliv-
ered [Chi97, RS97]. For personalization purposes, data modeling often involves databases
techniques for the web [ABS00, FLM98]. I focus here on content modeling and information
integration techniques, such as web crawling and wrapping.

Web Wrappers and Information Integration

The main motivation for wrappers is bridging the gap between the abundance of data on
the web and applications which have no direct access to the web [ABS00, HGMC+97].
WSQ [GW00] is an example of a system which can benefit from such modeling. The type
of information extraction techniques employed are dependent on the type of personalization
intended.

In template-based systems, a query typically drives the modeling process [AK97, KMA+98].
Manually designing a web wrapper and subsequently maintaining it is a painstaking process
due to dependence on the source format. Therefore, research has been conducted on auto-
matically generating wrappers. Such programs exploit structural cues in data. Ashish and
Knoblock take a regular expression, grammar-based, approach to wrapper generation [AK97].
An alternate approach [SA99] is to exploit intermediate mappings between system-defined
formats and standard formats, such as XML and DOM. The project culminated in the World
Wide Web Wrapper Factory (W4F) toolkit [SA99].

All of these projects are focused on answering queries and thus approach wrapper gener-
ation from a within-page modeling standpoint. Others take a broader approach and model
site structure or mediate inter-site differences [KMA+98]. Central to this approach is the
flow of information within a site and across sites. In other words, information is integrated
through data flow. The output of the first source is fed into the second source as input and

57

so on. Such an approach can be contrasted to formalisms for information integration that
use shared schemas and mediated queries [GMPQ+97, GBMS99, KLSS95].

These approaches suffer from a pitfall endemic to all wrappers, whether automatically
generated or not. Crawling or wrapping a third party website is error prone due to page
irregularities, extensive use of stylish page formatting, and an abundance of semistructured
data [ABS00]. While many wrapper and crawling packages are freely available on the web,
such tools are difficult to use out-of-the-box and typically require a level of manual cus-
tomization for a particular site. It is often useful to conduct a preliminary inspection of page
design and site layout before implementing such systems. In addition, a variety of semantic
issues exist for effective information integration which are currently handled with heuristics.

Several distinct solutions to this problem have emerged. One idea is on focus modeling
to specific document structures. Rus and Subramanian concentrate on capturing and mod-
eling tabular structures and thus employ document segmentation and structural detection
algorithms [RS97]. XTRACT [GGR+00], a system similar to [AK97], uses grammars and
AI techniques to infer DTDs (Document Type Definitions) for XML data. The endurance of
such approaches are tested by richer standards for document types such as XSchema (XML
Schema)[Fal01]. It is widely believed that XSchema may render DTDs obsolete. An alter-
nate approach to webpage modeling, which also employs AI techniques, is wrapper induc-
tion [KWD97]. Systems such as [GGR+00, KWD97] scale well with regard to frequently
changing sites due to the exploitation of machine learning techniques. Yet another solution
uses program compaction techniques (e.g., greatest fixpoint semantics of monadic datalog
programs) to mine schemas from semistructured data [NAM97, NAM98].

3.5.2 Requirements Gathering

Techniques discussed in this section address requirements gathering for personalization sys-
tems. This problem can be approached from two distinct angles. The first involves empirical
and explicit requirements analysis techniques such as scenario-based design. An alternate
approach involves weblog mining to implicitly capture requirements. Ultimately these tech-
niques are directed toward closing the gap between the goals of a system designer and the
task model of a user [MAB00].

Scenario-Based Methods

The techniques presented here are especially important with regard to representing and rea-
soning about interaction. Carroll and Rosson make an explicit science out of scenario-based
design and claims analysis in [CR92] where they describe the ‘task-artifact’ methodology.
The end-goal of this research, which lies at the intersection of human-computer interac-
tion (HCI) and software engineering, is to develop an action science approach to HCI.

The first step in the methodology is to collect scenarios. Scenarios are narrative ac-
counts of users performing tasks and can be generated empirically or analytically. Carroll
and Rosson develop a classification of scenarios, or typology, which aids in analytical and
empirical approaches to scenario collection.

The next step in the methodology is claims analysis. A claim is ‘a specific psychological
consequence of a system feature’ [CR92]. While a scenario provides a narrative account, a

58

claim provides a causal account. Claims analysis attempts to explain scenarios and must
proceed in parallel with scenario generation. Scenarios and claims thus developed can be
utilized by CBR as applied to script-directed information systems. For instance, they can
be processed to yield cases and identify prototypical scripts.

This work also has important connections to requirements engineering in PIPE [RP01].
In particular, scenario-based design and claims analysis can be used to generate interac-
tion sequences in a domain which lacks precise, explicit, and clear semantics. In existing
systems, the task-artifact cycle can be used to characterize interaction sequences. This is
particularly interesting in sites based on the metaphor of social network navigation. In such
non-traditional information spaces, scenario-based design can be employed to either unroll
unbounded interaction sequences to a manageable level or define personalization. The re-
sulting scenarios (i.e., interaction sequences) would be invaluable to finding an appropriate
programmatic design representation of interaction.

Rosson has researched the integration of task and object models [Ros99] in software
design. To facilitate this goal, she proposes using object-oriented analysis and design of
scenarios. Scenarios are helpful in identifying an initial set of software objects. Claims
analysis of the scenarios identifies constraints and opportunities. This work has ties to PIPE
as well. In PIPE, a user’s personalized experience, analogous to the task model, closely
resembles the system’s programmatic model of interaction, analogous to the object model.

These connections between scenario-based design and PIPE are explored in [RRC01]. In
addition, the authors discuss how explanation-based generalization (EBG) can be used to
explain scenarios to provide a starting point for a personalization system. EBG is a machine
learning technique which has strong ties to partial evaluation [Jon96]. Proof trees in EBG
used in explaining scenarios resemble the goal trees used by Belkin et al. [BCST95].

An alternative approach to requirements gathering is metaphorical design [Mad94]. It
is now well accepted that metaphors provide intuitive ways to think about interaction with
information systems (e.g., the desktop). For instance, Wexelblat and Maes [WM99] explore
the use of footprints as a navigation design metaphor.

Web Mining

The web has become fertile ground for what O’Leary calls ‘AI Renaissance’ [O’L97]. The use
of collaborative filtering in recommender systems was one of the first attempts at conducting
personalization. Collaborative filtering is difficult, since the the majority of web users are
privacy conscious and dislike providing explicit feedback. When applying these techniques,
care must be taken to ensure that privacy is not compromised.

Web log mining is an alternate approach to capturing user interest and has been referred
to as ‘observational personalization’ [MAB00]. Web log mining is implicit, unobtrusive,
and entails chartering the footprints left by visitors. One can analyze web logs to mine
navigational patterns.

For instance, IndexFinder [PE00] mines patterns to guide a non-destructive and trans-
formation approach to website adaptation. Non-destructive adaptations are those that add
structure, pages to sites, or links to pages, but do not destroy structure or otherwise remove
information from a site. IndexFinder identifies co-occurring page visits and recommends
candidate index pages to the web master. Thus, IndexFinder is a semi-automatic approach.

59

Web navigation patterns are sought to evaluate website usability as well [Spi00]. The
focus here is on avoiding costly and error prone formative usability evaluations. The miner
is looking for sequences of frequently visited pages and routes connecting pages frequently
accessed together. Two popular weblog mining software systems are MiDas and Web Uti-
lization Miner (WUM) [Spi00]. Another project which has user modeling goals is discussed
in [MCS00]. Here, weblog mining helps form associations which are used in a collaborative
filtering style to aid a recommendation engine.

While web mining is data-driven and therefore heuristic at best, it is inexpensive and
can be applied more frequently than its manual counterparts discussed above. The projects
described here show that mining access logs is a feasible approach to gathering require-
ments for personalization. This approach however suffers from problems of coordination and
ethics. Therefore, social and operational issues need to be addressed to make such techniques
practical and more appealing.

3.5.3 Transformation Algorithms

XML has evolved from simple text markup for data interchange to a mature technology
with a rich suite of associated tools. The eXtensible Stylesheet Language for Transforma-
tions (XSLT) [Cha99] describes transformations from XML to XML, including XHTML and
VoiceXML, and various other formats including, plain text and HTML. An XSLT transfor-
mation is specified in a stylesheet containing pattern-action rules. These rules are recursively
applied, starting from the root of a tree-structured XML document. Whenever a pattern
match is encountered, the associated actions are executed. XSLT is essentially a vehicle
to implement graph transformations [ET99]. Therefore, the transformation capabilities of
XSLT can be used to implement partial evaluation, among other operations, and to create
a robust and easily maintainable personalization application, based on the ideas illustrated
above.

Specifically, if an XML document models interaction with a website, then an XSLT
stylesheet representing partial information (i.e., a user request) can be matched against
XML tag names to personalize interaction. Since XSLT can transform XML into multiple
output formats, transforming the model of interaction into a browsable website (i.e., HTML)
naturally follows. XSLT thus unifies the processes required to conduct personalization into
a single, mature, robust, and well-accepted technology. Details regarding the use of these
new and emerging W3C standards are presented in [CDA00]. I have programmed the under-
lying transformation engine of various PIPE applications, including the Project Vote Smart
congressional application [PR03b], with XSLT.

3.5.4 Delivery Mechanisms and Intermediaries

Intermediaries, which are ‘programs or agents that meaningfully transform information as it
flows for one computer to another,’ [MB00] are critical to the success of personalization appli-
cations on the web. Examples of intermediaries are portals, proxies, and transcoders. IBM’s
WBI [MB00] provides a programming model for intermediaries akin to PIPE’s contribution
of a programming model for personalized interaction.

60

3.6 Niche Domains

3.6.1 Adaptive Hypermedia

Over the past 15 years, hypermedia has been extended to support personalization capabili-
ties (e.g., the adaptive web [BM02]). Adaptive hypermedia lies at the intersection of hyper-
media and user modeling [Bru01]. Hypermedia services, such as educational and online-help
systems, have been most impacted by personalization research.

Links in adaptive hypermedia systems are dynamic, leading to different destinations for
different users. The techniques employed include direct guidance, adaptive link sorting, hid-
ing, annotation, generation, and map adaptation. In addition to navigational adaptations,
such applications modify the aesthetics of presentation to direct a user. I refer the inter-
ested reader to [Bru96] and its sequel [Bru01] for a comprehensive survey of methods and
techniques of adaptive hypermedia systems and to [BBH99] for a succinct introduction. Ex-
amples of browsing-oriented adaptive hypermedia systems are ‘Syskill & Webert’ [PMB96]
and WebWatcher [JFM97].

3.6.2 Mobile Environments

Mobile arenas, which host the fastest growing segment of web users, are plagued with low
bandwidth networks, thin clients, and information appliances [Ber00]. Furthermore, ubiq-
uity is enriched and propelled by wireless portals, avatars [AR02, LFW01], and information
kiosks [MBG+01]. As these devices become commonplace, transcoding the information they
present will not only become a necessity, but also vital to their widespread use and suc-
cess [BBE+02, Pan01]. Therefore, the use of personalization technology here extends past
aesthetics. It is rather a requirement. To introduce this application domain, I present the
following two representative projects.

Proteus

Proteus [ADW01] is a mobile personalization system developed at the University of Wash-
ington. The goal of the system is to both transcode and personalize web content based on
mobile devices. To achieve the first goal, the designers segment webpages into screens using
a probabilistic model. To achieve the goal of personalization, the designers collect training
data from desktop computer usage to build user models.

Proteus supports both destructive and constructive within-page adaptations and im-
plements three transformation operators – elide-content, swap-siblings, and add-shortcut.
Creating a new webpage or adding new links between existing pages is not supported. The
system can be contrasted to other adaptive systems such as IndexFinder [PE00]. While
IndexFinder provides only non-destructive adaptation targeted by topic to all site visitors,
Proteus is destructive as well and provides customization per individual. In addition, Pro-
teus’s user models are richer than those that result from weblog mining, which are essentially
limited to navigational usage patterns.

61

W3IQ

W3IQ [JPK98] aims to provide asynchronous mobile access to the web. The designers ex-
plore collaborative information retrieval techniques to minimize resource use and information
overload. W3IQ employs intermediaries, such as proxy filters and cache servers, to facilitate
disconnected browsing. In addition, it supports three types of transaction-like operations,
which save state and are thus tolerant to disconnection.

3.6.3 Voice Interfaces and Multimodal Interaction

Speech and dialog-based systems, which afford mixed-initiative interaction [HM97], pro-
vide ripe domains for personalization. Zadrozny et al. state that natural language is ‘a
compelling enabling technology for personalization’ [ZBC+00] and that mixed initiative di-
alog is a form of personalization. Voice applications (e.g., voice portals1) and associated
tools (e.g., VoiceXML) have collectively spawned the voice web [SB02]. Furthermore, this
domain demonstrates how researchers in qualitatively different areas can work unconsciously
on the same problem. I survey such connections below.

Sisl (Several interfaces, single logic) [BCD+00], a primarily speech-based system, aims to
minimize dialog constraints to provide extensive flexibility to users. Thus, the motivations
of Sisl are commensurate with those of PIPE. Furthermore, the authors of Sisl recognize the
idea of engaging a system in a two-way dialog as a means to provide personalization.

Sisl however takes a broader approach to personalization and supports multiple interfaces,
error recovery, reversion, partial input, and partial orderings on specification aspects in
dialog. In contrast to PIPE, Sisl adopts an event-based approach. The designers model
application logic by event handling (reactive) mechanisms. The specification aspects of
PIPE are called events in Sisl.

Sisl makes a distinction between partial orderings and partial information. Partial
information is incomplete in that all specification aspects required to complete a dialog or
information-seeking activity are communicated incrementally. Partial orders, on the other
hand, permit aspects to arrive in different orders. Furthermore, Sisl makes a distinction
between out-of-turn aspects and unsolicited aspects. PIPE traditionally does not make this
distinction, because its support mechanism, partial evaluation, handles both uniformly.

Both Sisl and PIPE rely on the assumption that a representation of default order exe-
cution exists (e.g., a script). This representation involves anticipation in both approaches.
PIPE eagerly (partially) evaluates that representation with respect to specification aspects,
which may arrive in any order, to implement partial orderings in dialogs. Sisl, on the other
hand, lazily evaluates aspects. In other words, when Sisl receives an aspect out-of-turn,
which violates its representation, it logs that aspect in a queue. The system retrieves that
aspect when the default order of execution solicits it later. At that time, the event is enabled
and added to the activated set. The designers refer to this process, which handles unsolicited
events and thus minimizes anticipation, as lookahead.

A closer connection between PIPE and speech-based systems is made in [RCPQ02] where
the form interpretation algorithm of VoiceXML [MBD+01] is shown to be a partial evaluator
in disguise.

1Examples are Tellme (tellme.com) and BeVocal (bevocal.com).

62

3.7 Discussion

I have presented an overview of personalization systems according to the interaction they af-
ford. As personalization systems become prevalent, the need to engage the user in compelling
interactions will become more important.

Several factors lead us to be optimistic about the future of personalization as an academic
discipline. For instance, the widespread use of physical computing devices, location-aware
systems, and embedded Internet appliances means that personalization will transcend cur-
rent delivery mechanisms. Such domains pose interesting problems that will continue to
challenge our assumptions about personalization. Users create context in physical situa-
tions that can be stored and retrieved for use in electronic access paradigms. Thinking
about how information access works in such multimodal settings will lead to a theory of
human-information interaction, as espoused in [TMK+02].

Road Map

In the following chapter, I develop and formalize the program transformation approach to
out-of-turn interaction. The chapter includes several interpretations for out-of-turn interac-
tion, in addition to that used in the previous chapter. It also formally details and generalizes
the properties of websites, such as the levelwise structure of the websites presented in Chap-
ter 2, the mutually-exclusive nature of the hyperlinks on each of their webpages, and the
dependencies between their facets.

63

Chapter 4

Formalizing Out-of-turn Interaction

‘ ‘The important thing in science is not so much to obtain new facts as to discover
new ways of thinking about them.”

Sir William Lawrence Bragg, the youngest-ever recipient of the Nobel Prize.

In this chapter, I formalize (out-of-turn) interaction with websites. This chapter places
everything we have seen so far in a rigorous mathematical context.

4.1 Research Theme

The central theme of this thesis is to pose interactive information-seeking as the application
of a program transformation technique to a programmatic representation of interaction based
on partial user input.

Representation × Transformation × Partial Input ⇒ Interaction Paradigm

The creativity in my research (see Fig. 4.1) arises from relating concepts in the web do-
main (e.g., sites, interactions) to notions in the program-theoretic domain (e.g., programs,
program transformations). An additional opportunity for creativity in my work arises from
varying the two terms on the l.h.s. for which I have control, the (Representation, Transfor-
mation) pair (later formalized as a model), to achieve the desired form of personalization.
The predominate form of personalization discussed in this thesis is out-of-turn interaction.

web: (website × interaction technique) × user input ⇒ personalized website
...

...
...

...

...
...

...
...

program-theoretic: (representation × transformation) × partial input ⇒ interaction paradigm

Figure 4.1: The connection between the web and program-theoretic domains.

64

4.1.1 Objectives of this Chapter

The objectives of this chapter are to:

1. Develop terms and tools to build up to graph-theoretic interpretations of out-of-turn
interaction with a general class of websites.

2. Illustrate how these interpretations can be supported on a programmatic landscape
by a (programmatic representation, transformation technique) pair (called a model),
often involving program slicing, a general class of program transformations.

3. Evaluate the soundness and completeness (as well as other properties) of a model w.r.t.
its intended interaction paradigm (e.g., browsing or out-of-turn interaction).

4. Identify a partial order of classes of hierarchical hypermedia and explain its implications
on out-of-turn interaction.

5. Develop support terms and tools to automatically identify particular instances of these
classes.

6. Describe how several types of functional dependencies in websites can be mined and
used to expand partial input from the user, to either further customize the experience
or deliver the experience.

7. Illustrate program transformation techniques based on program slicing to mine func-
tional dependencies.

8. Show that an alternate program transformation technique, which employs the func-
tional dependencies above, can achieve the same effect as the originally developed in-
terpretation of out-of-turn interaction. This highlights the duality in uses of program
slicing for personalized interaction.

9. Develop specialized program transformation techniques for some specific classes of
hierarchical hypermedia.

4.1.2 Methodology

When a user says something out-of-turn, I ask the question ‘What can I reasonably prune out
of the website? Answers to this question lead to interpretations for out-of-turn interaction.
I have developed the following two interpretations, described using web vocabulary:

1. When a user says something out-of-turn,

(a) first find leaf webpages reachable by a path involving a hyperlink labeled with the
out-of-turn input; and

(b) prune all paths through the site that do not lead to any of these leaf pages.

2. When a user says something out-of-turn prune all paths through the site which do not
involve a hyperlink labeled with the out-of-turn input.

65

Develop a graph-theoretic definition of an interpretation.
↓

Model interaction with a website in a programmatic representation.
↙↖

[design a mapping from partial user input to program constructs]
↘↗

Develop a program transformation technique
capable of realizing the interpretation and paradigm.

↓
Verify the association and evaluate the model.

↓
Study the enabled personalized interaction with users.

Table 4.1: My research methodology.

Notice that both these interpretations make the in-vocabulary assumption. An interac-
tion using ‘illegal’ input may either be undefined or cause an error. Interpretation 2 entails
interpretation 1 because every path retained by interpretation 2 is retained under interpreta-
tion 1. In other words, interpretation 2 prunes all paths pruned under interpretation 1, but
the converse does not hold. The next question I ask is ‘How can I support (model and real-
ize) the interpretation of out-of-turn interaction in a program-theoretic domain?’ Answering
this question involves:

1. Developing a graph-theoretic definition of the interpretation.

2. Modeling interaction with the underlying site in an explicit programmatic representa-
tion.

3. Identifying a set of program transformations and developing a technique involving a
composition of them to relate to the interpretation.

4. Designing a mapping from partial user input to program constructs to capture require-
ments.

This suggests an iterative process (see Table 4.1) of developing a programmatic model of
interaction with an instance of hierarchical hypermedia and identifying (compositions of)
program transformations, capable of capturing and supporting the desired interactions from
such a model. As importantly, I must design a mapping from user requests (partial input) to
program constructs which the particular transformations are capable of accepting as input
and exploiting.

I next evaluate the model by computing several metrics. I also experiment with the
personalized interaction enabled by conducting studies with users. Studies often reveal
insights into new interpretations, interaction paradigms, and interaction techniques, and
thus, help close the loop. Studies with users are the subject of the following chapter.

66

1

2

arts

3

computers

4

music

5

theatre speakers

6

hardware

7

software

8

jazz

9

classical

11

theatre

13

software

10

drama music

12

memorymusic

14

business

D

Figure 4.2: Example of a DAG model of a hypothetical hierarchical web directory with
characteristics similar to those in Yahoo!.

4.2 Graph-theoretic View of Out-of-turn Interaction

I begin by developing syntactic notions from graph theory and progressively attach web
interaction semantics to develop a theory of representing and reasoning about interaction
with hierarchical hypermedia.

4.2.1 Syntactic and Semantic Notions

A directed, acyclic, edge-labeled graph (DAG) is a directed, connected graph with no cycles,
where each edge in the graph is labeled and where a vertex never participates as a source in
more than one edge with the same label. I use the variable D to represent a DAG. One vertex
of D is distinguished as the root. In addition, a ‘parenthood’ relation places a hierarchy

Graph-theoretic construct Web analog

Graph Website
Vertex Webpage
Edge Hyperlink
Edge-label Hyperlink label
Root Homepage

Table 4.2: A list of graph-theoretic constructs and their web analogs.

67

partial order on the set of vertices of D. This representation of a hierarchical website is similar
to the popular model of semistructured data: a rooted, edge-labeled graph [ABS00]. Fig. 4.2
illustrates a DAG model of a synthetic, hierarchical website possessing characteristics similar
to human-compiled taxonomies of links to web resources, such as Yahoo! or the Google
Directory at Google.com/dirhp. Table 4.2 is an abridged mapping from graph-theoretic
notions to their web analogs.

Edges, which represent structural links [All95], help model paths through a website a
user follows to access leaf vertices. Leaf vertices model leaf webpages which contain content,
although this content is not explicitly modeled in D. I refer to a leaf content page as
terminal information and the terms therein as units of terminal information. Assume non-
leaf vertices do not contain content. Edge-labels, which I refer to as structural information,
model hyperlink labels or, in other words, choices made by a navigator en route to a leaf. An
edge-label, a unit of structural information, is therefore a term of information-seeking (or
simply a term) which a user may bring to bear upon her information seeking. Structural
information thus helps make distinctions among terminal information.

A set of units of structural information is complete when it determines a particular leaf
webpage; otherwise it is partial. An interaction set of D is the complete set of the terms along
a path from the root of D to a leaf vertex of D. An interaction set constitutes complete
information; any proper subset of it is partial information. I say an interaction set of D

classifies a leaf vertex of D. Notice that an interaction set does not capture any order of the
terms, according to my definition.

I now provide some definitions that pertain to a user’s interaction with a website. A
term is in-turn information if it appears as a hyperlink label on the user’s current web-
page (i.e., currently solicited by the system). The label of each edge whose source is the root
of D is thus in-turn information. On the other hand, a term is out-of-turn information if it
models a hyperlink label nested somewhere deeper in the site (i.e., currently unsolicited from
the system, but relevant to information seeking). Each term from D which is not in-turn
information is out-of-turn information.

Several partial orders can be defined over an interaction set w.r.t. the time at which the
user communicates the term to the system, called arrival time. When a user clicks on a
hyperlink, she implicitly communicates the information modeled by the hyperlink label to
the system. For instance, when a user clicks on the hyperlink labeled ‘arts’ followed by that
labeled ‘music,’ she communicates the ≺arts, music� terms, in that order. Similarly, when
the user speaks out-of-turn he is communicating terms to the system. These partial orders
can be summarized in the form of partially ordered sets or posets. Each linear extension of
such a poset is a total order called an interaction sequence. A browsing interaction sequence
of D is a total order on an interaction set of D w.r.t. the ‘parenthood’ relation of D. An out-
of-turn interaction sequence of D is a total order on an interaction set of D w.r.t. the arrival
time relation implied by out-of-turn interaction. Interestingly, both interpretations of out-
of-turn interaction introduced above imply the same arrival time relation. This arrival time
relation is a partial order containing only the reflexive tuples of terms from the interaction
set. In other words, none of the terms from the interaction set are required to be ordered. The
linear extensions of the posets associated with these partial orders are out-of-turn interaction
sequences.

An interaction paradigm P for D can be given by the union of all linear extensions

68

of posets defined over interaction sets of D. In other words, an interaction paradigm is
a complete set of realizable interaction sequences from D w.r.t. an interaction technique.
When an edge-label labels more than one edge in a path from the root of D to a leaf vertex
of D, it is advantageous to think of an interaction sequence as a finite effective enumeration
of an interaction set of D, where the order of the terms in the enumeration corresponds to
the arrival time relation afforded by the interaction technique w.r.t. D.

The following is the browsing paradigm of D in Fig. 4.2.

{≺arts, music, jazz�,
≺arts, music, classical�,
≺arts, music, theatre�,
. . . ,
≺computers, hardware, memory�}

Likewise, the following describes an out-of-turn paradigm:

{≺arts, music, jazz�,
≺music, arts, jazz�,
[the remaining 4 permutations of {arts, music, jazz}],
≺arts, music, classical�,
≺music, arts, classical�,
[the remaining 4 permutations of {arts, music, classical}],
. . . ,
≺computers, hardware, memory�,
≺hardware, computers, memory�,
[the remaining 4 permutations of {computers, hardware, memory}]}

Notice that while there can be only one browsing paradigm, there are multiple out-of-turn
paradigms. In addition, the browsing paradigm for D is typically a subset of an out-of-turn
paradigm.

4.2.2 Support Terms and Tools

I use the symbol D to represent the universal set of DAGs, and the symbol T to represent
the universal set of terms. Similarly, I use L to denote the universal set of leaf webpages.
Before I can expand this discussion to functions over D × T to realize the sequences of
a particular interaction paradigm, I must develop some support terms and tools. In the
following, edge-labels are primarily addressed as terms.

Sequencize is a total function SQ : D → P (I) which given D returns the complete set
of browsing interaction sequences in D (and thus the browsing paradigm of D). I use the
symbol I here to represent the universal set of interaction sequences. P (·) denotes the
power set function.

Term extraction is a total function TE : D → P (T) which given D returns a set of
all terms in D, i.e., with duplicates removed. A term-co-occurrence set of D is a set T s.t.
T ⊆ TE (D). Notice that this definition covers any set of terms from D. The use of the ‘co-
occurrence’ phrase will be motivated later. Let the level of an edge-label in D be the depth

69

1

2

arts

3

computers

4

music

5

theatre speakers

6

hardware

7

software

8

jazz

9

classical

11

theatre

13

software

10

drama music

12

memorymusic

14

business

1

2

arts

3

computers

4

music

5

theatre speakers

7

software

8

jazz

9

classical

11

theatre

13

softwaremusic music

D
′

Figure 4.3: Illustration of forward-propagation (FP) and back-propagation (BP) on the DAG

in Fig. 4.2. (left) Forward-propagation w.r.t. the term ‘music’: FP (D, music). (right) Back-
propagation w.r.t. the leaf vertices highlighted green in left: BP (D, FP (D, music)).

of the source vertex of the edge it labels. If a given edge-label occurs multiple times in D, a
level is associated with every occurrence. A term-level set of D is a term-co-occurrence set
comprising all unique terms in D with the same level. Term-level extraction is a total function
TLE : (D × N) → P (TE (D)) which given D and a level l (> 1) ∈ N = {1, 2, . . . , M}
returns the set of all unique terms in D with level l (i.e., a term-level set). I use the
variable M to represent the the maximum depth of D. If D represents the DAG in Fig. 4.2,
TLE (D, 2) = {theatre, music, speakers, software, hardware}. In any DAG, TLE (D, 1)
returns the set of terms available to supply via browsing.

Get sequences is a partial function GS : (T × P (I)) → P (I)⊥ which given a term t

and a set of interaction sequences IS returns the set of all interaction sequences in IS each of
which contain t as a member. The notation P (I)⊥ denotes the partial nature of the function
GS, i.e., the value of GS is undefined for some inputs. Forward propagate is a total function
FP : (D × T)→ L which given D and a term t ∈ T = TE (D) returns a set of leaf vertices
L of D, where L contains each leaf vertex reachable from all paths of D containing an edge
labeled by t. Collect results is a total function CR : D → L which given D returns a set of all
the leaf vertices in D. Collect results w.r.t. the sub-DAG rooted at vertex 2 in Fig. 4.2 is the
{8, 9, 10, 11, 13} set of vertices. Back propagate is a total function BP : (D×L)→ D which
given D and a set of leaf vertices L returns a DAG D

′

, where D
′

contains only interaction
sequences which classify the leaf vertices in L. Fig. 4.3 illustrates forward-propagation (left)
on the DAG D in Fig. 4.2 followed by back-propagation (right) yielding D

′

.
Notice that D also can be represented as a |TE (D)| × |CR (D)| term-document matrix,

where the rows correspond to terms (structural information, or edge-labels) and the columns

70

1

3

computers

4

arts

speakers

13

software

8

jazz

9

classical

11

theatre theatre software

D
′′

Figure 4.4: Results of interpretation 1 of out-of-turn interaction with the DAG D shown in
Fig. 4.2 w.r.t. the term ‘music’: OOT1 (D, music). Alternatively, one can think of this
DAG as the result of shrink edges with the DAG D

′

in Fig. 4.3 (right), i.e., SE (D
′

, music).
Notice that this graph is no longer a DAG, according to my definition, since vertex 4 is the
source of two edges with the same label and target. I defer addressing this issue until later
when it will be better motivated.

correspond to webpages (terminal information, or leaf vertices). However observe that such
a matrix is insufficient to reconstruct D.

4.2.3 Interpretations of Out-of-turn Interaction

Prior to providing graph-theoretic interpretations for out-of-turn interaction, I formalize
browsing over DAG models of websites. Browse is a partial function B : (D × T) → D⊥,
which given D and a term t ∈ TLE (D, 1) returns the sub-DAG rooted at the target vertex
of the edge in D labeled with edge-label t whose source vertex is the root of D. If the DAG

in Fig. 4.2 is D, B (D, computers) returns the sub-DAG rooted at vertex 3, which would
represent the result of a user clicking on the hyperlink labeled ‘computers.’

I formally cast the above two interpretations for out-of-turn interaction in graph-theoretic
terms as follows:

Interpretation 1 of out-of-turn interaction is a partial function OOT1 : (D×T)→ D⊥ which
given D and a term t ∈ TE (D) returns D

′

. It is defined as

71

1

2

arts

3

computers

4

music

5

theatre

7

software

8

jazz

9

classical

11

theatre

13

softwaremusic music

D
′′′ 1

3

computers

4

arts

13

software

8

jazz

9

classical

11

theatre theatresoftware

Figure 4.5: (left) Results of applying select paths to the DAG D
′

shown in Fig. 4.3 (right)
w.r.t. the term ‘music’: SP (D

′

, music). (right) Results of interpretation 2 of out-of-turn
interaction with the DAG D shown in Fig. 4.2 w.r.t. the term ‘music’: OOT2 (D, music).
Alternatively, one can think of this DAG as the result of shrink edges with the DAG D

′′′

(left): SE (D
′′′

, music).

72

OOT1 (D, t) =

Fig. 4.4
︷ ︸︸ ︷

SE (BP (D,

Fig. 4.3 (left)
︷ ︸︸ ︷

FP (D, t))
︸ ︷︷ ︸

Fig. 4.3 (right)

, t) , (4.1)

where SE (Shrink edges) is a partial function SE : (D × T) → D⊥ which given D and a
term t ∈ TE (D) returns D

′

, where any edge e in D labeled with t is removed in D
′

, the
source vs of e is replaced with its target vt in D

′

, and vt becomes the new target of any edge
e
′

which vs participates in as a target in D
′

.

Interpretation 2 of out-of-turn interaction is a partial function OOT2 : (D×T)→ D⊥ which
given D and a term t ∈ TE (D) returns D

′

. It is defined as

OOT2 (D, t) =

Fig. 4.5 (right)
︷ ︸︸ ︷

SE (SP (BP (D, FP (D, t)), t)
︸ ︷︷ ︸

Fig. 4.5 (left)

) , (4.2)

where SP (Select paths) is a partial function SP : (D × T) → D⊥ which given D and a
term t ∈ TE (D) returns D

′

, where D
′

contains only the interaction sequences from D

involving t (i.e., SQ (D
′

) = GS (t, SQ (D))). All interaction sequences pruned under
OOT1 also are pruned under OOT2, but the converse does not hold. Formally, I state
SQ (OOT2 (D, t)) ⊆ SQ (OOT1 (D, t)). Interpretation 2 retains shrunken versions of only
interaction sequences involving the out-of-turn input, while interpretation 1 retains shrunken
versions of all interaction sequences which classify the leaf vertices classified by sequences
involving the out-of-turn input.

The results of FP are a set of leaf vertices classified by the interaction sequences involv-
ing the out-of-turn input. I use this set of leaves to back-propagate up to the root of the
DAG via BP . To generalize my approach, I can replace FP with any function that returns
a set of leaf vertices: SL (Select leaves). This can be any total function SL : (D × T)→ L
which given D and a term from D returns a set of leaf vertices of D. FP is an instance
of SL. My use of a function such as SL allows us to combine my approach with standard
techniques from information retrieval. Moreover, my inclusion of a function which returns
a set of leaf vertices leads to the possibility of bringing units of terminal information (ad-
ditional terms modeled in the leaf documents and not explicitly used in the classification),
in replacement of, or in addition to, structural information, to bear upon the interaction.
For instance, we might perform a query (e.g., ‘Picasso’) in a vector-space model over the
set of leaf webpages (documents) using cosine similarity to arrive at a target set of leaves to
back-propagate. However, I do not study this extension in this dissertation and present SL

primarily as a technique that works with structural information.
Generalized interpretation 1 of out-of-turn interaction is a partial function GOOT1 :

(D × T)→ D⊥ which given D and a term t ∈ TE (D) returns D
′

. It is defined as

GOOT1 (D, t) = SE (BP (D, SL (D, t)), t). (4.3)

73

D’

y x

yx

x
y

x
y

D’

D D’’

x x
y

x
y

x
y

x
yy

x

y

Figure 4.6: Schematic of proof for Lemma 1.

Generalized interpretation 2 of out-of-turn interaction is a partial function GOOT2 : (D ×
T)→ D⊥ which given D and a term t ∈ TE (D) returns D

′

. It is defined as

GOOT2 (D, t) = SE (SP (BP (D, SL (D, t)), t), t) (4.4)

Notice that equations 4.3 and 4.4 are analogous to 4.1 and 4.2, respectively, in that FP in
the later is replaced by SL. Note also that the out-of-turn paradigm studied in this thesis
is supported by all four interpretations of out-of-turn interaction.

I define Size of Out-of-turn Paradigm as a total function SoOP : D → N, which given D

returns the size of its out-of-turn interaction paradigm. I can define SoOP as follows:

|P| = SoOP (D) =
∑

Ii ∈ SQ (D)

|gIS (Ii)|!,

where gIS (get Interaction Set) is a total function gIS : I → S which given an interaction
sequence Ii returns the interaction set over which it is defined. I use S to denote the universal
set of sets. The ratio of the number of sequences in a DAG’s out-of-turn paradigm to those
in its browsing paradigm is given by the expression:

SoOP (D)

|SQ (D)| .

Lastly, notice also that SE can be made optional in each interpretation of out-of-turn
interaction presented here. The absence of SE however would require the user to ultimately
browse to reach leaf content pages.

74

Lemma 1 Any interpretation of out-of-turn interaction is commutative, assuming both sides
are defined. I.e.,

OOT1 (OOT1 (D, x), y) = OOT1 (OOT1 (D, y), x),

OOT2 (OOT2 (D, x), y) = OOT2 (OOT2 (D, y), x),

GOOT1 (GOOT1 (D, x), y) = GOOT1 (GOOT1 (D, y), x), and

GOOT2 (GOOT2 (D, x), y) = GOOT2 (GOOT2 (D, y), x),

where x and y represent terms.

Outline of Proof: I illustrate the commutativity of the first interpretation of
out-of-turn interaction. The proofs of the commutativity of the other interpre-
tations follow similarly and are omitted. A diagrammatic outline of the proof of
Lemma 1 is shown in Fig. 4.6. Spline curves in Fig. 1 are not meant to represent
edges, but rather a series of edges. In addition, the labels decorating the curves
are edge-labels, however, their order along the curve is not meant to reflect the
order of the edges they label. For purposes of presentation simplification, my
argument as well as Fig. 4.6 has deliberately ignored the shrinking of edges (SE)
involved in the definition of OOT1. This does not affect the proof because SE

does not remove any paths completely. Rather it only shortens paths and is thus
purely cosmetic.

OOT1 (D, x) removes all paths to leaves not reachable via a path containing an
edge labeled x. In other words, it retains all paths to leaves reachable via a path
containing an edge labeled x. There are four types of paths remaining:

1. Those containing an edge labeled x, but not an edge labeled y. These paths
do not reach leaves reachable by a path with an edge labeled y.

2. Those containing an edge labeled x, but not an edge labeled y. These paths
do reach leaves reachable by a path with an edge labeled y.

3. Those containing an edge labeled x and an edge labeled y.

4. Those containing an edge labeled y, but not an edge labeled x.

Paths 1–4 are depicted below D
′

x in Fig. 4.6 (top-center) in a left-to-right order.
OOT1 (D

′

x, y) removes all paths to leaves not reachable via a path containing
an edge labeled y. In other words, it retains all paths to leaves reachable via a
path containing an edge labeled y. Therefore, it will remove only type 1 paths,
depicted using red in Fig. 4.6 (top-center). It will retain all paths of type 2–4.
The net effect of these two successive applications of OOT1 is that all paths to
leaves not reachable via a path containing an edge labeled x and a path containing
an edge labeled y (they could be the same path) are pruned. In other words,
these two successive applications of OOT1 retains all paths to leaves reachable
via a path containing an edge labeled x and a path containing an edge labeled y.
Running this argument where all x’s are replaced with y’s and vice versa results
in the same conclusion. ∴ Lemma 1 is true. 2

75

4.3 Program-theoretic View of Out-of-turn Interaction

Let us now see how we can view the above graph-theoretic interpretations of out-of-turn
interaction through a programmatic lens. I relate out-of-turn interaction, and generalizations
thereof, to program slicing, an alternate program transformation. I begin by illustrating how
I model interaction with a hierarchical website in an explicit programmatic representation.

4.3.1 Modeling Interaction Programmatically

Researchers have predominately modeled web interaction programmatically to maintain state
across and within sessions [GFKF01, Que00]. Here I model interaction programmatically to
customize information access. Fig. 4.7 (left) illustrates a programmatic model of a user’s
browsing interactions with Fig. 4.2. Notice my use of procedures to model recurring sub-
trees induced by crosslinks. A crosslink (also called a ‘symbolic link’) is a hyperlink to
a webpage which has existing incoming hyperlinks. For example, the edge from vertex
3 to 4 in Fig. 4.2 labeled ‘speakers’ is a crosslink. Crosslinks are necessary for a graph
to be a DAG. In large taxonomies of links to web resources, such as Yahoo! and the Open
Directory Project (ODP at dmoz.org), crosslink labels are augmented with ‘@’ and transport
a user from one sub-branch of the taxonomy (e.g., News) to another (e.g., Sports). Notice
that my use of procedures breaks the symmetry with the underlying website, which was
preserved in Chapter 2 when modeling trees. While modeling the same with gotos preserves
symmetry, ‘slicing with goto statements is fraught with strangeness’ [Anda] and therefore I
prefer to avoid it. The program slicing system I experimented with, CodeSurfer (described
briefly below and further in Appendix C), takes the approach espoused in [KH02] for slicing
programs with jumps and switches. Static slicing in the presence of gotos is described
in [CF94].

The expressive constructs, most notably, conditionals, of most modern programming
languages make programming languages an attractive vocabulary of discourse for modeling
interaction with hierarchical hypermedia. While I can model interaction with (imperative,
functional, or logic) programming languages, I use C here for purposes of presentation and
familiarity. At the NATO Conference on Software Engineering Techniques held in Rome,
Italy in 1969, A. Perlis said, ‘A good programming language is a conceptual universe for
thinking about programming’ [RB69]. Similarly here, a good programming language is a
conceptual universe for thinking about interacting with hierarchical hypermedia.

4.3.2 Program Slicing

I relate the four interpretations of out-of-turn interaction to the application of program
slicing, a common program transformation employed in debuggers, to suitably selected pro-
grammatic representations of interaction, such as that shown Fig. 4.7 (left). Program slic-
ing [BG96, HH01, Tip95], originally introduced by Weiser [Wei79, Wei82, Wei84], is a tech-
nique used to extract statements, which may affect or be affected by the values of variables
of interest computed at some point of interest, from a program. A slice of a program is
taken w.r.t. a (point of interest, variable of interest) pair, referred to as the slicing criterion.
The point of interest may be specified with a line number from the program. The resulting

76

PD PD′ = [[zoom]][PD, music] PD′′ = [[mix]][PD′ , music = 1]

if (arts) if (arts) if (arts)

if (theatre) if (theatre) if (theatre)

if (drama)

page = 10;

if (music) if (music)

f1(); f1(); f1();

if (music) if (music)

f2(); f2(); f2();

if (computers) if (computers) if (computers)

if (speakers) if (speakers) if (speakers)

f2(); f2(); f2();

if (software) if (software) if (software)

if (music) if (music)

f3(); f3(); f3();

if (business)

page = 14;

if (hardware)

if (memory)

page = 12;

void f1() void f1(); void f1(); {
page = 11; page = 11; page = 11;

} } }

void f2() { void f2() { void f2() {
if (theatre) if (theatre) if (theatre)

f1(); f1(); f1();

if (classical) if (classical) if (classical)

page = 9; page = 9; page = 9;

if (jazz) if (jazz) if (jazz)

page = 8; page = 8; page = 8;

if (software) if (software) if (software)

f3(); f3(); f3();

} } }

void f3() { void f3() { void f3() {
page = 13; page = 13; page = 13;

} } }

Figure 4.7: Modeling interaction programmatically. (left) PD, programmatic representation
of interaction with the website modeled by the DAG D in Fig. 4.2. (center) PD′ , results of
applying the zoom transformation to (left) w.r.t. ‘music.’ This program is the representation
of interaction with the website modeled by the DAG D

′

in Fig. 4.3 (right). (right) PD′′ ,
results of applying partial evaluation to (center) w.r.t. ‘music = 1.’ This program is the
representation of interaction with the website modeled by the D

′′

in Fig. 4.4.

77

line program backward (6, vol) forward (1, h)

(1) read (r, h); read (r, h); read (r, h);

(2) cArea = π*r2; cArea = π*r2;

(3) sArea = 2*cArea+2*r*π*h; sArea = 2*cArea+2*r*π*h;

(4) vol = cArea*h; vol = cArea*h; vol = cArea*h;

(5) print (sArea); print (sArea);

(6) print (vol); print (vol); print (vol);

Figure 4.8: Illustration of program slicing (simplified for purposes of presentation). (left) A
program which takes the radius and height of a cylinder as input and computes and prints
the cylinder’s surface area and volume. (center) A static backward slice w.r.t. (6, vol).
(right) A static forward slice w.r.t. (1, h) (variable key: r = radius; h = height; cArea = circle
area; sArea = surface area; vol = volume).

slice consists of all program statements which may affect or be affected by the value of the
variable at the specified point.

Fig. 4.8 illustrates program slicing. Slices such as that shown in Fig. 4.8 (center), which
Weiser first articulated, are called ‘executable backward static slices’ [BG96, HRB90, Ven91]
(referred to here as simply backward slices). They are executable because the slice is required
to be an executable program. The slice is backward since this is the direction in which
dependencies are followed to their sources in the program. Contrast this with a forward
slice [HRB90] which consists of the program statements affected by the value of a particular
variable at a particular statement (see Fig. 4.8, right). Backward slices contain data and con-
trol predecessors, while forward slices consist of data and control successors. Lastly, the slice
is static because it is computed without consideration of the program’s input. Dynamic slic-
ing techniques are covered in Appendix B. For an introduction to program slicing, techniques
for computing slices, and applications, I refer the interested reader to [BG96, HH01, Tip95].

I relate FP to the program intersection of two unions of forward slices. Researchers in
the programming languages community consider a union of slices as a slice itself and trivial
to compute. The slicing criteria ‘can be easily extended to slicing w.r.t. a collection of
locations and a collection of variables at each location by taking the union of the individual
slices’ [BG96]. The first union consists of the forward slices of the program w.r.t. the variable
modeling the out-of-turn input at every occurrence of it in the program. The second union
consists of the forward slices of the program w.r.t. the variable indexing the leaf vertices
at every occurrence of it in the program. The intersection of these two unions results in
several occurrences of the variable indexing the leaf vertices (e.g., page in Fig. 4.7). Each
occurrence is at a point in the program which is affected by the variable corresponding to the
out-of-turn input. In graph terms, this procedure results in the set of leaf vertices classified
by all interaction sequences involving the out-of-turn input.

The set of program fragments, thus obtained from FP , can be thought of as slicing
criteria input to BP . BP is then the union of backward slices, each w.r.t. every (point,
variable) pair resulting from the initial forward slicing procedure. Intuitively, given valid
input, a forward slice is performed w.r.t. the corresponding program variable to determine
the terminal webpages that are reachable from that point. These webpages are collected
and back-propagated via backward slicing, so that only those paths that reach these pages

78

Syntax-preserving Semantic-preserving

Partial evaluation × √

Program slicing
√ ×

Table 4.3: Comparison of partial evaluation and program slicing along a syntax- vs.
semantic-preserving dichotomy.

are retained. Notice that these two operations implicitly capture exclusions among program
variables; e.g., when the user says ‘Democrat’ the slices will remove any program segments
that involve Republicans. Such a combination of forward and backward slicing is quite
similar (but not identical) to Sacco’s zoom operator for interactively pruning information
hierarchies [Sac00]. Thus, I call this entire program transformation technique zoom.

The idea of performing set-theoretic operations on forward and backward slices is closely
related to the concepts of program dicing [BG96, LW87] and program chopping [JR94b].
Performing set-theoretic operations on one or more backward program slices yields a program
dice [BG96, LW87]. Originally program dicing was limited to backward slices. Program
chopping, on the other hand, which also is a generalization of slicing [JR94b], is an extension
of dicing to forward slices. Forward slices increase the usefulness of dicing [BG96]. Chopping
identifies the statements which transmit values from one statement to another. In other
words, it shows all the ways which one set of program points affect another set of points. A
program chop [JR94b, JR94a, RR95] therefore consists of all program points affected between
one point (the chop source) and another (the chop target) [ART03]. It also is the subset
of the intersection of a forward and backward slice [Andb]. In the absence of procedures, a
chop ‘can be viewed as a generalized kind of program dice’ [BG96].

Table. 4.3 compares partial evaluation and program slicing from a programming lan-
guages perspective. It reinforces that while partial evaluation is semantic-preserving, it is
not syntax-preserving. Conversely, while the variants of program slicing considered in this
thesis are syntax-preserving, they are not semantic-preserving. However, there are variants
of program slicing (e.g., amorphous slicing, also known as semantic slicing) which are the
reverse: semantic-preserving, but not syntax-preserving (see Appendix B for more details).

Notation: Programs as Data Objects

To succinctly capture and describe my program transformation techniques (e.g., the above
notion of zoom) in a programming languages context, I adopt a slightly modified notation for
describing the semantic function of a programming language used in a popular textbook on
partial evaluation [JGS93b]. A specification language, defined by a context-free grammar, for
program transformations is introduced in [HC90]. The language is imperative; for purposes
of presentation, here I prefer to use a declarative style. GrammaTech, Inc., the company
which develops and produces the state of the art program slicer for ANSI C, CodeSurfer, is
currently working on a textual representation, employing a Lisp-like syntax, for set-theoretic
operations over program slices for a future release, e.g., (intersect (slice A) (slice B)) [Anda].

1. [[int]][PD, x1 = 1, x2 = 0, . . . , xn = 1] denotes ‘partially, interpret the programmatic rep-
resentation of DAG D (PD) w.r.t. the partial assignment of variables x1 = 1, x2 = 0,

79

(Interpretation of) Interaction Technique Program Transformation Technique

Browsing [[int]] [PD, input = 1]
Interpretation 1 of OOT Interaction [[mix]] [[[zoom]] [PD, input], input = 1]
Interpretation 2 of OOT Interaction [[mix]] [[[sp]] [PD, input], input = 1]
Gen. Interpretation 1 of OOT Interaction [[mix]] [[[backward]] [PD, [[SL]] [PD, input]], input = 1]
Gen. Interpretation 2 of OOT Interaction [[mix]] [[[sp]] [[[backward]] [PD, [[SL]] [PD, input]], input], input = 1]

Table 4.4: Relating interaction techniques in DAG models of a websites to compositions of
program transformations. Notice that [[SL]] is a meta-program-transformation. It represents
any program transformation which returns a set of program points containing the variable
page.

. . . , xn = 1.’ [[int]] denotes the application of a stepwise interpreter. Although it is
not traditionally viewed as such, I use interpretation here as a program transformer.

2. [[mix]][PD, x1 = 1, x2 = 0, . . . , xn = 1] denotes ‘partially evaluate (non-sequentially inter-
pret) the programmatic representation of DAG D (PD) w.r.t. the partial assignment
of variables x1 = 1, x2 = 0, . . . , xn = 1.’ [[mix]] is the conventional way to denote
a partial evaluator [Jon96, Jon97, JGS93b]. It refers to ‘mixed computation’ since a
partial evaluator performs a mixture of interpretation and code-generation [Jon96].

3. [[forward]][PD, x] denotes ‘union each forward slice of the the programmatic representa-
tion of DAG D (PD) w.r.t. the variable x at every program point containing x.’

4. [[backward]][PD, x1, x2, . . . , xn] denotes ‘union each backward slice of the the program-
matic representation of DAG D (PD) w.r.t. the variable x at program points 1, 2, . . . , n.’

Using this notation, [[zoom]] is formally defined as

[[zoom]][PD, input] = [[backward]][PD , [[forward]][PD, input] ∩ [[forward]][PD, page]],

where input is the program variable modeling the out-of-turn input and page is the variable
indexing the leaf vertices.

I define [[sp]], the programmatic analog to Select paths (SP), as

[[sp]][PD, x] = [[forward]][PD, x] ∪ [[backward]][PD, x]

I define [[te]][PD], the programmatic analog to Term extraction (TE), as the union of all pro-
gram data successors of each structural variable at its declaration. A program data successor
is a restriction to a forward slice in that rather than including transitive dependencies, it
just contains the immediate dependency of a program point. Specifically, ‘a program point’s
data successors are the points where the variables that were modified at that point are
used’ [ART03]. Since structural variables’ sole presence in these programs arises in the con-
text of an if (...) expression, we might just as easily think of conducting [[te]][PD] with a
regular expression.

Armed with these formalisms, I can relate many interpretations of interaction techniques,
including browsing, to classical program transformations (see Table 4.4). Program slicing is
typically used for debugging, safety, and security. Only few have used program slicing for web
applications [RT01b]. My use of slicing here helps marry it with information personalization.

80

deficit

excess

PR

Figure 4.9: Venn diagram highlighting the intersection between the set of sequences R (left)
staged by an incomplete, unsound model and its intended interaction paradigm P (right).

Recall that Fig. 4.4, the result of an out-of-turn interaction, violates my definition of
a DAG. This implies that I must post-process the program resulting from the application
of each program transformation technique to fuse program segments modeling edges with
the same source and label. This can be done with grammar-based approaches to program
transformation such as that espoused in [HC90].

4.4 Evaluation Criteria

A modelM = (PD, X) is a (programmatic representation, transformation technique) pair. I
would like to evaluate a model by assessing its capability to realize a desired set of interaction
sequences. To do so I measure how close the model comes to realizing its targeted interaction
paradigm P. Ideally, I would like to have

M; I ↔ I ∈ P,

where ; denotes ‘stages,’ i.e., M stages interaction sequence I iff I is in the interaction
paradigm P. A model stages an interaction sequence if successive applications of its transfor-
mation technique to its programmatic representation, given user input, realize the interaction
sequence. In this manner, the model stages the user’s interaction.

4.4.1 Soundness of a Model: M; I → I ∈ P
A model M is sound for an interaction paradigm P if each interaction sequence that M
stages is in P. In other words, if the model can stage an interaction sequence, then the
sequence is in the paradigm.

4.4.2 Completeness of a Model: I ∈ P → M; I

A model M is complete for an interaction paradigm P if M can stage each interaction
sequence in P. In other words, if an interaction sequence is in the paradigm, then the model
can stage it.

In this view, I can identify both the excess and deficit of a model. A complete, but
unsound, model has excess – interaction sequences not in its intended paradigm that it

81

stages. On the other hand, a sound, but incomplete, model has deficit – sequences in its
intended interaction paradigm that it fails to stage. An unsound and incomplete model
exhibits both excess and deficit w.r.t. its targeted paradigm. A sufficiency metric for a
model can then be formulated akin to the recall measure in information retrieval:

sufficiency =
|R ∩ P|
|P| =

|R ∩ P|
SoOP (D)

,

where R represents the set of sequences staged by the model. Fig. 4.9 illustrates how the
excess and deficit of model arises.

The program transformation techniques in Table 4.4 are each complete for the out-of-turn
paradigm studied in this dissertation. They are unsound because the supplied terms may
not all lie on a single path. Notice that a browsing paradigm is a proper subset of an out-
of-turn interaction paradigm. This is a significant result as it means that I can support the
union of these two interaction paradigms with a single program transformation technique. In
other words, no anticipation of in-turn or out-of-turn input is necessary to discern a program
transformation technique. Rather, since both in-turn and out-of-turn inputs are partial, and
since my techniques exploit partial information, I achieve uniform processing of partial input.
For interaction, this means that the user can interleave hyperlink clicks (browsing) and voice
utterances (out-of-turn inputs) in any order she desires, to achieve a mixed-initiative mode
of information seeking.

Lemma 2 Any complete model for the interaction paradigm of the out-of-turn interaction
techniques considered here is complete for a browsing paradigm. In other words, out-of-turn
interaction subsumes browsing.

Outline of Proof: Since there is only one parenthood relation in any DAG D,
given the definition of a browsing interaction sequence from above, there is only
one browsing interaction sequence per interaction set from D. Since a browsing
interaction sequence is a total ordering by definition, its corresponding poset
has only one linear extension (the total ordering itself). Therefore, the browsing
paradigm of D contains as many, and no more, linear extensions as are interaction
sets (or paths) from D (i.e., to reiterate, |P| = |SQ (D)|).
The arrival time relation implied by out-of-turn interaction is a partial ordering
containing only the reflexive tuples of terms from any interaction set. In other
words, none of the terms from the interaction set are ordered. Since none of
the terms are ordered, the number of linear extensions (out-of-turn interaction
sequences) of the posets associated with these partial orders equals the number of
all complete permutations of the interaction set. Since all complete permutations
of each interaction set are included in the out-of-turn interaction paradigm and
since one of the complete permutations of each interaction set corresponds to the
parenthood relation of D, each browsing interaction sequence from D is added
at some point to the out-of-turn interaction paradigm of D. ∴ by construction
of the out-of-turn interaction paradigm of D, Lemma 2 is true. 2

The completeness of each program transformation technique in Table 4.4 holds under the
assumption that no path from the root of the website to each leaf contains more than one

82

hyperlink with the same label. Intuitively, this is because communicating (in-turn or out-
of-turn) partial information initiates a program transformation technique which simplifies
the site w.r.t. all hyperlinks labeled with that partial input, some of which may lie on the
same path. This assumption is captured by my definition of interaction set and (browsing)
interaction sequence. As a result, my definition of browsing is slightly different than its
traditional interpretation.

Beyond soundness and completeness, I developed a measure which estimates the com-
pression achieved in a model – the ratio of interaction sequences realizable via interpretation
to the total number of sequences realizable via transformation:

compression =
|R−E|
|R| ,

where E represents the set of interaction sequences stageable from PD with an interpreter
([[int]]). Intuitively, the compression ratio quantifies the percentage of sequences which I get
‘for free’ by using the program transformation technique.

An effective model is one which maximizes both sufficiency and compression. Notice how-
ever that these measures are bipolar and foster a tradeoff which resembles the precision-recall
tradeoff in IR. To maximize sufficiency, I might choose to explicitly model each interaction
sequence in the representation, affecting the compression ratio negatively.

An alternative way to characterize models is to study the level at which they ‘factor’ the
desired space of interaction sequences. In [RP01] we have defined three classes of factored
representations: under-factored, well-factored, and over-factored. These classes also can be
used to characterize the developed models.

There are several alternate applicable evaluation criteria for this research. Evaluating
personalization applications for traditional user-satisfaction and task completion metrics is
the prevalent practice, and is the topic of Chapter 6. In addition to measuring satisfac-
tion, studies with users can improve our understanding of an extant interaction paradigm or
yield new paradigms to model. Personalization applications also can be evaluated w.r.t. IR
metrics. For example, Sacco [Sac00] studies how the application of zoom as well as bucket
size (i.e., number of documents classified under each terminal concept) affect the maximum
resolution of a taxonomy. Maximum resolution, which is a measure of retrieval effective-
ness, is the average minimum number of documents the user has to manually inspect.

4.5 Graph-theoretic Classes

of Hierarchical Hypermedia

In this section, I identify classes of hierarchical hypermedia for insight into the possibility
of specialized program transformation techniques for each class. Relating specialized tech-
niques to these classes will afford an alternate method, other than the all-accommodating
general program transformation technique, for supporting personalized interaction. I begin
by defining a few terms.

The maximum depth of D is the level of an edge-label in D which is greater than or equal
to the level of all other edge-labels in D. A cluster c is a term-level set s.t. no edge label in

83

Computer Science Mathematics

AdjeridRamakrishnan Beattie Green

Computer Science Mathematics

AdjeridRamakrishnan Adjerid Green

California Virginia

House Senate House Senate

Figure 4.10: Simple levelwise DAGs. (left) not-mutually-exclusive. (center) weak-mutually-
exclusive. (right) strong-mutually-exclusive.

it labels an edge in a different term-level set. If the maximum depth of D equals the number
of clusters in D, then D is levelwise. Intuitively, a levelwise DAG is one where each level
of the DAG corresponds to a facet of information assessment in the website it models, or in
other words each term ti ∈ TE (D) resides at exactly one level.

Each DAG shown in Fig. 4.10 is levelwise. The DAG in Fig. 4.10 (left) models a simplified
path through the online Virginia Tech timetable of courses. Its clusters are {Computer
Science, Mathematics} and {Ramakrishnan, Adjerid, Beattie, Green} implying that the two
levels shown correspond to ‘Department’ and ‘Instructor’ facets, respectively. Notice that
crosslinks, such as those illustrated in Fig. 4.10 (left and center) by the edge labeled ‘Adjerid’
emanating from the target of the edge labeled ‘Computer Science,’ are necessary to model
the presence of cross-listed courses. In the case of Fig. 4.10 (center), the target of the
two edges labeled ‘Adjerid’ models a course cross-listed in both the Computer Science and
Mathematics departments. The DAG in Fig. 4.10 (right), which models the Congressional
portion of the Project Vote Smart (PVS at votesmart.org) website, also is levelwise, albeit
without crosslinks. Its clusters are {California, Virginia} and {House, Senate} implying that
the two levels shown correspond to ‘State’ and ‘Branch of Congress’ facets, respectively. In
contrast to those shown in Fig. 4.10, notice that the DAG in Fig. 4.2 is not-levelwise.

I now introduce the concept of mutual-exclusivity in graph models of websites. If no leaf
vertex of D lies at the end of two paths from D which each involve a distinct edge-label from
a term-co-occurrence set T , then I say that T is mutually-exclusive. While there are several
mutually-exclusive term-co-occurrence sets (e.g., {Computer Science, Green}) in the DAGs
shown in Fig. 4.10 (left and center), none are clusters. On the other hand, the term-level
sets, {California, Virginia} and {House, Senate}, of the DAG shown in Fig. 4.10 (right), are
mutually-exclusive and clusters. If D is levelwise and has at least one mutually-exclusive
cluster, then D is weak-mutually-exclusive. If D is levelwise and no leaf vertex of D lies
at the end of two distinct paths from D, where each path contains a distinct term from
the same cluster, then D is strong-mutually-exclusive. Note that the mutually-exclusivity of
DAGs subsumes the levelwise property, by definition. Notice further that replacing only one
edge-label (i.e., ‘Beattie’ to ‘Adjerid’) in the DAG shown in Fig. 4.10 (left) makes it weak-
mutually-exclusive (see Fig. 4.10, center): its cluster at level-two is mutually-exclusive, but

84

that at level-one is not, due to the crosslink. This DAG models a course in the online Virginia
Tech timetable which presumably has two sections, each taught by a different instructor, from
different departments. If there is a unique simple path from the root of D to each vertex in
D, then D is an edge-labeled, rooted tree (hereafter referred to as a tree). Notice that the DAG

in Fig. 4.10 (right) is a tree (more on this later). Observe also that I developed the above
classes of hierarchical hypermedia without reference to any semantics. These notions are
purely syntactic. For instance, the levelwise property does not take into account polysemy
of terms.

Lemma 3 A DAG D is levelwise and each term-level set of D is a cluster and mutually-
exclusive iff D is strong-mutually-exclusive.

Outline of Proof:

−→: If a DAG D is levelwise and each term-level set of D is a cluster and
mutually-exclusive, then D is strong-mutually-exclusive.

Assume D is levelwise and each term-level set cl of D is a cluster and mutually-
exclusive. This means that no leaf vertex of D lies at the end of two distinct
paths from D, where each path contains a distinct term from cl. Assume further
that D is not strong-mutually-exclusive. This means that some leaf vertex of
D lies at the end of two distinct paths from D, where each path contains a
distinct term from the same cluster, call it cx. However, this implies that cx is
not-mutually-exclusive. This is a contradiction.

←−: If a DAG D is strong-mutually-exclusive, then D is levelwise and each
term-level set of D is a cluster and mutually-exclusive.

Assume D is strong-mutually-exclusive. By the definition of a strong-mutually-
exclusive DAG, D is levelwise. By the definition of levelwise, each term-level set
in D is a cluster. Since D is strong-mutually-exclusive, no leaf vertex of D lies at
the end of two distinct paths from D, where each path contains a distinct term
from the same cluster. This means that each term-level set in D is a cluster and
mutually-exclusive.

∴ Lemma 3 is true. 2

Lemma 4 A strong-mutually-exclusive DAG which is not a tree does not exist, given my
definition of a DAG.

Outline of Proof: The presence of crosslinks shatters strong-mutually-exclusivity.
The only way that a non-tree DAG could be strong-mutually-exclusive is if the
edges of each level above every crosslink had the same label (see Fig. 4.11).
However, this violates my definition of a DAG and thus violates the definition
of a strong-mutually-exclusive DAG. For instance, try to convert the tree of
Fig. 4.10 (right) into a general DAG, while retaining the strong-mutual-exclusive
property. ∴ Lemma 4 is true. 2

85

x x

Figure 4.11: An ‘almost’ strong-mutually-exclusive DAG. The crosslink is unlabeled here to
reinforce that its label is irrelevant.

Lemma 5 Interpretation 1 of out-of-turn interaction over a tree D is functionally equivalent
to interpretation 2 of out-of-turn interaction over D.

Outline of Proof: Assume D is a tree. Let D
′

= BP (D, FP (D, t)). Since

OOT1 (D, t) = SE (BP (D, FP (D, t)), t) and

OOT2 (D, t) = SE (SP ((BP (D, FP (D, t)), t)),

this proof reduces to proving that SP (D
′

) = D
′

.

Let Lt be the set of leaves returned from FP (D, t). Since D is a tree, there is
one only path from the root of D to each of its leaves and therefore each leaf in
Lt can be reached via only one path from the root of D. Since I attained Lt by
forward propagating paths containing an edge labeled t, every path from the root
of the tree returned by BP (Lt) to each leaf in Lt will contain an edge labeled t.
Thus, SP (D

′

) will return all paths from the root of D
′

to each of the leaves in
Lt (i.e., it will return D

′

). I have just shown that SP (D
′

) = D
′

. ∴ Lemma 5 is
true. 2

Lemma 6 Generalized interpretation 1 of out-of-turn interaction over a tree D is function-
ally equivalent to generalized interpretation 2 of out-of-turn interaction over D.

Outline of Proof: This proof follows analogously from Lemma 5. I can con-
struct its outline by replacing all occurrences of FP in the proof of Lemma 5
with SL, since FP is an instance of SL. ∴ Lemma 6 is true . 2

Lemma 7 The interpretations of out-of-turn interaction considered in this thesis preserve
the levelwise property in DAGs.

86

Outline of Proof: The interpretations of out-of-turn interaction provided sim-
ply remove entire paths from a DAG and shrink the remaining paths w.r.t. the
out-of-turn input. Assume a DAG D is levelwise. Since D is levelwise, each of
its term-level sets are clusters by the definition of a levelwise DAG. Lemma 5
illustrates that the DAG resulting from each of

BP (D, FP (D, t)),

SP (BP (D, FP (D, t)), t),

BP (D, SL (D, t)), or

SP (BP (D, SL (D, t)), t)

contains only paths from the root of D to each leaf of the resulting DAG D
′

which contain an edge labeled t. Since I have shrunk no edges, D
′

has the same
maximum depth of D. This means that each term-level set from D

′

is a subset
of the term-level set in D at the corresponding level. Thus, D

′

is levelwise. This
means that each of its term-level sets are clusters. Since a cluster cannot contain
two terms which label two distinct edges on the same path, no path from the
root of D

′

to each of its leaves can contain two distinct edges with the same label.
Since D

′

is levelwise, t can exist in one cluster and thus one term-level set. This
means that the application of SE to D

′

w.r.t. t removes exactly one edge from
each path from the root of D

′

to each of its leaves. Thus, the application of SE

to D
′

w.r.t. t reduces the maximum depth of D
′

by at most one. ∴ Lemma 7 is
true. 2

Corollary 1 The interpretations of out-of-turn interaction considered in this thesis preserve
the levelwise property in trees.

Outline of Proof: Follows directly from Lemma 7. 2

Lemma 8 If a DAG D is a levelwise tree, then D is a strong-mutually-exclusive tree.

Outline of Proof: Assume D is a levelwise tree. This means that there is a
unique simple path from the root of D to each vertex in D, and thus each leaf in
D. Thus, no leaf vertex of D lies at the end of two distinct paths from D, where
each path contains a distinct term from the same cluster. I have just shown
that D meets both conditions for being strong-mutually-exclusive. ∴ Lemma 8
is true. 2

Corollary 2 The interpretations of out-of-turn interaction considered in this thesis preserve
the strong-mutually-exclusive property in trees.

Outline of Proof: Follows directly from Lemmas 7 and 8. 2

87

DAG

not−mutually−exclusive
Other

mutually−exclusive

DAG

Not−levelwise DAG

Not−levelwise tree

Levelwise DAG

Other not−levelwise DAG

DAG

Weak

tree
Mutually−exclusive

Figure 4.12: Partial order of classes of hierarchical hypermedia.

DAG not-ME ME

not-levelwise
√ ⊥

levelwise
√ √

Tree not-ME ME

not-levelwise
√ ⊥

levelwise ⊥ √

Table 4.5: Alternate illustration of classes of hierarchical hypermedia making the five consid-
ered classes (leaves of the diagram in Fig. 4.12) salient. Symbols

√
and ⊥ denote ‘defined’

and ‘undefined,’ respectively.

Lemmas 4 and 8 make the type of mutually-exclusivity unequivocal in reference to non-
tree DAGs and trees. Thus, unless stated otherwise, I refrain from qualifying mutually-
exclusivity as ‘weak’ or ‘strong’ in such contexts.

A Hasse diagram for a partial order of these classes of hierarchical hypermedia is shown
in Fig. 4.12. The leaf vertices in this Hasse diagram are the five classes considered in this
chapter. However, I do not use the distinction between not-levelwise trees and other not-
levelwise DAGs and simply refer to them using their parent class: not-levelwise DAG. The
mutually-exclusive tree class (circled in Fig. 4.12) is my primary focus later in this thesis,
especially when I study user interactions with websites (Chapter 6). Note that the other not-
mutually-exclusive DAG class does not contain any trees, by Lemma 8, as shown in Fig. 4.12.
An alternate view of these five classes is given in Table 4.5.

4.6 Additional Support Terms and Tools

Before I can broaden my discussion of these classes of hierarchical hypermedia, which includes
methods for automatically identifying them as well as reasoning about interaction therein, I
must develop some support terms and tools.

4.6.1 Path-term-co-occurrence

Intuitively, a path-term-co-occurrence set is a term-co-occurrence set which only contains all
of the terms from D which co-occur with a particular term along paths through D. Build
path-term-co-occurrence set is total function BPTC : (D × T)→ P (T) which given D and
a term t ∈ T = TE (D) returns a path-term-co-occurrence set. It is defined as

88

BPTC (D, t) =
⋃

Iti
∈ GS (t, SQ (D))

gIS (Iti)− {t},

where Iti is an interaction sequence from D containing term ti. The set {Adjerid, Green}
is the path-term-co-occurrence set in the DAG D illustrated in Fig. 4.10 (center) w.r.t. the
term ‘Mathematics.’

4.6.2 Leaf-term-co-occurrence

Given a set of leaves from D reachable via paths containing a particular term t (i.e., Lt =
FP (D, t)), a leaf-term-co-occurrence set is a term-co-occurrence set which only contains all
of the terms from D, excluding t, which lie along all of the paths from D which reach all of
the leaves in Lt. Build leaf-term-co-occurrence set is total function BLTC : (D×T)→ P (T)
which given D and term t ∈ T = TE (D) returns a leaf-term-co-occurrence set. It is defined
as

BLTC (D, t) = TE (BP (FP (D, t)))− {t}.
The set {Computer Science, Adjerid, Green} is the leaf-term-co-occurrence set in the DAG D

illustrated in Fig. 4.10 (center) w.r.t. the term ‘Mathematics.’

Lemma 9 If a DAG D is a tree, then any path-term-co-occurrence set w.r.t. a term t in D

is a leaf-term-co-occurrence set w.r.t. t in D. In other words, if a DAG D is a tree, then
BPTC (D, t) = BLTC (D, t).

Outline of Proof: Assume a DAG D is a tree. Thus, there is one simple path
from the root of D to each of its leaves, by the definition of a tree. Suppose that
T is a path-term-co-occurrence set w.r.t. term t in D. By the definition of a
path-term-co-occurrence set, the terms in T are the complete set of terms which
co-occur with t on each path from the root of D to a leaf involving t. Since there
is only one such path in D per leaf because D is a tree, the terms in T constitute
a complete set of terms from D, excluding t, which lie along all of the paths from
D which reach all of the leaves reachable by each path involving t from the root
of D to a leaf. This means that T is a leaf-term-co-occurrence set w.r.t. t in D by
the definition of a leaf-term-co-occurrence set in a DAG. ∴ Lemma 9 is true. 2

Corollary 3 If a DAG D is a tree, then the complete set of path-term-co-occurrence sets in
D equals the complete set of leaf-term-co-occurrence sets in D. In other words, if a DAG D

is a tree, then

⋃

ti ∈ TE (D)

{BPTC (D, ti)} =
⋃

ti ∈ TE (D)

{BLTC (D, ti)}.

Outline of Proof: Follows directly from Lemma 9. 2

89

Now I can use these tools to build up other tools which will help in automatically iden-
tifying classes of hypermedia.

Is disjoint term-co-occurrence set is a total function iDTCs : (D×TC)→ B which given
D and a term-co-occurrence set T from D returns true iff no two edge-labels, el1 ∈ T ; and
el2 ∈ T , label two edges, e1 and e2, respectively, of D which lie on the same path, and false

otherwise. I use the variable B to denote the set {true, false} and TC to represent the
universal set of term-co-occurrence sets. This function is defined as

iDTCs (D, T) =
∧

ti ∈ T

¬(
∨

tj ∈ BPTC (D, ti)

M (tj , T − {ti})),

where M is a set-membership function. Is set of disjoint term-co-occurrence sets is a total
function iSoDTCs : (D × TT) → B which given D and a set of term-co-occurrence sets S

returns true if ∀Ti ∈ S, iDSoT (D, Ti) = true, and false otherwise. I use the variable TT

to denote the universal set of sets of term-co-occurrence sets. This function is defined as

iSoDTCs (D, S) =
∧

Ti ∈ S

iDTCs (D, Ti).

Test mutual-exclusivity of term-co-occurrence set is a total function METC : (D×TC)→
B which given D and a term-co-occurrence set T from D returns true iff no leaf vertex of
D is reachable via two distinct paths from D, which each contain a distinct edge, e1 and
e2 (labeled by edge-labels el1 and el2 , respectively) from T (i.e., el1 ∈ T and el2 ∈ T), and
false otherwise. This function is defined as

METC (D, T) =
∧

ti ∈ T

¬(
∨

tj ∈ BLTC (D, ti)

M (tj , T − {ti})),

Test mutual-exclusivity of set of term-co-occurrence sets is a total function METCs : (D ×
TT) → B which given D and a set of term-co-occurrence sets S from D returns true iff
∀Ti ∈ S, METC (D, Ti) = true, and false otherwise. It is defined as

METCs (D, S) =
∧

Ti ∈ S

METC (D, Ti).

Now we can see procedurally why the set

{{Computer Science, Mathematics}, {Adjerid, Green}}

of clusters is not a complete set of mutually-exclusive clusters and why the set {{California,
Virginia}, {House, Senate}} is a complete set of mutually-exclusive clusters in the DAGs
shown in Fig. 4.10 (left and right, respectively).

4.7 Automatically Identifying the Classes

I defined the terms, notation, and functions from the previous sections in part to simplify
the automatic identification of instances of the developed classes of hierarchical hypermedia.

90

Is levelwise DAG is a total function iL : D → B, which given D returns true iff D is
levelwise and false otherwise. It is defined as

iL (D) = iSoDTCs (D, LOT (D)),

where LOT (term-level-order traversal) is a total function LOT : D → S which given D

returns a set {s1, s2, . . . , sM} of sets where each set Tl (= TLE (D, l)) is the term-level set
at level l. Now we can see procedurally why the sets

{{Computer Science, Mathematics},
{Ramakrishnan, Adjerid, Beattie, Green}},
{{Computer Science, Mathematics},
{Ramakrishnan, Adjerid, Green}}, and
{{California, Virginia}, {House, Senate}}

are complete sets of the clusters in the DAGs shown in Fig. 4.10 (left, center, and right,
respectively). This helps us to see procedurally why all DAGs given in Fig. 4.10 are levelwise.

Is weak-mutually-exclusive DAG is a total function iWMED : D → B, which given D

returns true iff D is weak-mutually-exclusive and false otherwise (i.e., iff D is not-mutually-
exclusive). It is defined as

iWMED (D) = iL (D) ∧ (
∨

Tl ∈ LOT (D)

METC (D, Tl)).

Now we can see procedurally why the DAG shown in Fig. 4.10 (center) is weak-mutually-
exclusive, namely, because it is levelwise and its term-level set at level-two, {Ramakrishnan,
Adjerid, Green}, is a mutually-exclusive cluster.

Is mutually-exclusive DAG is a total function iMED : D → B, which given D returns
true iff D is strong-mutually-exclusive and false otherwise (i.e., iff D is not-strong-mutually-
exclusive). Note that iMED will never return true for a non-tree DAG. Following Lemma 3,
iMED is defined as

iMED (D) = iL (D) ∧ METCs (D, LOT (D)).

Identifying a mutually-exclusive tree D involves placing terms in a set if they do not lie on
the same path, but have the same level. If the maximum depth of the tree equals the number
of resulting sets (clusters), then D is mutually-exclusive. Is mutually-exclusive tree is a total
function iMET : D → B, which given a DAG D returns true iff D is a mutually-exclusive
tree and false otherwise. It is defined as

iMET (D) = iT (D) ∧ iMED (D) = iT (D) ∧ iL (D) (by Lemma 8),

where iT (is tree) is a total function iT : D → B, which given D returns true iff D is a tree
and false otherwise. Now we can see procedurally why the DAG D in Fig. 4.10 (right) is
a mutually-exclusive tree. By Lemma 3, since it is levelwise and its complete set {{California,
Virginia}, {House, Senate}} of clusters is a mutually-exclusive set of clusters, D is a mutually-
exclusive tree. Note that the application of any interpretation of out-of-turn interaction to
a DAG may result in a mutually-exclusive tree or a mutually-exclusive DAG. This will mean

91

that to take advantage of program transformation techniques specialized for these classes,
which I develop below, I will need to apply these identification procedures after each out-of-
turn interaction.

4.8 Mining Functional Dependencies for

Input Expansion

Before re-entering the program-theoretic domain, I must develop a few more graph-theoretic
terms and tools which will help provide intuition for the relations to some of the program
transformation techniques to follow. I illustrate how mining functional dependencies (FDs)
in websites helps expand input for out-of-turn interaction.

Identifying structural relationships in data-intensive websites, in areas such as e-commerce
(e.g., Amazon.com), digital libraries (e.g., CITIDEL at citidel.org), and scientific comput-
ing (e.g., GAMS at gams.nist.gov) is becoming an increasingly popular precursor to cus-
tomizing information access [ABS00]. Deploying out-of-turn interaction involves addressing
some practical considerations, including the identification of such relationships. Specifically,
when the targeted website contains dependencies between and across the levels of its DAG

model, an out-of-turn interaction can result in the system soliciting information from the user
which can be inferred from the previous input. For instance, consider a user’s interaction
with the Kelly Blue Book (KBB at kbb.com), an automobile website which progressively
solicits for automobile attributes, in an order pre-determined by the site designer, and forces
users to communicate those attributes in this manner to access a vehicle webpage. KBB is
modeled by a mutually-exclusive tree.

Fig. 4.13 illustrates an out-of-turn interaction episode with KBB to motivate FDs on the
web. In the first window, when the site solicits for vehicle category, the user responds with
‘Civic’ out-of-turn, by speaking to the browser. This causes all but one vehicle category to
be pruned out. Notice that when the site reclaims the initiative, it asks the user to make
a selection for vehicle category (because that attribute is still unspecified), even though
there is only one option left (Sedan). Next the user clicks the ‘Sedan’ (second window)
and ‘Honda’ (third window) hyperlinks in-turn to arrive at the content page for a Honda
Civic (fourth window). Asking the user to make a choice where it is obvious, or forcing
her to click through a long and painstaking series of webpages, each containing only a single
hyperlink (windows two and three), may confuse or frustrate her. When the user says ‘Civic’
out-of-turn I can infer ‘Sedan Honda’ by functional dependency, e.g., ‘Civic → {Sedan,
Honda},’ transparently expand the user’s input to ‘Civic Sedan Honda,’ and communicate
these terms of information-seeking to the system in one stroke. I call FDs of this type
positive-path FDs. The ‘Civic → Honda’ FD asserts that all of the paths through the site
involving ‘Civic’ also involve ‘Honda.’ Clearly, the reverse does not hold as Honda makes
several automobile models. Detecting such dependencies between the site’s levels (in this
case, vehicle-type, -maker, and -model) and leveraging them for input expansion delivers a
compelling experience to the end-user. When such dependencies are employed, it is important
to provide real-time feedback to users so that the information contained on the r.h.s. of the
FD is not lost. This can be done by collecting the r.h.s. of each FD triggered and augmenting

92

⇓

⇓

⇓

Figure 4.13: A cumbersome out-of-turn interaction experience with the Kelly Blue Book.

93

the leaf webpage with this information. Alternatively, I could enhance the ‘Input so far:’
label in the browser’s status bar at each step in the interaction to incrementally include
the r.h.s. of any fired FDs. Notice that firing such FDs affects the stageable interaction
sequences and thus the realizable (browsing and out-of-turn) interaction paradigms. Thus,
I may have to update my definition of an interaction sequence so that it can be defined over
a subset of an interaction set.

Using FDs to expand user input ultimately creates invisible shortcuts through the web-
site for the user. For example, saying ‘Washington, DC’ out-of-turn at the top level of
PVS, expands to ‘Washington, DC House Democrat District-at-large’ and directly reaches
the webpage of an individual congressional official. In levelwise sites, only a cursory un-
derstanding of the underlying domain is necessary to manually identify a majority of the
FDs fitting the re-occurring ‘[model]→ [make]’ FD schema (e.g., ‘Civic→ Honda’) in KBB.
FDs are less salient in sites that are not-levelwise, such as large taxonomies of links to web
resources (e.g., Yahoo! and ODP). Thus, techniques from association rule mining, espe-
cially those designed for the web [EV03, MCS00, MAB00, SCDT00], become important and
applicable in both classes.

4.8.1 Tools for Mining Positive FDs

Positive-path FDs

Discovering positive-path FDs, such as those described above, entails identifying pairs of
hyperlink labels where all of the paths through the site involving one also involve the other.
Then when a user supplies out-of-turn input, I consult the set of FDs to answer the question:
‘What terms in the complete set of terms, TE (D), lie along each path involving a hyperlink
labeled with the out-of-turn input?’ An instance of such an FD in PVS is ‘Senior seat →
Senate.’ Mining such FDs takes O((|TE (D)| × |TE (D)|) − |TE (D)|) time, discounting
FDs such as ‘x → x.’ It is important to note that the number of positive-path FDs in a
site changes after every (in-turn or out-of-turn) interaction because the number of paths
remaining through the site is reduced as a result of each interaction. Thus, a new set of
FDs must be mined at each step. However, since positive-path FDs can only exist among
terms which co-occur on a path, I need not examine TE (D) terms per term. Rather I can
make use of a path-term-co-occurrence set and examine only the terms which co-occur on
a path with the particular term (corresponding to the out-of-turn input). This approach
implies computing a path-term-co-occurrence set after the user supplies an out-of-turn input
and using it to discover any positive-path FDs relevant to the user’s interaction. Mine
positive-path-FD set is total function mFDspp : (D×T)→ P (T) which given D and a term
ti ∈ T = TE (D) returns a term-co-occurrence set. It is defined as

mFDspp (D, ti) =
⋃

tj ∈ BPTC (D, ti)

{tj} s.t. GS (ti, SQ (D)) ⊆ GS (tj , SQ (D)).

This function finds FDs of the form ti → tj . A positive-path-FD set of D is any term-co-
occurrence set returned from mFDspp. The complete set of positive-path FDs which hold
in the DAG shown in Fig. 4.10 (left) is

94

⇓

Figure 4.14: Using FDs to expand out-of-turn user input. The resulting effect relieves the
user from manually clicking through a series of hyperlinks which all lead to the same webpage.

{Ramakrishnan → Computer Science,
Adjerid → Computer Science,
Beattie → Mathematics,
Green → Mathematics}.

Notice that no positive-path FDs hold in the DAG shown in Fig. 4.10 (right).

Using Positive-path FDs for Input Expansion

I use the mined FDs to drive input expansion for out-of-turn interaction. Fig. 4.14 illustrates
an out-of-turn interaction with the ‘Home’ sub-tree of the ODP hierarchy. In the top window,
the user communicates ‘Ice Cream Maker’ out-of-turn by speaking to the browser, producing
the page in the bottom window. This interaction automatically triggers two FDs: ‘Ice Cream
Makers → {Appliances, Consumer Information}’ and has the same effect as a shortcut to
the page, shown in the bottom window, nested deeper in the taxonomy. There are 452,690
browsing interaction sequences through the ODP taxonomy. Table 4.61 provides various
frequencies of relevant items, including FDs, in selected sub-trees of ODP.

1FDs were mined from the ODP structure RDF (Resource Description Framework) dump (publicly avail-
able at http://rdf.dmoz.org) generated on February 9, 2004. Frequencies were tallied without consideration
of crosslinks. In other words, I analyzed a tree model of ODP.

95

Sub-tree seq t (t, t) cand. (t, t) FDs %

Adult 6,014 2,129 4,530,512 34,163 8,711 25%
Business 7,560 4,082 16,658,642 57,290 10,241 18%
Computers 6,217 3,618 13,086,306 48,776 11,811 24%
Games 7,898 6,335 40,125,890 73,029 40,903 56%
Health 5,155 3,152 9,931,952 38,794 11,227 29%
Home 1,761 1,565 2,447,660 15,289 4,756 31%
Kids and Teens 2,339 2,270 5,150,630 25,012 12,450 50%
News 415 278 77,006 2,694 752 28%
Recreation 8,368 3,512 12,330,632 53,380 14,083 26%
Reference 8,076 6,159 37,927,122 89,913 33,819 38%
Science 8,600 7,441 55,361,040 98,689 45,303 46%
Shopping 3,984 2,987 8,919,182 32,725 12,382 38%
Society 21,105 11,076 122,666,700 171,664 61,001 36%
Sports 14,609 7,171 51,416,070 108,899 33,511 31%

Table 4.6: Descriptive statistics of positive-path FDs mined in selected top-level categories
of ODP. The column labeled ‘seq’ contains the browsing interaction sequence frequencies.
The column labeled ‘t’ provides the number of unique terms in each category. The column
labeled ‘(t, t)’ contains the number of (term, term) pairs in the sub-tree, discounting those
involving only one term (i.e., (t × t) − t). The column labeled ‘cand. (t, t)’ provides the
frequencies of candidate FDs (term, term) pairs (i.e., the sum of the cardinality of every path-
term-co-occurrence set in the category). The column labeled ‘FDs’ provides the number of
positive-path FDs in the sub-tree. Lastly, the column labeled ‘%’ contains the percentage of
FDs among the candidate FDs (i.e., FDs ÷ cand. (t, t)).

96

Positive-leaf FDs

Positive-leaf FDs are more general than positive-path FDs in that all positive-path FDs also
are positive-leaf FDs. Discovering positive-leaf FDs entails identifying pairs of hyperlink
labels where all of the leaves classified under paths involving one label also are classified
under paths involving the other. Then when a user supplies out-of-turn input, I consult the
set of FDs to answer the question: ‘What terms in the complete set of terms, TE (D), lie
along paths which classify all the leaves reachable by paths involving a hyperlink labeled with
the out-of-turn input?’ As with positive-path FDs, mining these FDs takes O((|TE (D)| ×
|TE (D)|)−|TE (D)|) time, discounting FDs such as ‘x→ x.’ Again, the number of positive-
leaf FDs in a site changes after every interaction because the number of leaves remaining in
the site is reduced as a result of each interaction. Thus, a new set of positive leaf FDs must
be mined at each step. Akin to the previous discussion, since positive-leaf FDs can only
exist among terms which co-occur w.r.t. leaves, I need not examine TE (D) terms per term.
Rather I can make use of a leaf-term-co-occurrence set and examine only the terms which
co-occur with a particular term (corresponding to the out-of-turn input) w.r.t. leaves. This
approach implies computing a leaf-term-co-occurrence set after the user supplies an out-of-
turn input and using it to discover any positive-leaf FDs relevant to the user’s interaction.
Mine positive-leaf-FD set is total function mFDspl : (D × T) → P (T) which given D and
a term ti ∈ T = TE (D) returns a term-co-occurrence set. It is defined as

mFDspl (D, ti) =
⋃

tj ∈ BLTC (D, ti)

{tj} s.t. FP (D, ti) ⊆ FP (D, tj).

This function mines FDs of the form ti → tj . A positive-leaf-FD set of D is any term-co-
occurrence set returned from mFDspl. The complete set of positive-leaf FDs which hold in
the DAG D shown in Fig. 4.10 (left) is

{Ramakrishnan → Computer Science,
Adjerid → Computer Science,
Adjerid → Mathematics,
Adjerid → Beattie,
Beattie → Computer Science,
Beattie → Mathematics,
Beattie → Adjerid,
Green → Mathematics}.

Notice that no positive-leaf FDs hold in the DAG shown in Fig. 4.10 (right).

Lemma 10 Any positive-path FD in a DAG D is a positive-leaf FD in D.

Outline of Proof: Assume ‘x → y’ is a positive-path FD in a DAG D. This
means that all of the paths from the root of D to a leaf which involve x also
involve y. This means that all of the leaves reachable via a path through D

involving x are reachable via a path through D involving y. Thus, all of the
leaves classified by paths involving x also are classified under paths involving y,
thereby satisfying the definition of a positive-leaf FD. ∴ Lemma 10 is true. 2

97

Corollary 4 Any positive-path FD set w.r.t. a term ti in a DAG D is a subset of the
positive-leaf FD set w.r.t. ti in D. In other words, mFDspp (D, ti) ⊆ mFDspl (D, ti).

Outline of Proof: Follows directly from Lemma 10. 2

I leave it to the reader to convince thyself that the converse of Lemma 10 (e.g., ‘Any positive-
leaf FD is a positive-path FD’) is not true. However, we have:

Lemma 11 If a DAG D is a tree, then any positive-leaf FD in D is a positive-path FD in
D.

Outline of Proof: Let D be a tree. Thus, there is one simple path from the
root of D to each of its leaves, by the definition of a tree. Assume ‘x → y’ is
a positive-leaf FD in D. This means that all of the leaves reachable via a path
through D involving x are reachable via a path through D involving y. Thus,
all of the leaves classified by paths involving x also are classified under paths
involving y. Since there is only one path from the root to each leaf in D, this
means that y must co-occur with x on each path through D involving x, thereby
satisfying the definition of a positive-path FD. ∴ Lemma 11 is true. 2

Corollary 5 If a DAG D is a tree, than any positive-path FD set w.r.t. a term ti in D equals
the positive-leaf FD set w.r.t. ti in D. In other words, if D is a tree, then mFDspp (D, ti) =
mFDspl (D, ti).

Outline of Proof: Follows directly from Lemmas 10 and 11. 2

Corollary 6 If a DAG D is a tree, then the complete set of positive-path FDs in D equals
the complete set of positive-leaf FDs in D.

Outline of Proof: Follows directly from Corollary 5. 2

Notice that Lemma 11 uses if, not iff; I leave it to the reader to convince thyself that the
converse of Lemma 11 (e.g., ‘If any positive-leaf FD in a DAG D is a positive-path FD in D,
then DAG D is a tree’) is not true.

Identifying and employing instances of positive (-path and -leaf) FDs are helpful for
usability purposes, but not necessary for realizing out-of-turn interaction. What is non-
intuitive, however, is that a related concept, negative (-path and -leaf) FDs, turns out to
be helpful in developing an alternate program transformation technique for out-of-turn in-
teraction as well as specializations of it for the mutually-exclusive classes2 of hierarchical
hypermedia. Specifically, partially evaluating a programmatic representation of a website
w.r.t. the variables modeling the terms on the r.h.s. of a negative-path or -leaf FD set
assigned zero prunes the site.

2When I use the phrase ‘mutually-exclusive classes,’ I am referring to a ‘mutually-exclusive tree’ and
a ‘weak mutually-exclusive DAG,’ not a general connotation to two (or more) classes that are mutually
exclusive with each other.

98

4.8.2 Tools for Mining Negative FDs

Negative-path FDs

Identifying negative-path FDs entails identifying pairs of hyperlink labels where none of the
paths through the site involving one label involve the other. Identifying negative-path FDs
involves answering the following question: ‘What terms in the complete set of terms, TE (D),
never lie along any of the paths involving a hyperlink labeled with a particular term?’ An
example of such an FD in PVS is ‘Senior seat → ¬ House.’ Intuitively, this means that none
of the paths through the site involving the term ‘Senior seat’ involve the term ‘House.’ Mine
negative-path-FD set is total function mFDsnp : (D × T) → P (T) which given D and a
term ti ∈ T = TE (D) returns a term-co-occurrence set. It is defined as

mFDsnp (D, ti) = TE (D)− {ti} −BPTC (D, ti).

A negative-path-FD set of D is any term-co-occurrence set returned from mFDsnp. The
complete set of negative-path FDs which hold in the DAG shown in Fig. 4.10 (left) is

{Computer Science → ¬ Mathematics,
Computer Science → ¬ Beattie,
Computer Science → ¬ Green,
Mathematics → ¬ Computer Science,
Mathematics → ¬ Ramakrishnan,
Mathematics → ¬ Adjerid,
Ramakrishnan → ¬ Mathematics,
Ramakrishnan → ¬ Adjerid,
Ramakrishnan → ¬ Beattie,
Ramakrishnan → ¬ Green,
Adjerid → ¬ Mathematics,
Adjerid → ¬ Ramakrishnan,
Adjerid → ¬ Beattie,
Adjerid → ¬ Green,
Beattie → ¬ Computer Science,
Beattie → ¬ Ramakrishnan,
Beattie → ¬ Adjerid,
Beattie → ¬ Green,
Green → ¬ Computer Science,
Green → ¬ Ramakrishnan,
Green → ¬ Adjerid
Green → ¬ Beattie}.

Likewise, the complete set of negative-path FDs which hold in the DAG shown in Fig. 4.10 (right)
is

{California → ¬ Virginia,
Virginia → ¬ California,
House → ¬ Senate,
Senate → ¬ House}.

99

Negative-leaf FDs

Identifying negative-leaf FDs entails identifying pairs of hyperlink labels where none of the
leaves classified under paths involving one label are classified under paths involving the other.
Identifying negative-leaf FDs involves answering the following question: ‘What terms in the
complete set of terms, TE (D), do not lie along paths from the root of D to its leaves which
classify any of the leaves reachable by paths involving a hyperlink labeled with a particular
term?’ An example of such an FD in PVS is ‘Senior seat → ¬ House.’ Unlike the discussion
of negative-path FDs, this type of FD must be interpreted as ‘none of the leaves classified
by paths involving the term ‘House’ are classified by the paths involving the term ‘Senior
seat.’ Mine negative-leaf-FD set is total function mFDsnl : (D × T) → P (T) which given
D and a term ti ∈ T = TE (D) returns a term-co-occurrence set. It is defined as

mFDsnl (D, ti) = TE (D)− {ti} −BLTC (D, ti).

A negative-leaf-FD set of a DAG D is any term-co-occurrence set returned from mFDsnl.
The complete set of negative-leaf FDs which hold in the DAG shown in Fig. 4.10 (left) is

{Computer Science → ¬ Green,
Mathematics → ¬ Ramakrishnan,
Ramakrishnan → ¬ Mathematics,
Ramakrishnan → ¬ Adjerid,
Ramakrishnan → ¬ Beattie,
Ramakrishnan → ¬ Green,
Adjerid → ¬ Ramakrishnan,
Adjerid → ¬ Green,
Beattie → ¬ Ramakrishnan,
Beattie → ¬ Green,
Green → ¬ Computer Science,
Green → ¬ Ramakrishnan,
Green → ¬ Adjerid
Green → ¬ Beattie}.

The complete set of negative-leaf FDs which hold in the DAG D shown in Fig. 4.10 (right)
is (the complete set of negative-path FDs which hold in the D)

{California → ¬ Virginia,
Virginia → ¬ California,
House → ¬ Senate,
Senate → ¬ House}.

Note that the ¬ is always on the r.h.s. of a negative FD. Notice further that nega-
tive (-path and -leaf) and positive (-path and -leaf) FDs are not complements of each other.

Lemma 12 Any negative FD x → ¬ y considered here also implies y → ¬ x.

Outline of Proof:

100

Negative-path FD: Any negative-path FD x → ¬ y considered here also
implies y → ¬ x.

Assume ‘x → ¬ y’ is a negative-path FD in a DAG D. By the definition of
a negative-path FD, none of the paths involving x from the root of D to a leaf
involve y. This relationship is symmetric, and thus, none of the paths involving y
from the root of D to a leaf involve x. Thus, by the definition of a negative-path
FD, ‘y → ¬ x’ is a negative-path FD in D.

Negative-leaf FD: Any negative-leaf FD x → ¬ y considered here also
implies y → ¬ x.

Assume ‘x → ¬ y’ is a negative-leaf FD in a DAG D. By the definition of a
negative-leaf FD, none of the leaves classified under paths involving x in D are
classified under paths involving y. This relationship is symmetric, and thus, none
of the leaves classified under paths involving y from the root of D to a leaf are
classified under paths involving x. Thus, by the definition of a negative-leaf FD,
‘y → ¬ x’ is a negative-leaf FD in D.

∴ Lemma 12 is true. 2

Lemma 13 Any negative-leaf FD in a DAG D is a negative-path FD in D.

Outline of Proof: Assume ‘x → ¬ y’ is a negative-leaf FD in a DAG D. This
means that y lies along none of the paths which classify the leaves classified
under paths involving x. If y does not lie along a path which classifies any of
the leaves classified under paths involving x, then y can never co-occur on a path
involving x from the root of D to a leaf, because if it did, then it would lie along a
path which classifies one or more of the leaves classified under paths involving x,
thereby satisfying the definition of a negative-path FD. ∴ Lemma 13 is true. 2

Notice that the claim in Lemma 13 is the contrapositive of the claim in Lemma 10.

Corollary 7 Any negative-leaf-FD set w.r.t. a term ti in D is a subset of the negative-path-
FD set w.r.t. ti in D. In other words, mFDsnl (D, ti) ⊆ mFDsnp (D, ti).

Outline of Proof: Follows directly from Lemma 13. 2

I leave it to the reader to convince thyself that the converse of Lemma 13 (e.g., ‘Any negative-
path FD is a negative-leaf FD’) is not true.

Lemma 14 If a DAG D is a tree, then any negative-path FD in D is a negative-leaf FD in
D.

Outline of Proof: Let a D D be a tree. Thus, there is one simple path from
the root of D to each of its leaves, by the definition of a tree. Assume ‘x→ ¬ y’
is a negative-path FD in D. This means that y co-occurs with x on none of the
paths involving x from the root of D to a leaf. Since there is only one path from

101

the root of D to each leaf, none of the leaves classified by paths involving x are
classified under paths involving y, because otherwise y would have to co-occur
with x on one path, and I have assumed that it does not by supposing that ‘x
→ y’ holds. This means that none of paths involving y in D classify any of the
leaves classified under paths involving x in D, thereby satisfying the definition of
a negative-leaf FD. ∴ Lemma 14 is true. 2

Corollary 8 If a DAG D is a tree, then any negative-path-FD set w.r.t. a term ti in D equals
the negative-leaf-FD set w.r.t. ti in D. In other words, if D is a tree, then mFDsnp (D, ti) =
mFDsnl (D, ti).

Outline of Proof: Follows directly from Lemmas 13 and 14. 2

Corollary 9 If a DAG D is a tree, then the complete set of negative-path FDs in D equals
the complete set of negative-leaf FDs in D.

Interestingly, the classes of FDs I introduced above not only can be exploited by program
transformation techniques, but also can be mined via them.

4.9 Mining FDs by Program Transformation

Positive-path FDs

The following program transformation technique can mine a positive-path-FD set w.r.t. a
particular term.

[[ppfd]][PD, input] =
⋃

ti ∈ [[bptc]][PD, input]

{ti},

if ([[zoom]][PD, input] ∩ [[zoom]][PD, ti]) = [[zoom]][PD, input],

where [[bptc]] = [[te]][[[sp]][PD, input]] − input is the program transformation technique I
associate with BPTC. The reader will notice that the above expression closely reflects the
textual definition of a positive-path FD. Intuitively, this program transformation technique
mines positive-path FDs of the form ‘input → ti.’

Positive-leaf FDs

I can mine a positive-leaf-FD set analogously.

[[plfd]][PD, input] =
⋃

ti ∈ [[bltc]][PD, input]

{ti},

if ([[zoom]][PD, input] ∩ [[zoom]][PD, ti]) = [[zoom]][PD, input],

where [[bltc]] = [[te]][[[zoom]][PD , input]] − input is the program transformation technique I
associate with BLTC. Similarly, this program transformation technique mines positive-leaf
FDs of the form ‘input → ti.’ Since identifying negative FDs does not involve containment,
program transformation techniques for doing so are more simplistic than those for positive
FDs.

102

Negative-path FDs

Mining a negative-path-FD set entails using [[te]] to extract all of the conditional variables
from the programmatic complement of [[sp]][PD, input].

[[npfd]][PD, input] = [[te]][PD − [[sp]][PD, input]],

where the ‘−’ (minus sign) means complement.

Negative-leaf FDs

Similarly, discovering a negative-leaf-FD set entails using [[te]] to extract all of the conditional
variables from the complement of [[zoom]][PD, input].

[[nlfd]][PD, input] = [[te]][PD − [[zoom]][PD, input]]

4.10 A Duality in Uses of Program Slicing

I have used partial evaluation and program slicing as pruning operators. There is a relation-
ship and tradeoff between these two program transformations in the context of my work.
Specifically, one can think of program slicing as a transformation for

1. directly pruning the website, or

2. extracting information about what to prune from the website and using this information
with partial evaluation to conduct the same site pruning as in (1).

Table 4.4 (second row) illustrates how program slicing can play role (1) above to realize
interpretation 1 of out-of-turn interaction. In the previous section, I show that program
slicing can be used to mine FDs for my purposes, including negative path- and leaf-FDs.
Notice that the members of the negative-leaf-FD set w.r.t. some relevant term t label only
the edges to be pruned from a graph model of a website when the user communicates term
t out-of-turn. Therefore, partially evaluating w.r.t. each variable modeling each term in the
negative-leaf-FD set of a particular term set to zero is sufficient to prune the undesired paths
from a website to realize interpretation 1 of out-of-turn interaction.

The following expression captures these two methods of realizing interpretation 1 of out-
of-turn interaction. It also captures the dual role played by program slicing (role (1) above
is played by [[zoom]] on the l.h.s. and role (2) above is played by [[nlfd]] on the r.h.s.).

[[mix]][[[zoom]][PD, input], input = 1] ≡ [[mix]][PD, [[[nlfd]] [PD, input]] = 0, input = 1],

where the notation

[[[nlfd]] [PD, input]] = 0,

103

used within the expression, denotes ‘the assignment of zero to each variable modeling each
member of the negative-leaf-FD set of the term modeled by the variable input.’

The reader may have noticed that I use the word ‘sufficient’ above, rather than ‘necessary.’
This is because all terms labeling edges along the tails of paths to be pruned, when the user
communicates term t out-of-turn will be members of t’s negative-leaf-FD set. However, to
remove that tail, I need not partially evaluate w.r.t. all variables modeling the terms along
that tail set to zero. I need only partially evaluate w.r.t. the variable modeling the term
with the minimum depth set to zero. Such a partial evaluation will remove the remainder
of the path by default. Intuitively, this means that I need only consider the members of the
negative-leaf-FD which have the minimum depth in each path through the DAG. Considering
this optimization compromises the clarity of the equivalence which I have just outlined as
well as the duality in uses of program slicing. Therefore, I do not incorporate it into my
presentation and expression.

Also notice that when dealing with trees, I can replace [[nlfd]] with [[npfd]] in the above
expression by Corollary 8.

Now let us consider how I might develop an analogous equivalence to the program trans-
formation technique given in Table 4.4 (third row) for interpretation 2 of out-of-turn interac-
tion. Recall to support interpretation 2 I replace [[zoom]] with [[sp]] on the l.h.s. of the above
equivalence expression. Thus, it natural to consider replacing [[nlfd]] with [[npfd]] on the
r.h.s. of the above expression to form an analogous equivalence expression for interpretation
2 of out-of-turn interaction. However, upon careful examination we see that the r.h.s. is not
equal to the l.h.s., and thus does not realize interpretation 2 of out-of-turn interaction:

[[mix]][[[sp]][PD, input], input = 1] ��≡ [[mix]][PD, [[[npfd]] [PD, input]] = 0, input = 1]

This is because if PD models a non-tree DAG, then my use of partial evaluation, as described
above, to remove undesired paths may remove leaves which lie at the end of desired paths!
For example, consider partially evaluating a programmatic representation of the website
illustrated in Fig. 4.10 (left) w.r.t. the negative-path-FD set of ‘Adjerid.’ You will notice
that this transformation will remove the source (leaf) of the edge labeled ‘Adjerid’ which
is unfaithful to interpretation two. However, the equivalence expression for interpretation 1
can serve as a surrogate equivalence expression for interpretation 2 of out-of-turn interaction
with trees (by Corollary 5), where, [[zoom]] and [[nlfd]] can be replaced by [[sp]] and [[npfd]],
respectively.

I am unable to develop equivalence expressions for the generalizations of these interpreta-
tions of out-of-turn interaction here due to their template-oriented nature (i.e., the presence
of [[SL]]).

Studying this duality reveals that there might be simpler methods for discerning what
branches must be removed, in specialized DAG classes. The following program transformation
technique realizes out-of-turn interaction, but is specifically tailored toward taking advantage
of the mutually-exclusive property in DAGs and trees.

[[dead−code]][[[mix]][PD , [[[tle]][PD, input] − input] = 0, input = 1]]

104

The [[dead−end]] transformation represents a dead-code detection and elimination transfor-
mation [CXY01, WZ91]. This approach illustrates that partial evaluation is a specialization
of program slicing w.r.t. programmatic representations of levelwise, mutually-exclusive DAG

models of websites. Here [[tle]] supports TLE programmatically. This transformation tech-
nique involves extracting all the structural variables at a particular level of nesting. The
transformation technique [[tle]] is intended to be polymorphic in that its input can be either
given extensionally as a level number or intensionally as a term that occurs at the desired
level. Notice that the latter usage is unambiguous only in the case of mutually-exclusive
classes (which are the only classes it is used for here).

Other researchers have echoed similar connections between partial evaluation and slicing;
the two techniques have been shown to yield similar results in some situations and different
results in others [RT96].

4.11 Discussion

I gained insight into the graph-theoretic formalisms developed here by implementing them
in ML (Meta-Language) using SML/NJ. I explored the feasibility of the website – program
associations I developed by conducting verification experiments on programmatic represen-
tations of interaction with PVS and VTTT using program transformation software systems.
The ‘set calculator’ of CodeSurfer [ART03], a program slicing system, was especially help-
ful for performing set-theoretic operations over slices. In Appendix C, I discuss the details
of the program transformation systems I used. Before concluding this chapter, I consider
the possibility of multiple terms per utterance, an important ingredient for personalized
interaction.

4.11.1 Enriching the Out-of-turn Paradigm:
Multiple Terms per Utterance

I refer to a set of terms as an utterance. While the previous chapter illustrated communicating
more than one partial (out-of-turn) input in one stroke (e.g., ‘Democrat, Senate’), for ease
of presentation, I developed the formalism here around examples which only involve the
communication of one term per utterance. Formally, multiple terms per utterance simply
means that two or more terms can have the same arrival time. While permitting multiple
terms per utterance alters the interaction I afford the user, it does not affect the formalism
developed here, largely due to Lemma 1 (commutativity). Thus, to accommodate multiple
terms per utterance, I can re-define interpretations of out-of-turn as follows:

OOT1 (D, u) = OOT1 (· · ·OOT1 (OOT1 (D, t1), t2) · · · , tn), (4.5)

where u denotes an utterance having n terms and each OOT1 on the r.h.s. refers to Equa-
tion 4.1. Notice that if OOT1 (D, u) returns a DAG containing one vertex v and no edges,
then the utterance u is complete information and v is terminal information.

Consider how I now might update my derivation of a closed formula for the size of an
out-of-turn interaction paradigm P. In discrete mathematics [KS99], s (m) is the set of

105

all partitions of a set of size m into non-empty subsets, where m is a positive integer. In
addition, s (m, n) is the set of all partitions of a set of size m into exactly n non-empty
subsets, where n is a positive integer and n 6 m. The Bell number of a set of size m is
B (m) = |s(m)|. The Stirling number of a set of size m is S (m, n) = |s(m, n)|. It follows that
B (m) =

∑m

n=1 S (m, n). Thus, |P| corresponds to the sum, over all interaction sequences
in SQ (D), of the sum of the number all permutations of each element of s (|i|), i.e., the sum
of the sum of the number of all the permutations of each term partition of each interaction
set. Therefore, I can re-define SoOP as

|P| = SoOP (D) =
∑

Ii ∈ SQ (D)

|gIS (Ii)|∑

n=1

n! × S (|gIS (Ii)|, n).

Notice that this formula accounts for valid utterances containing more than two terms and
makes no assumption on the consistency of the dialog length across all sequences. Once
again, notice that processing user input can be likened to automatic input expansion.

Keep in mind that the interpretations for out-of-turn interaction presented here are not
exhaustive, especially since I defined an open-ended generalized interpretation of out-of-turn
interaction. For instance, I might expand the scope of addressable out-of-turn information
by modeling the terms on the leaf webpages (i.e., terminal information) and making them
available as out-of-turn input for the user to supply. In such a case, I might implement SL

using a text-based search engine. Nevertheless, the use of a general program transformation,
such as program slicing, suggests that alternate interpretations also can be accommodated.
In addition, other interaction techniques and paradigms can be similarly supported.

When a given (programmatic representation, transformation technique) pair is deemed
inadequate to achieve the desired form of personalization, I have two choices. One is to keep
the representation fixed and investigate alternative program transformation techniques; al-
ternatively, I can investigate representations w.r.t. a fixed suite of transformation techniques.
This ability to vary the elements of this tuple not only constitutes the crux of the scope for
creativity in this work, but also suggests the extensibility of the modeling methodology
presented here.

106

Chapter 5

Supplementary Interactions,
Generated Interfaces, and
Software Framework

‘ ‘The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.”

M. Weiser, in [Wei91]

Thus far in this dissertation, I have presented a formal model for representing and rea-
soning about personalized interaction. To target this model for real-time use in websites, I
illustrate how the formalisms developed in the previous chapter must be augmented for sup-
porting supplementary interactions, and how to automatically generate interaction interfaces.
I conclude by presenting a software framework which brings all the relevant technologies to-
gether.

5.1 Supporting Supplementary Interactions

The success of a personalization system relies on those finer touches which deliver a com-
pelling experience to the end-user. Studies of out-of-turn interaction have revealed that users
desire supplemental interactions to enhance the personalized experience while engaged in a
progressive out-of-turn dialog. In this section, I showcase a suite of such interactions and
relate them to program transformation techniques. Interleaving out-of-turn interaction with
these various interactions provides a comprehensive personalized experience.

5.1.1 Meta-enquery: What May I Say?

To employ a dialog-based system effectively, users need a mechanism to stay abreast of
its underlying vocabulary at each point in the interaction. Keeping users attuned to the
communicable information is an issue all information systems must address. Yankelovich
echoes this issue as ‘how do users know what to say?’ [Yan96]. While each hyperlink label
is always available, a new or causal user of a site may be unfamiliar with or unaware of

107

subsequent solicitations for input and, hence, the terms of information seeking the designer
has modeled which are available to supply. This is a classic problem in IR research, has been
identified and described by many [BC99, CT87, Mar97, Sac00, Wil84], and is endemic to all
IR systems. Users typically have a ‘limited knowledge of a given database’ [Wil84] and thus
experience ‘difficulty expressing their information need’ [BC99].

The Naive What May I Say? interaction permits the user to determine what partial
information remains unspecified in the user-system dialog. It can be trivially supported by
TE. Supporting this interaction programmatically entails extracting all unique structural
variables, which correspond to the partial information available to commit the system, from
the representation. Analogously, I can achieve this interaction programmatically with [[te]].

In a voluminous space such a set of terms may be large and overwhelm the user. Thus, I
could provide a similar interaction, called What May I Say?, which entails clustering terms
by level (facet), using TLE, to help orient users. However, this approach is applicable
only to the levelwise instances. When used in this manner, this interaction also updates
the user on how their previous interactions have affected the remaining choices, and thus
provides context. Supporting this interaction programmatically entails extracting all unique
structural variables at a desired level of nesting from the representation. Thus, I can achieve
this interaction programmatically with [[tle]].

5.1.2 Restructure Classification

Notice that while the out-of-turn interaction paradigm subsumes the browsing paradigm, in-
teraction sequences derivable by out-of-turn interaction are not describable by browsing. The
Restructure Classification interaction, which is only applicable to levelwise sites, enables the
creation of a personalized browsing hierarchy, which can be further navigated via browsing
or out-of-turn interaction. For example, a website organized along a author–journal–title
motif could be restructured into a journal–author–title organization, supporting interactive
aggregation scenarios.

Approaches to this interaction are to permit a user to restructure an entire enumerative
classification a priori or incrementally. The semistructured data community [ABS00, FLM98]
has advocated restructuring websites via declarative queries [FFLS97, FFK+98]. Such an
approach restructures an entire organization in one-stroke. A similar approach is taken with
User-Defined Hierarchies [WB99] discussed in Chapter 3. An alternate approach is to permit
the user to define the ensuing interaction incrementally while browsing. This interaction
style has been echoed metaphorically as ‘magically [laying] down track to suggest useful
directions to go based on where [one has] been so far and what [one is] trying to do’ [Hea00].
These ideas have been studied in the Flamenco Search System Project [HEE+02]. Flamenco
explores faceted classification in various catalogs and websites. The adaptive hypermedia
community [BC99, Bru01] is a significant proponent of such an incremental approach to
classification specification. In adaptive hypermedia, links are dynamic [Pok01] and lead to
different destinations for different users.

Counterintuitively, my nested-conditional representation of interaction need not be re-
structured at all to accommodate this interaction! A method to extract structural variables
corresponding to a particular level of conditional nesting is sufficient. These variables can
be used to create hyperlinks on a generated webpage, each initiating an interaction which

108

appears to be browsing, but is out-of-turn interaction w.r.t. the explicit representation in
reality. This, yet again, speaks to the importance of investing in representation, and the
flexibility in my representations.

Thus, support for this interaction requires level-order edge-label extraction, TLE. Sup-
porting this programmatically entails the same code extraction, [[tle]], used for input ex-
pansion in mutually-exclusive classes of hierarchical hypermedia. Notice that the edge-label
extraction for this interaction is w.r.t. one particular level, and is thus a specialization of
the edge-label extraction required for (Naive) What May I Say?, which is w.r.t. all levels. In
other words, the terms returned from TLE are a subset of those returned from TE.

5.1.3 Collect Results

This is a dialog termination interaction. It allows the user to request that the classification be
flattened and re-presented as a flat list of hyperlinks to relevant content pages. For instance,
while engaged in a dialog a user may wish to curb further interaction at a particular point
and retrieve a flat list of the reachable webpages from that point. At such a point, the user
may not care to pursue further distinctions or dependencies. Effectively, the user has pre-
maturely declared that the dialog is over. This interaction involves the forward-propagation
used to support out-of-turn interaction and is defined by CR which was introduced in the
previous chapter. I support CR with the [[cr]] = [[forward]][PD, page] program transforma-
tion technique, a specialization of [[zoom]] which only extracts terminal variables from the
representation. Notice that Collect Results suggests the need to invert the factoring of ter-
minal information that I built into the programmatic representation with nesting. Lastly,
observe that the function which supports Collect Results also can be used to generate inform-
ation previews—hyperlink annotations, typically parenthesized and containing a frequency
count of the documents reachable from the hyperlink it decorates—which have been shown
important in situations where the user is confronted with a decision regarding where to go
next [PSDB99].

5.1.4 Inverse Personalization

Inverse personalization is so named, not because its goals run contrary to personalization,
but because in a given modeling it conducts a mapping from terminal (e.g., leaf pages)
to structural information (e.g., hyperlink labels). This interaction helps support situations
where the user knows what information she wants, but is interested in determining how
to retrieve that information. It permits users to conduct ‘what if’ analyses. For instance,
using Inverse Personalization with an online apartment recommender, a user can issue a
request such as ‘Under what conditions will Rockville apartments be the only choice?’ Such
a user is interested in the terms along the interaction sequences leading to that terminal
information (e.g., ‘if you want a swimming pool, covered parking, and free Internet access’).
Such personalized interactions are supported in my model by back-propagating from the leaf
webpages returned by SL, described in the previous chapter, and optionally extracting each
term in each path from the root as a whole, using TE, or per interaction sequence, using
TE ◦ SP .

109

Restructuring ClassificationCollect Results

one level

Inverse personalization

back−propagationforward−propagation

Out−of−turn Interaction Naive What May I Say?(all levels)

per path

(first interpretation)

Figure 5.1: A taxonomy of supplementary interactions. Directed arrows represent special-
ization relations.

read-only closed independent program transformation technique

NWhat?
√ √ × ∪ {[[te]] [PD, x]}, for every structural variable x

What?
√ √ × ∪ {[[tle]] [PD, x]}, for every level x

RC
√ √ √

[[tle]] [PD, x], for one level x
CR × × √

[[forward]] [PD, page]
P-1

√ √ √
[[te]] [[[sp]] [[[backward]] [[[SL]] [PD, input]]]]

Table 5.1: Program transformation techniques for and observations on the supplemental
interactions. (key: NWhat? = Naive What May I Say?; What? = What May I Say?;
RC = Restructuring Classification; CR = Collect Results; P-1 = Inverse Personalization).

Observe that Inverse Personalization is similar to generalized interpretation 1 of out-
of-turn interaction, as evidenced in its use of SL. Notice however, that, akin to Collect
Results, this interaction is a specialized form of out-of-turn interaction. Honing in on
leaves (i.e., forward-propagation) is unnecessary; back-propagation is sufficient, and therefore
defines this interaction. In my conditional representation, terminal information is indexed
by a terminal variable (e.g., page) which is not user-modifiable (as is structural inform-
ation; e.g., Democrat). Therefore, I need a transformation capable of exploiting terminal
variables, such a backward slicing. Collecting the terms along the resulting paths requires
an extraction, [[te]] similar to that required for What May I Say?.

Fig. 5.1 illustrates the relationships between the interactions presented in this chapter.

5.1.5 Example

Fig. 5.2 illustrates a personalized interaction with the CITIDEL (Computing and Inform-
ation Technology Interactive Digital Educational Library; citidel.org) digital library using
SALTII [PMR+04]. Here the user is interested in papers by ‘Belkin’ but is unsure what
categories Belkin has published in. Thus, the user is initially unable to respond to the
solicitation of literature category and instead says ‘Belkin’ out-of-turn (window i). This
causes many leaf pages to be removed (notice reduced frequency purviews annotating each
hyperlink label) and some categories, such as ‘Hardware,’ to be completely pruned out, since
Belkin’s papers are not indexed under such categories (window ii). The user then responds
to the initiative by following the ‘Information Systems’ hyperlink (window ii). Next, the
user decides to terminate the dialog by using Collect Results (window iii) to request a flat
list of Belkin’s papers (window iv).

110

⇓

⇓

⇓

Figure 5.2: A personalized dialog with CITIDEL involving interactions supplemental to
out-of-turn interaction.

111

5.1.6 Program Transformations for Supplemental Interactions

Table 5.1 contains program transformation techniques for the interactions showcased in this
chapter. Notice that the What May I Say? and Restructuring Classification interactions
require slight variations of the same transformation technique. Since Collect Results and
Inverse Personalization are each specializations of out-of-turn interaction, they relate to
forms of forward and backward slicing, respectively (and code extraction), and thus, when
put together, come close to realizing out-of-turn interaction.

Table 5.1 also summarizes my observations on these interactions. The top axis of the
matrix lists attributes of the interactions listed on the left. A read-only interaction is one
which merely manipulates the representation rather than modifying it. An interaction is
closed if it accepts a representation and returns a representation, and thus does not prevent
further interaction. Independent interactions are those which not only complement out-of-
turn interaction, but are also defined, applicable, and useful in its absence.

5.2 Automatically Generating Personalized

Interaction Interfaces

The reader will have noticed that while some of the supplemental interactions are always
applicable, others are only applicable in certain classes of hierarchical hypermedia (e.g., lev-
elwise classes). Beyond such underlying class constraints, website designers may desire to
control which supplemental interactions they afford users. Marchionini states that ‘it is naive
to believe that any single interface can serve the needs of all users for all tasks’ [Mar97]. For
these reasons, a monolithic interaction interface, with provisions for all interactions, is un-
realistic. Therefore, I developed a system to automatically generate customized interaction
interfaces tailored to specific websites, especially those which support personalized interac-
tion.

5.2.1 Out-of-turn Toolbar Markup Language and Translator

My approach to automatic interface generation produces an Extempore-like toolbar or a
SALTII-like voice interface [PRF04]. I built the generator using Java; a graphical inter-
face (not shown here) configures an interaction interface by allowing designers to choose the
interactions they desire to support. In this manner, it personalizes interfaces for personalized
interaction. For website designers who are more computer-literate, I defined a small markup
language, called OTML (Out-of-turn Toolbar Markup Language) using XSchema (see Ap-
pendix A) for describing an interaction toolbar specification capturing which interactions
the resulting interface should support as well as its look and feel. My generator employs
the transformation capabilities of XSLT to translate an OTML specification1 into a XUL
toolbar. Use of OTML supports a finer level of customization than the generator, especially
for the look and feel of the interface. For instance, designers can customize tooltips (popup
text describing a control’s utility) for each widget in the generated toolbar.

1The UI version of the generator simply generates an OTML specification from the parameters provided
and makes a call to an XSLT processor in a manner transparent to the user.

112

The generator currently supports the following personalized interactions:

• Out-of-turn interaction (both interpretations presented in this thesis)

• Generalized out-of-turn interaction (both interpretations presented in this thesis)

• Meta-enquery: (Naive) What May I Say?

• Restructure Classification

• Collect Results

• Inverse Personalization

To the best of my knowledge, few tools exist to aid personalization system designers. I expect
such semi-automated interface construction to become more attractive with the advent of
tools for librarians to build their own digital libraries [Zhu02]. Using semi-automated toolbar
construction in conjunction with such tools will result in digital libraries which take initial
steps toward integrating personalization and specifically, out-of-turn interaction, into user
experiences. Lastly, I anticipate approaches to generating interfaces for websites to become
more popular with an increased interest in end-user programming [DE95].

5.3 Putting It All Together:

Building a Robust Transformation Engine

I built a purely functional (side-effect free), robust transformation engine, based on the
model developed in this dissertation, and deployed it as a web service. It handles in-turn and
out-of-turn inputs, passed from any interaction interface, in a uniform manner. The engine
implements a form of forward, followed by backward slicing to support out-of-turn interaction
with a variety of websites. I built the engine with XSLT whose support for pattern-oriented
programming is particularly advantageous here since both forward and backward slicing
can be captured with ancestor or descendant axis types in location paths. While XML
documents obey a tree-structured model, I used ids and refids to factor crosslinks, and
hence enhanced the modeling capabilities of the representations introduced in Chapter 2 by
effectively modeling DAGs as well. This engine also supports several of the supplemental
interactions presented in this chapter.

The interaction interfaces I discuss in this dissertation, this transformation engine, and
an interaction manager [Wil04] constitute a customizable software framework for creat-
ing multimodal web personalization systems which support mixed-initiative interaction (see
Fig. 5.3)[NWPR04]. The interaction manager coordinates processes between the interfaces
and engine. More importantly, since the interaction manager supports session control and
caching, each instantiation of this framework enhances my initial prototypical implementa-
tion, described in Chapter 2, from supporting (1 user × 1 interaction) experiences to (n
user × m interaction) experiences, in a manner that takes advantage of the statefullness of
my approach. Our research group has instantiated this framework for several case studies,

113

Content Handling

Session Control

Stylesheet Application

Transformation Engine

Stagers

Dialog Reflectors

Input Expansion

Error Handling

Interaction Manager

Transformation Dispatch

Interaction Interfaces

Republican

Republican

Figure 5.3: Multimodal, mixed-initiative web personalization framework architecture. Notice
the central role played by an interaction manager in mediating communication between the
interaction interfaces and the transformation engine.

including those presented in this dissertation, which afford interactions initiated by these in-
terfaces, coordinated by this interaction manager, and staged by this transformation engine.
Websites for which we instantiated our framework include:

• GAMS (Guide to Available Mathematical Software) at gams.nist.gov.

• Project Vote Smart at vote-smart.org.

• Pigments through the Ages at webexhibits.org/pigments/.

• CITIDEL (Computing and Information Technology Interactive Digital Educational
Library) at citidel.org.

• Open Directory Project at dmoz.org.

• Online Virginia Tech Timetables of Classes accessible through vt.edu.

These sites are a rich assortment of the classes of hierarchical hypermedia introduced in the
previous chapter. Some are available to demo at our project website, http://pipe.cs.vt.edu.

114

Chapter 6

Exploring Out-of-turn Interactions
with Websites

‘ ‘A goal of HCI research is to develop input-output devices and mechanisms that
map more naturally onto human channels.”

Gary Marchionini, in Information Seeking in Electronic Environments [Mar97]

In this chapter I present the first study to explore the use of out-of-turn interaction in
websites. While out-of-turn interaction can be studied in many settings (as seen in Chap-
ter 4), this chapter only discusses its use in conjunction with browsing websites modeled
by levelwise, mutually-exclusive trees. The targeted website for this study was the Congres-
sional portion of the Project Vote Smart (PVS) website discussed in Chapters 2–4. The main
component of the study entailed asking participants to perform eight specific information-
finding tasks using the Extempore and SALTII interfaces. Recall that Extempore works with
Mozilla and SALTII with Internet Explorer1. Rationale was gathered through think-aloud
and retrospective protocols.

The goal of the experiment was to study usage patterns for out-of-turn interaction, not
to evaluate the interfaces used to realize it, or to compare out-of-turn interaction with other
interaction techniques.

6.1 Methods

6.1.1 Participants

We collected data from 24 participants in the analysis; all were students with an average age
of 21, and a majority were undergraduates in computer science. Some of the participants were
recruited from a HCI course, and were compensated with extra-credit from the instructor.
Since a component of this experiment involved voice recognition software, we primarily
recruited native speakers of English. Average participant computer and web familiarity and

1At the time the study was conducted, a SALT plugin for Mozilla did not exist (and likewise with XUL
for IE). One has since been implemented. Due to these technological constraints, I do not implement both
interaction interfaces in the same browser.

115

Figure 6.1: Minimum number of interactions (log10 scale) required to successfully satisfy
each information-finding task using in-turn (dark) and out-of-turn (light) interaction. Note
that Task F can be completed with just one out-of-turn interaction, so its entry in the graph
shows zero.

use was 4.75 or greater on a 5-point Likert scale. Average participant familiarity with voice
recognition software was 1.46, and mean familiarity with the structure of the US Congress
was 2.83; no user had visited the PVS website prior to the experiment.

6.1.2 Tasks

The eight tasks were carefully formulated to generate a diverse set of interaction choices:

A. Find the webpage of the Junior Senator from New York.

B. Find the webpage of the Democratic Representative from District 17 of Florida.

C. Find the webpage of the Republican Junior Senator from Oregon.

D. Find the webpage of the Democratic member of the House in Rhode Island serving
district 2.

E. Find the states which have at least one Democratic Senator.

F. Find the states which have twenty or more congressional districts.

G. Find the states which have at least one Republican member of the House.

H. Find the political party of the Senior Senator representing the only state which has
congresspeople from the Independent party.

I refer to tasks A, B, C, and D as non-oriented tasks, in that they can be performed as
easily by employing solely in-turn interaction (i.e., in this case, hyperlinks), solely out-of-
turn interaction, or using a mixture of both. Out-of-turn interaction does not appear to be
worthwhile with respect to these tasks because the effort required to perform them with out-
of-turn interaction is commensurate with that of in-turn interaction. Tasks E, F, G, and H
are out-of-turn-oriented, because they are difficult to perform with only in-turn interaction.

116

Formally, I say an information-seeking task is out-of-turn-oriented if the minimum number
of browsing interactions required to successfully complete it exceeds the maximum depth of
the targeted website; otherwise it is non-oriented.

The maximum depth of the PVS site is four and Figure 6.1 illustrates the minimum
number of interactions required per task. In calculating this minimum number, I assumed
that the user can supply at most one aspect at each step (in-turn or out-of-turn), and
discounted back button clicks (happens when employing only in-turn interaction for an out-
of-turn-oriented task). Notice also that some tasks, namely the non-oriented ones, cannot be
performed by purely a sequence of out-of-turn interactions; a terminal in-turn input is often
necessary and these are discounted as well. For instance, try solving task A using purely
out-of-turn inputs.

6.1.3 Design

The study was designed as a within-subject experiment. Task was the independent variable
and the interaction observed (in-turn vs. out-of-turn) was the dependent variable. Partici-
pants were given both the Extempore toolbar and the SALTII voice interface; and performed
four tasks with each (two non-oriented and two out-of-turn-oriented). I designed the exper-
iment with the provision for interfaces in two different modalities, to more naturally assess
the use of out-of-turn interaction independent of a particular interface for it. Each par-
ticipant performed the eight tasks in an order pre-determined by a latin square to control
for unmeasured factors. In addition, the specific interface to be used (toolbar or voice) for
a (task, participant) pair was determined a priori by complete counterbalancing within each
task category. Thus, for each task, half of the twenty-four participants were given the tool-
bar interface and half the voice interface. The participants were free to utilize any strategy
to complete the information-finding tasks, given the available interfaces; they were given
unlimited time to complete each task.

6.1.4 Modeling Choices

A vocabulary for the PVS site was created by collecting all link labels, synonyms (e.g., ‘Rep-
resentatives’ for ‘House’), and alternate forms of common utterances (e.g., ‘Senate’, ‘Senator’,
‘Senators’). Both Extempore and SALTII supported this vocabulary, with the toolbar sup-
porting abbreviations (e.g., CA for California), in addition. To keep users abreast of partial
information supplied thus far (either by browsing or via out-of-turn interaction), I continu-
ally updated an ‘Input so far:’ label in the browser status bar (see Fig. 3.19, bottom). I also
included a provision for the user to inquire about what partial information is left unspecified
at any step. Access to this feature is provided through a ‘What May I Say?’ button (labeled
with a ‘?’ in Fig. 2.2) or utterance. In the course of an interaction, when the supplied
partial input uniquely determines a politician, I performed input expansion by positive-path
FDs (ref. Chapter 4).

117

6.1.5 Equipment, Training, and Procedures

Equipment

Participants performed the tasks on an Extempore/SALTII-enabled browser in a Pentium
III workstation, connected to a 17” monitor set at 2560×1024 resolution in 34-bit true color,
running Windows 2000. While each participant performed the information-finding tasks, we
captured their interaction with the system using the Camtasia screen and audio capture soft-
ware. We used the resulting capture to aid participant recollection during the retrospective
verbal protocol as well as in subsequent analysis (e.g., think-aloud). The Audacity audio
recording application was used during the retrospective portion of the experiment to capture
participant explanations. Data from the pre-questionnaire (demographics, computer famil-
iarity) and post-questionnaires (rationale) was recorded on paper. Finally, at the end of the
entire experiment we transcribed and collated the data gathered from all sources to construct
a complete record of each participant session, including interaction sequences followed per
task. Each participant session lasted approximately 90 minutes.

Training

Prior to revealing the information-seeking tasks, we gave users specific training on (i) the PVS
website, including levels of classification, and interacting with it via hyperlinks; (ii) interact-
ing with PVS using out-of-turn interaction (both toolbar and voice interfaces); and (iii) in-
terleaving hyperlink clicks with commissions via Extempore/SALTII. Users were provided a
card summarizing the vocabulary that the out-of-turn interfaces can understand, as well as
explanations of political terms and their functional dependencies. This card was available
for their use during the entire session, not just training. We did not use terms such as
‘in-turn’ or ‘out-of-turn’ during training or elsewhere in the study. This is to prevent bias-
ing of participants toward any intended benefits of out-of-turn interaction, and also to help
them conceptualize its functionality on their own. In other words, we simply trained users
on how to employ the available interfaces for information seeking. After some self-directed
exploration, users were given a short test consisting of four practice tasks (two with toolbar
and two with voice).

Procedures

After the users completed the training tasks, we administered the actual test involving tasks
A–H above, and employed both concurrent (think-aloud) and retrospective protocols to
elucidate rationale. A structured interview, including a post-questionnaire, was conducted
to gather additional feedback. The entire experiment generated (24×8 =) 192 (partici-
pant, task) interaction sequences.

These sequences were then analyzed for frequencies of usage of in-turn vs. out-of-turn
interaction. For purposes of this study, I defined an in-turn interaction as a hyperlink click
or the communication of in-turn partial information to the website via Extempore/SALTII.
Notice that just saying ‘Connecticut’ will not qualify as an out-of-turn interaction, if the
same choice was currently available as a hyperlink. Similarly, we defined an out-of-turn
interaction to be the submission of one aspect of unsolicited partial information to the site.

118

Supplying more than one aspect of partial information to the site out-of-turn (e.g., saying
‘Democratic Senators’) corresponds to multiple out-of-turn interactions.

Notice that a user may supply in-turn and out-of-turn information to the website simul-
taneously via Extempore/SALTII. For instance, at the outset the user might say ‘House,
Florida, District 17, Democrat,’ all in one utterance. Observe that a permutation of this
utterance exists—‘Florida, House, Democrat, District 17’—that, if conducted incrementally,
could imply a purely in-turn interaction. Such an interaction is thus viewed as having four
in-turn inputs. On the other hand, consider a user who says ‘New York, Democrat’ at the
outset. There is no permutation with respect to the PVS site that permits viewing this
utterance as comprising of purely in-turn input, and hence, it is classified as one in-turn
input (‘New York’), followed by an out-of-turn input (‘Democrat’). This policy of counting
does not favor (and actually deprecates) out-of-turn interaction.

Some users, after completing a given task via out-of-turn interaction, verified part of their
results via in-turn interactions. This was confirmed through their retrospective feedback, and
such in-turn interactions were discounted in the analysis.

6.2 Results

Of the 192 recorded interaction sequences, 177 of them involved the successful completion of
the task by the participant. I analyze these 177 sequences first, followed by the remaining
15 sequences (which were all generated in response to out-of-turn-oriented tasks).

6.2.1 General Usage Patterns

Results indicate a high frequency of usage for out-of-turn interaction. 94.4% of the 177
sequences contained at least one out-of-turn interaction. In addition, every participant used
out-of-turn interaction for at least 70% of the tasks, with 16 people using it in all tasks.
Conversely, every task was performed with out-of-turn interaction by at least 80% of the
participants, with 4 tasks enjoying out-of-turn interaction by all participants. These results
are encouraging because Extempore/SALTII usage is optional and not prompted by any
indicator on a webpage. Participants successfully completed the given tasks irrespective of
the presented interface (voice or toolbar).

6.2.2 Classifying Interaction Sequences

The 177 interaction sequences were classified into five categories denoted by: (i) I, (ii) O,
(iii) IO, (iv) OI, and (v) M. The I and O categories denote sequences comprised of purely
in-turn, or out-of-turn inputs, respectively. In IO sequences all in-turn inputs precede out-
of-turn inputs (analogously, for OI). M sequences (‘mixed’) are those which do not fall in the
above categories. For instance, the interaction shown in Fig. 2.10 would be classified under
I, and that in Fig. 2.11 is in OI. I posit that this classification provides insight into users’
information-seeking strategies, and can be related to the nature of the information-finding
task.

119

Figure 6.2: Classification of 177 (participant, task) interaction sequences.

I {O,IO,OI,M} total
non-oriented 10 86 96
out-of-turn-oriented 0 81 81
total 10 167 177

Table 6.1: Breakdown of 177 interaction sequences in various categories. The total number
of interaction sequences for out-of-turn-oriented tasks is 15 less than that for non-oriented
tasks; these were the sequences where the participant did not complete the task successfully.

Figure 6.2 shows the distribution of the 177 sequences into the five classes, and Ta-
ble 6.1 depicts a breakdown by both task orientation and classes. Notice that O, OI, IO,
and mixed classes have been grouped in Table 6.1 to distinguish them from pure browsing
interactions (I).

As Figure 6.2 shows, 10 of the 177 sequences fall in the I class, i.e., these are browsing
sequences. As Table 6.1 (lower left) shows, all of the 10 browsing sequences were generated
in response to non-oriented tasks, revealing that a 100% (81/81) of the sequences for out-of-
turn-oriented tasks involved out-of-turn interaction. Therefore,

• users never attempted to achieve an out-of-turn oriented task via browsing; or in other
words,

• users always employed out-of-turn interaction when presented with an out-of-turn-
oriented task.

This is notable because it confirms that users are adept at discerning when out-of-turn
interaction is necessary.

6.2.3 Detailed Analysis of Interaction Classes

Let us now study the interactions in classes O, OI, IO, and M. The 69 pure out-of-turn
sequences (O) were observed only in out-of-turn-oriented tasks E, F, and G, and was used
by all the 24 participants. This clustering of the O sequences around three tasks shows that,
whenever participants completed these tasks, they did so in the shortest manner possible.

120

James M. ’Jim’ Jeffords is the

He is an Independent and

studied at Yale University.

He was first elected to the

Environment and Public Works

Committee. ...

US Senate on 11/08/88. He

is a ranking member of the

START

Vermont,

Senior
is a member of the Democratic

party and studied at Georgetown

University. He was first elected

to the US Senate on 11/05/74

and is a member of the

Agriculture, Nutrition, and

Forestry Committee. ...

− Alabama

− Alaska

 ...

− Wyoming

Select a state:
Independent Vermont Senate

Patrick J. Leahy is the Senior

Junior Senator from Vermont. Senator from Vermont. He Select a branch:

− Senate

− House

Select a state:

− Vermont

Figure 6.3: Task H: the user is expected to first find ‘Vermont’ in one Interaction (third
window from left) and use it as input in another interaction (shaded area) to find the party
of the Senior Senator from that state. The two windows on the right depict unnecessary and
irrelevant interactions for this task.

Refer again to Figure 6.1 for the sharp contrast in the length of the minimum out-of-turn
sequence from the minimum in-turn sequence, for these tasks.

Classes IO, OI, and M contain the sequences exhibiting rich interaction strategies. Classes
IO and OI were observed in near-equal numbers, and primarily in the non-oriented tasks (A,
B, C, and D) with the exception of OI, which was also seen in task H. No particular clustering
was observed with respect to participants. The 17 class M interactions exhibited only two
types of patterns – 14 with an OIO form and 3 with an IOI form. Furthermore, like OI,
these 17 mixed interactions also involved only the non-oriented tasks (A, B, C, D) and task
H. It is interesting that we observed OIO and IOI sequences, even in a site with only four
levels. Once again, no specific clustering was observed around participants.

To see if these classes correspond to specific information-seeking strategies, I plotted
curves depicting the progressive narrowing down to a desired congressional official, as a
function of interaction steps. All curves begin at the (0, 540) point because the PVS site
indexes all 540 congressional officials. With each interaction, this number is gradually re-
duced until the user arrives at the desired set of officials. However, I was unable to observe
major correlations between curve slopes and strategies; this is because in the PVS site, the
slope is primarily dependent on the nature of the task, not the strategy. For instance if a
task involved a state like ‘Rhode Island,’ even an in-turn input of this state information will
cause greater pruning than most out-of-turn inputs. To qualify interaction classes better, I
must study out-of-turn interaction in more sites.

6.2.4 Cascading Information across Subtasks

Recall that 15 interaction sequences led to incorrect answers; interestingly 12 of these 15
were generated in response to Task H. Notice that Task H is challenging, because it involves
two subtasks and cascading information found in one into the other. The user is expected
to first find the only state having Independent congressional officials (Vermont), and then
find the political party of the Senior Senator from that state (Democrat). In other words,
this task requires procedural, not just declarative, knowledge (a distinction motivated in the
Strategy Hubs project [BBJ+03]).

121

Most people were adept at finding that Vermont was the desired state (e.g., by say-
ing ‘Independent’ at the outset), but did not realize that the task cannot be completed
by continuing that interaction. As Figure 6.3 shows, clicking on the only available state
link (‘Vermont’) now presents a choice of House vs. Senate. Clicking on Senate takes the
user to the webpage of Jim Jeffords, who is the Junior Senator from Vermont, not the Senior
Senator!

Some users immediately realized the problem, as identified in their retrospective inter-
views, e.g.:

“This question was tricky. Cause it was, I was like wait, if he’s Independent then
his party is Independent . . . at first [I thought] it was the Senior Senator who was
Independent . . . and I got this guy’s webpage, and then I saw that he was the
Junior . . . So then I eventually went back to Vermont and got the [Senior] guy.”

Only 12 (50%) of the participants successfully completed this task. This result demonstrates
that cascading information across subtasks is challenging. It was clear that all users wanted
to continue the interaction, but some failed to realize that out-of-turn interaction as presented
here is merely a pruning interaction, and not constructive. Investigating the incorporation
of constructive interactions such as rollup/expansion is thus a worthwhile direction of future
research.

6.2.5 Rationale and Qualitative Observations

Studying users’ rationale revealed their reasons for interacting out-of-turn:

“I can jump through all the levels”

“Initially I thought I would prefer the hyperlinks . . . after reading the questions,
it became apparent that the toolbar and voice interface would simplify the task.”

“. . . when you wanted to know all the states for the Republicans, then you would
have to click on every single link. It would just get annoying after a while. You’d
just give up I think. There’d be no way.”

“I guess I would have had to . . . wow, check every state.”

demonstrated understanding of how Extempore/SALTII works (e.g., input expansion):

“Its the easiest way cause there is only one Representative from District 17 in
Florida and it takes you straight to the page.”

“If you click on the state then you get choices of House and whatever, but if you
type in district 2 and it just goes right there.”

presented advantages and judgments:

“. . . allowed multiple pieces of information to be input at one time.”

“As much surfing as I do, it sort of makes me wish I had those options sometimes
ya know instead of going to search engines and fooling around . . . having to come
up with different search criteria”

122

and also brought out frustrations:

“The voice interface feels a little awkward since I am not used to talking to myself
. . . .”

“I don’t always trust the results, [so I went back] confirming that they are all
republican.”

Many users learned that out-of-turn interaction is best suited when they have a specific
goal in mind, and not meant for exploratory information-seeking (as is browsing). For
instance,

“if I wanted to go the whole way down to a specific person, I would use [Extem-
pore/SALTII], but if I was just looking around, I would use the links.”

“[Extempore/SALTII] is good when you know the site and know you have to go
several layers deep. Links [are good] when you don’t know the layout or don’t
know exactly what you want.”

6.3 Discussion

There are significant lessons brought out by this study. First, this work validates my view
of web interaction as a flexible dialog and shows that users actively interleaved out-of-turn
interaction with browsing. Importantly, users were proficient at determining when out-of-
turn interaction is called for. Studying the rationale and usage patterns has generated a
body of knowledge that can be used, among other purposes, for introducing out-of-turn
interaction in new settings and to new participants. Furthermore, we have seen that it is
easy to target out-of-turn interaction in domains where tasks involve combinations of focused
and exploratory behavior. Recall also that dialogs with purely declarative specifications are
readily supported; others such as Task H will require further study. Therefore, this work
not only improves our understanding of out-of-turn interaction, but also suggests further
opportunities to enrich browsing experiences for users.

6.3.1 How do Users Know What to Say?

In order for out-of-turn interaction to be effective, the user must have a basic understanding
of what can be said. This is a well-acknowledged issue by the speech interfaces community;
as Yankelovich [Yan96] points out, ‘the functionality of [such] applications is hidden, and
the boundaries of what can and cannot be [said] are invisible.’ The semantics of out-of-turn
interaction are more specific than free-form conversational input, because it merely allows a
site’s existing navigation structure to be realized in a different order. Out-of-turn interaction
is hence most effective (i) when users have a focused task, possess a basic understanding of
the application domain, and know what aspects are addressable, or (ii) when users desire to
expose dependencies implicit in a modeling. When users do not know what to say, my facility
to enquire about legal utterances may induce information overload in large sites. While I
have not encountered this problem in the PVS study, I suspect that applying out-of-turn
interaction in large web directories (e.g., ODP) will involve new research directions.

123

6.3.2 From Interaction Techniques to Interaction Interfaces

This dissertation has been primarily concerned with studying the interaction techniques for
personalization (how to model them, how to support them, and how do users utilize them),
and not evaluating the interfaces that realize these techniques. However, in the course of
the study presented here, I have learnt that effective interfaces are a crucial part of the user
experience and must be evaluated in their own right. Such a study is outside the scope of
this dissertation, but I make some preliminary observations – first on the nature of interfaces
and then on how they might be compared.

The Nature of Interaction Interfaces

There are several interfaces for personalized interaction available to today’s web users [BBJ+03,
DCC01, HEE+02, OC03, BBJ+03, PSC+02]. To better study interfaces for personalized in-
teraction, I showcase different projects in a three-dimensional space (see Figure 6.4) involv-
ing: (i) the nature of information exploited, (ii) the level of context supported, and (iii) the
interaction technique.

The first axis distinguishes between the specification of partial vs. complete information.
Supporting only the specification of complete information means that interaction is viewed
as a one-shot activity (and is classified in tier one of my survey, ref. Chapter 3); supporting
specification of partial information implies that information seeking is to be conducted over
multiple steps. Since the complete information approach is more restrictive than the partial
information approach, it is situated toward the origin. The second axis makes a distinction
of whether input or results (or both) are contextually qualified in some manner. My con-
tribution to this space is the third dimension of whether interaction occurs by in-turn or
out-of-turn means.

Search engines (e.g., Google) are characterized by specification of complete information (in
this case, the query), because the interaction is terminated by returning a flat list of re-
sults. Such a low-context, complete information approach is denoted by the origin in
Fig. 6.4. Browsing, on the other hand, involves the incremental specification of partial
information (right of origin in Fig. 6.4).

When I take context into account, two further clusters of projects emerge in the in-turn
plane spanning the (information × context) axes. When only complete information is sup-
ported, results presentation provide the major opportunity for exhibiting context (front left
corner of Figure 6.4). This is seen in site-specific search tools (e.g., at Amazon.com), in the
contextual search of Dumais, Cutrell, and Chen [DCC01], and the personalized search strate-
gies of Pitkow et al. [PSC+02]. The more dense cluster (front right of Figure 6.4) forms in the
partial information region. These are projects that support contextual information access
by providing either greater input flexibility or adaptable display of results over the course
of an interaction, or both. Faceted (flat or hierarchical) organizations [HEE+02, RCCR02b],
Dynamic Taxonomies [Sac00], Strategy Hubs [BBJ+03], adaptive hypermedia [Bru01], and
ScentTrails [OC03] are examples. I discuss these further.

Sites and systems exposing faceted browsing (e.g., epicurious.com) support multiple clas-
sifications by providing enumerated in-turn choices. This often leads to cumbersome site
designs and a mushrooming of possible choices at each step. The Dynamic Taxonomies

124

Extempore/SALTII

Figure 6.4: Three dimensional space showcasing related research. Each of the shaded clusters
denotes a concerted group of projects discussed in the main text.

project provides in-turn operators for pruning information hierarchies, while Strategy Hubs
enumerates templates for prolonged and detailed information-seeking tasks, again in-turn.
The adaptive hypermedia projects employ user models (e.g., of past browsing behavior) to
tailor the presentation of hyperlinks. ScentTrails argues that browsing may not be focused
enough and that searching loses context, and aims to combine them in a single framework.
However, its use of searching always precedes browsing and therefore limits the richness of
supportable interactions. Out-of-turn interaction aims to provide precisely this combination
of focused input and exploratory browsing in a single, flexible, framework.

My work can be viewed as complementary to these efforts in that it lifts the nature of
interaction from in-turn to out-of-turn means (top of Figure 6.4). For instance, the example
session shown in Figure 2.11 can be viewed as a lifted version of traditional browsing, yielding
a (high context, out-of-turn) technique that exploits partial information. Such lifting, while
attractive from a functional standpoint, presents challenges for interface comparison. In
particular, it places the onus entirely on the experimenter to establish what a fair common
ground for comparison might be, prior to undertaking a detailed evaluation of interfaces with
users.

How can we evaluate lifted interfaces against others?

Establishing a common ground for evaluation can be done in many ways. At the modeling
level, I can ensure that all compared interfaces assume the same vocabulary or granularity
of addressable information. Second, the specification of the task should be independent
of the vernacular of the interface. For instance, in the tasks presented earlier, the terms
of information-seeking (and hence, the partial input) are salient, e.g., ‘E: Find the states
which have at least one Democratic Senator.’ In order to address this criticism, I might
develop a problem-solving or decision-making scenario that requires the user to cull the

125

terms from the problem statement. Third, multimodality (e.g., using SALTII) introduces
a new dimension of complexity and makes difficult the assignment of credit/blame to a
specific interaction interface. One solution to this problem is to evaluate interfaces in a
single modality (e.g., Extempore with Google, and SALTII with a conversation-based dialog
engine). Fourth, users’ familiarity with interfaces must be factored into the training. This
is especially important when comparing Extempore with, say Google, that already enjoys
a large userbase. Finally, speeds of interface response must be comparable if time for task
completion is the chief evaluation metric. Studying information systems in such a multi-
faceted manner, emphasizing their role in problem solving, has been suggested by Henninger
and Belkin [HB96], and Marchionini [Mar97].

As a first step towards such a study, I present a simple problem-solving scenario involv-
ing a student developing a schedule of courses using the Virginia Tech Online Timetable of
Courses (Fig. 4.10, left and center), subject to several constraints (see Appendix D). These
constraints are realistic and, at the same time, do not draw attention to pertinent terms of
information-seeking directly. In a comparative study, I might evaluate Extempore with (i) a
search engine such as Google, (ii) faceted browsing interfaces as supported in Flamenco, and
(iii) an interactive table-based interface such as employed in Apple’s iTunes. Such a compari-
son is akin to the approach taken in [KB96]. Preliminary results [PPR+03] confirm that tasks
requiring rich interaction and/or constraint satisfaction are not well-supported in a one-shot
search engine and, while a faceted browsing interface supports the same functionality as
Extempore, users found it cumbersome to interact with.

126

Chapter 7

Discussion

‘ ‘In the end, how well our approach performs is an empirical question. Whether
users of the information superhighway prefer to build their own ‘hot rods’ . . . or
take ‘public transportation’ that serves all uniformly, will ultimately be judged
by history.”

D. Rus and D. Subramanian, in [RS97]

This research has made contributions to both users and designers of information sys-
tems. By providing users with out-of-turn interaction capability, my research has helped
bring mixed-initiative interaction to the web. In addition, by studying personalization from
the perspective of interaction, my research brings a user-centered approach to the sub-
ject [KNV00]. For designers, I have contributed a modeling methodology for personalized
interaction. In addition, this work has resulted in support tools and software modules for
rapid prototyping of personalization systems.

To the best of my knowledge, I am the first to approach personalized interaction from a
programmatic-representational and -transformational perspective. Studying personalization
from this viewpoint has provided several insights. For instance, my formalisms bring a the-
oretical approach to the subject. In addition, my use of program transformations provides
a systematic and functional approach to designing systems as well as an implementation-
neutral way to study software frameworks for personalization. These properties are absent
from the young field of personalization and thus the model I developed for information per-
sonalization is my most significant contribution. Moreover, my functional approach makes
mixed-initiative interaction, which typically requires dialog and state management mech-
anisms, feasible without any intended state maintenance. In summary, my programmatic
model provides a new way of thinking about personalized interaction, especially with hierar-
chical hypermedia. Since the role of interaction in personalization is crucial in my opinion,
yet often ignored, I believe that my contributions have particular intellectual merit and are
especially timely.

7.1 Future Significance and Broader Impacts

Three basic ideas underly the work presented here:

127

1. explicit modeling of interaction

2. capture of partial information

3. use of program transformations

Any information systems context where one or more of the above ideas apply is fertile
ground for implementing the techniques presented in this dissertation.

Modeling interaction is central to dialog management in conversational engines. Using
the ideas described here, many important dialog standards and interactive applications can
be revisited and studied by their support for personalizing interaction. For instance, consider
the VoiceXML markup language designed to simplify the construction of voice-response ap-
plications [MBD+01]. It describes interaction using a markup language not unlike that shown
in Fig. 2.6: VoiceXML markup tags describe prompts, forms, and fields that constitute a
dialog, and support both directed dialogs and mixed-initiative dialogs. In [RCPQ02] Ra-
makrishnan, Capra, and Pérez-Quiñones have shown that VoiceXML’s form-interpretation
algorithm is actually a partial evaluator in disguise! Such connections are significant because
they reduce commercial technologies to well-established theoretical operations. As another
example, user interaction with everyday software (e.g., word processors, spreadsheet appli-
cations) can also be modeled for personalization purposes. In [QHKM03] the concept of user
interface continuations is introduced, and relies on explicit representations. These projects
reinforce my viewpoint that information system design is best approached by first developing
representations of interaction. As Marchionini says, ‘information seeking is fundamentally
an interactive process,’ and hence the idea of modeling interaction will always be in vogue.

Until recently, the issue of context in information systems has received comparatively little
attention. With the proliferation of mobile environments and information appliances [Ber00],
coupled with an improved understanding of their usages [POS+01], the importance of cap-
turing and reusing context has become accentuated. Context can be viewed as a rich form
of partial information, allowing the body of work presented here to be applied toward ex-
ploiting it. This property is attractive because the partial information can potentially be
multi-faceted – information about a user’s preferences (e.g., in a recommender system), a
user’s location (e.g., in a mobile environment [HB01]), or a user’s partially completed in-
teraction (e.g., a shopping cart at an e-commerce site). The representations studied in this
dissertation can be generalized to accommodate such richer forms of partial information.

Finally, the use of program transformations as presented here is relatable to the larger
community that aims to systematize the software engineering of complex web information
systems. It finds relevance in many website restructuring/reengineering efforts [RT01a,
RTB01, RTB02], especially in the adaptive and semantic web contexts, as well as declar-
atively specification of sites [FFK+98] and improving their usability [Spi00]. Preliminary
work [GZRF01] has also been done to marry the personalization methodology with models
for digital libraries (e.g., 5S [GFWK04]).

7.2 Future Work

My modeling makes very few assumptions on the nature of interactions with information
systems. While I have covered only hierarchical hypermedia in this thesis, any information

128

system technology that affords the notion of interaction sequence or the idea of factoriza-
tion [RP01] can be studied on similar lines. Extending the framework to other focused
information-seeking paradigms is an easy step. More complicated, however, would be the
modeling of sites that support exploratory interaction, such as websites based on a social
network navigation metaphor (e.g., imdb.com).

I also plan to extend the modeling methodology in several directions. I would like to
enhance it to address earlier aspects of the personalization system design life cycle, such
as requirements gathering, verification, and validation. First steps toward this goal are de-
scribed in [RRC01]. Another important direction of future work involves modeling context
in personalization systems, as described above. I also intend to expand my use of program
transformations to study broader concepts from programming languages, such as general-
ized partial evaluation [FNT91, Tak91], parameterized partial evaluation [CK91, CK93],
generative programming [CE00] (e.g., reflection [Mae87]), continuations [FWH01], concept
assignment [HGHB02], and program schemas [Ian60]; and the personalized interactions they
might enable. I also am interested in relaxing my assumptions of bounded sequences that
have separable structural and terminal parts. This will allow us to support more amorphous
information-seeking activities through scenario-based design techniques.

My long-term goal is to develop a theory of reasoning about representations of information
spaces, akin to [BCST95, BMC93], but in the programming languages spirit of [RT01b,
RTB02]. This will allow us to formally study the design and implementation of information
systems by the representations they employ.

129

Bibliography

[ABD+01] J. F. Allen, D. K. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent.
Towards Conversational Human-Computer Interaction. AI Magazine, Vol.
22(4):pp. 27–37, Winter 2001.

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann, 2000.

[ACL+01] J. Axelsson, C. Cross, H. Lie, G. McCobb, T. Raman, and L. Wilson (eds.).
Xhtml+voice profile 1.0. W3C Note, December 2001.

[ADW01] C. R. Anderson, P. Domingos, and D. S. Weld. Personalizing Web Sites for
Mobile Users. In Proceedings of the Tenth International World Wide Web Con-
ference (WWW10), pp. 565–575, Hong Kong, China, May 2001. ACM Press.

[AGH99] J. F. Allen, C. I. Guinn, and E. Horvitz. Mixed-Initiative Interaction. IEEE
Intelligent Systems, Vol. 14(5):pp. 14–23, September–October 1999.

[AK97] N. Ashish and C. Knoblock. Wrapper Generation for Semi-Structured Internet
Sources. SIGMOD Record, Vol. 26(4):pp. 8–15, December 1997.

[AKB91] R. Aluri, D. A. Kemp, and J. J. Boll. Libraries Unlimited, Inc., Englewood,
CO, 1991.

[All95] J. Allan. Automatic Hypertext Construction. Ph.D. dissertation, Cornell Uni-
versity, 1995.

[Anda] E-mail correspondence with P. Anderson, Senior Software Engineer at Gram-
maTech, Inc., the company which developed CodeSurfer. April 8, 2004.

[Andb] E-mail correspondence with P. Anderson, Senior Software Engineer at Gram-
maTech, Inc., the company which developed CodeSurfer. November 10, 2003.

[AR02] E. André and T. Rist. From Adaptive Hypertext to Personalized Web Com-
panions. Communications of the ACM, Vol. 45(5):pp. 43–46, May 2002.

[ART03] P. Anderson, T. Reps, and T. Teitelbaum. Design and Implementation of a
Fine-Grained Software Inspection Tool. IEEE Transactions on Software Engi-
neering, Vol. 29(8):pp. 721–733, August 2003.

130

[BBE+02] D. Billsus, C. A. Brunk, C. Evans, B. Gladish, and M. Pazzani. Adaptive Inter-
faces for Ubiquitous Web Access. Communications of the ACM, Vol. 45(5):pp.
34–38, May 2002.

[BBH99] P. De Bra, P. Brusilovsky, and G.-J. Houben. Adaptive Hypermedia: From
Systems to Framework. ACM Computing Surveys, Vol. 31(4es), December
1999. Article No. 12.

[BBJ+03] S. K. Bhavnani, C. K. Bichakjian, T. M. Johnson, R. J. Little, F. A. Peck, J. L.
Schwartz, and V. J. Strecher. Strategy Hubs: Next-Generation Domain Portals
with Search Procedures. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’03), pp. 393–400, Fort Lauderdale, FL,
April 2003. ACM Press.

[BC85] J.-F. Bergeretti and B. A. Carré. Information-Flow and Data-Flow Analysis of
While-Programs. ACM Transactions on Programming Languages and Systems,
Vol. 7(1):pp. 37–61, January 1985.

[BC92] N. J. Belkin and W. B. Croft. Information Filtering and Information Retrieval:
Two Sides of the Same Coin? Communications of the ACM, Vol. 35(12):pp.
29–38, December 1992.

[BC99] R. Bodner and M. Chignell. Dynamic Hypertext: Querying and Linking. ACM
Computing Surveys, Vol. 31(4es), December 1999. Article No. 15.

[BCD+00] T. Ball, C. Colby, P. Danielsen, L. J. Jagadeesan, R. Jagadeesan, K. Läufer,
P. Mataga, and K. Rehor. Sisl: Several Interfaces, Single Logic. International
Journal of Speech Technology, Vol. 3(2):pp. 93–108, June 2000.

[BCST95] N. J. Belkin, C. Cool, A. Stein, and U. Thiel. Cases, Scripts, and Information-
Seeking Strategies: On the Design of Interactive Information Retrieval Systems.
Expert Systems with Applications, Vol. 9(3):pp. 379–395, 1995.

[Bel97] N. J. Belkin. Visualizing Subject Access for Twenty-first Century Information
Resources, An Overview of Results from Rutgers’ Investigations of Interactive
Information Retrieval, pp. 45–62. Number 35. 1997.

[Bel00] N. J. Belkin. Helping People Find What They Don’t Know. Communications
of the ACM, Vol. 43(8):pp. 58–61, August 2000.

[Ber00] E. Bergman, editor. Information Appliances and Beyond. The Morgan Kauf-
mann Series on Interactive Technologies. Morgan Kaufmann, San Francisco,
CA, 2000.

[BG96] D. W. Binkley and K. B. Gallagher. Program Slicing. In M. V. Zelkowitz,
editor, Advances in Computers, Vol. 43, pp. 1–50. 1996.

131

[BHRC00] D. W. Binkley, M. Harman, R. Raszewsk, and C.Smith. An Empirical Study of
Amorphous Slicing as a Program Comprehension Support Tool. In Proceedings
of the IEEE Eighth International Workshop on Program Comprehension, pp.
161–170, Limerick, Ireland, June 2000. IEEE Computer Society.

[BM02] P. Brusilovsky and M. T. Maybury. From Adaptive Hypermedia to the Adap-
tive Web. Communications of the ACM, Vol. 45(5):pp. 31–33, May 2002.

[BMC93] N. J. Belkin, P. G. Marchetti, and C. Cool. BRAQUE: Design of an Interface
to Support User Interaction in Information Retrieval. Information Processing
and Management, Vol. 29(3):pp. 325–344, May–June 1993.

[Bor86] C. Borgman. The User’s Mental Model of an Information Retrieval System:
An Experiment on a Prototype On-line Catalogue. International Journal of
Man-Machine Studies, Vol. 24(1):pp. 47–64, 1986.

[Bru96] P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Mod-
eling and User-Adapted Interaction, Vol. 6(2–3):pp. 87–129, 1996.

[Bru01] P. Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Inter-
action, Vol. 11(1–2):pp. 87–110, 2001.

[BSD01] V. Bullard, K. T. Smith, and M. C. Daconta. Essential XUL Programming.
John Wiley and Sons, Inc., New York, NY, 2001.

[Bus45] V. Bush. As We May Think. The Atlantic Monthly, Vol. 176(1):pp. 101–108,
July 1945.

[CCDL98] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned Program Slicing.
Information and Software Technology, Vol. 40(11, 12):pp. 595–607, Novem-
ber/December 1998. Special issue on program slicing.

[CCTL01] W. B. Croft, S. Cronen-Townsend, and V. Larvrenko. Relevance Feedback
and Personalization: A Language Modeling Perspective. In Proceedings of the
Joint DELOS-NSF Workshop on Personalisation and Recommender Systems in
Digital Libraries, pp. 49–54, Dublin, Ireland, June 2001. Dublin City University.

[CD97] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP
Technologies. In Proceedings of the 1997 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’97), pp. 65–74, Tucson, AZ, May
1997. ACM Press.

[CDA00] I. Cingil, A. Dogac, and A. Azgin. A Broader Approach to Personalization.
Communications of the ACM, Vol. 43(8):pp. 136–141, August 2000.

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

132

[CF94] J.-D. Choi and J. Ferrante. Static Slicing in the Presence of goto Statements.
ACM Transactions on Programming Languages and Systems, Vol. 16(4):pp.
1097–1113, 1994.

[Cha99] S. S. Chawathe. Describing and Manipulating XML Data. IEEE Data Engi-
neering Bulletin, Vol. 22(3):pp. 3–9, September 1999.

[Chi97] Y. Chiaramella. Browsing and Querying: Two Complementary Approaches for
Multimedia Information Retrieval. In N. Fuhr, G. Dittrich, and K. Tochter-
mann, editors, Proceedings of Hypertext, Information Retrieval, Multimedia
(HIM’97), pp. 9–26, Dortmund, Germany, September–October 1997.

[CK91] C. Consel and S. C. Khoo. Parameterized Partial Evaluation. In Proceed-
ings of the Conference on Programming Language Design and Implementation,
Toronto, Canada, July 1991.

[CK93] C. Consel and S. C. Khoo. Parameterized Partial Evaluation. ACM Trans-
actions on Programming Languages and Systems, Vol. 15(3):pp. 463–493, July
1993.

[CKPT92] D. Cutting, D. Karger, J. Pedersen, and J. W. Tukey. Scatter/Gather: A
Cluster-based Approach to Browsing Large Document Collections. In N. J.
Belkin, P. Ingwersen, and A. M. Pejtersen, editors, Proceedings of the Fif-
teenth Annual International ACM Conference on Research and Development in
Information Retrieval (SIGIR’92), pp. 318–329, Copenhagen, Denmark, June
1992. ACM Press.

[CMN80a] S. K. Card, T. P. Moran, and A. Newell. Computer Text-Editing: An
Information-Processing Analysis of a Routine Cognitive Skill. Cognitive Psy-
chology, Vol. 12:pp. 32–74, 1980.

[CMN80b] S. K. Card, T. P. Moran, and A. Newell. The Keystroke-Level Model for User
Performance Time with Interactive Systems. Communications of the ACM,
Vol. 23(7):pp. 396–410, July 1980.

[CMN83] S. K. Card, T. P. Moran, and A. Newell. The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Hillsdale, NJ, 1983.

[CR92] J. M. Carroll and M. B. Rosson. Getting Around the Task-Artifact Cycle: How
to Make Claims and Design by Scenario. ACM Transactions on Information
Systems, Vol. 10(2):pp. 181–212, April 1992.

[CT87] W. B. Croft and R. H. Thompson. I3R: A New Approach to the Design of
Document Retrieval Systems. Journal of the American Society for Information
Science, Vol. 38(6):pp. 389–404, 1987.

133

[CXY01] Z. Chen, B. Xu, and H. Yang. Detecting Dead Statements for Concurrent
Programs. In Proceedings of the International Conference on Software Mainte-
nance (SCAM’01), pp. 67–72, Florence, Italy, November 2001. IEEE Computer
Society.

[DCC01] S. Dumais, E. Cutrell, and H. Chen. Optimizing Search by Showing Results in
Context. In Proceedings of the ACM Conference on Human Factors in Com-
puting Systems (CHI’01), pp. 277–284, Seattle, WA, April 2001. ACM Press.

[DE95] C. DiGiano and M. Eisenberg. Self-disclosing Design Tools: a Gentle Introduc-
tion to End-user Programming. In Proceedings of the Conference on Designing
Interactive Systems (DIS’95), pp. 189–197, Ann Arbor, MI, 1995. ACM Press.

[DFF+99] A. Deutsch, M. Fernández, D. Florescu, A. Levy, D. Maier, and D. Suciu.
Querying XML Data. IEEE Data Engineering Bulletin, Vol. 22(3):pp. 10–18,
1999.

[DOH+02] M. Daoudi, L. Ouarbya, J. Howroyd, S. Danicic, Mark Harman, Chris Fox,
and M. P. Ward. ConSUS: A Scalable Approach to Conditioned Slicing. In
Proceedings of the Ninth IEEE Working Conference on Reverse Engineering,
Richmond, VA, October–November 2002. IEEE Computer Society.

[ET99] H. Ehrig and G. Taentzer. Graphical Representation and Graph Transforma-
tion. ACM Computing Surveys, Vol. 31(3es), September 1999. Article No.
9.

[EV03] M. Eirinaki and M. Vazirgiannis. Web mining for Web Personalization. ACM
Transactions on Internet Technology, 3(1):pp. 1–27, 2003.

[Fal01] D. C. Fallside, ed. XML Schema W3C Recommendation Document. Technical
report, World Wide Web Consortium, May 2001.

[FFK+98] M. Fernández, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the Boat
with Strudel: Experiences with a Web-Site Management System. In Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data
(SIGMOD’98), pp. 414–425, Seattle, WA, June 1998. ACM Press.

[FFLS97] M. Fernández, D. Florescu, A. Levy, and D. Suciu. A Query Language for a
Web-Site Management System. SIGMOD Record, Vol. 26(3):pp. 4–11, Septem-
ber 1997.

[FLM98] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-
Wide Web: A Survey. SIGMOD Record, 27(3):pp. 59–74, September 1998.

[FNT91] Y. Futamura, K. Nogi, and A. Takano. Essence of Generalized Partial Compu-
tation. Theoretical Computer Science, Vol. 90(1):pp. 61–79, 1991.

134

[FR97] N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integra-
tion of Information Retrieval and Database Systems. ACM Transactions on
Information Systems, Vol. 15(1):pp. 32–66, January 1997.

[FRT95] J. Field, G. Ramalingam, and F. Tip. Parametric Program Slicing. In Pro-
ceedings of the Twenty-Second ACM Symposium on Principles of Programming
Languages (POPL’95), pp. 379–392, San Francisco, CA, January 1995. ACM
Press.

[FWH01] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming
Languages. MIT Press, Second edition, 2001.

[GBMS99] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context Interchange: New
Features and Formalisms for the Intelligent Integration of Information. ACM
Transactions on Information Systems, Vol. 17(3):pp. 270–293, July 1999.

[GFKF01] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen. Automatically
Restructuring Programs for the Web. In Proceedings of the Sixteenth IEEE
International Conference on Automated Software Engineering (ASE’01), Coro-
nado, CA, November 2001.

[GFWK04] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp. Streams, Structures,
Spaces, Scenarios, Societies (5S): A Formal Model for Digital Libraries. ACM
Transactions on Information Systems, 22(2):pp. 270–312, 2004.

[GGR+00] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT:
A System for Extracting Document Type Descriptors from XML Documents.
In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD’00), pp. 165–176, Dallas, TX, May 2000. ACM Press.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. D. Ullman, and J. Widom. The TSIMMIS Approach to Mediation:
Data Models and Languages. Journal of Intelligent Information Systems, Vol.
8(2):pp. 117–132, March–April 1997.

[Gre86] M. Green. A Survey of Three Dialogue Models. ACM Transactions on Graphics,
5(3):pp. 244–275, July 1986.

[GW00] R. Goldman and J. Widom. WSQ/DSQ: A Practical Approach for Combined
Querying of Databases and the Web. In W. Chen, J. F. Naughton, and P. A.
Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’00), pp. 285–296, Dallas, TX, May
2000. ACM Press.

[GZRF01] M. A. Gonçalves, A. A. Zaferi, N. Ramakrishnan, and E. A. Fox. Modeling and
Building Personalized Digital Libraries with PIPE and 5SL. In A. F. Smeaton

135

and J. Callan, editors, Proceedings of the Joint DELOS-NSF Workshop on Per-
sonalisation and Recommender Systems in Digital Libraries, Dublin, Ireland,
June 2001.

[HAC+99] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas. Interactive Data Analysis: The Control Project.
IEEE Computer, Vol. 32(8):pp. 51–59, August 1999.

[HB96] S. Henninger and N. J. Belkin. Interface issues and interaction strategies
for information retrieval systems. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI’96), pp. 352–353, Vancouver,
Canada, 1996. ACM Press. Tutorial, in Conference Companion.

[HB01] J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing.
IEEE Computer, Vol. 34(8):pp. 57–66, August 2001.

[HBD03] M. Harman, D. W. Binkley, and S. Danic. Amorphous Program Slicing. Journal
of Systems and Software, Vol. 68(1):pp. 45–64, October 2003.

[HC90] D. Hildum and J. Cohen. A Language for Specifying Program Transforma-
tions. IEEE Transactions on Software Engineering, Vol. 16(6):pp. 630–638,
June 1990.

[HD97] M. Harman and S. Danicic. Amorphous Program Slicing. In Proceedings of the
Fifth IEEE International Workshop on Program Comprehension (IWPC’97),
pp. 70–79, Dearborn, MI, May 1997. IEEE Computer Society.

[HDSS96] M. Harman, S. Danicic, Y. Sivagurunathan, and D. Simpson. The Next 700
Slicing Criteria. In M. Munro, editor, Proceedings of the Second UK Pro-
gram Comprehension Workshop, Centre for Software Maintenance, University
of Durham, July 1996.

[Hea00] M. A. Hearst. Next Generation Web Search: Setting Our Sites. IEEE Data
Engineering Bulletin, Vol. 23(3):pp. 38–48, September 2000.

[HEE+02] M. A. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Yee.
Finding the Flow in Web Site Search. Communications of the ACM, Vol.
45(9):pp. 42–49, September 2002.

[HGHB02] M. Harman, N. Gold, R. Hierons, and D. W. Binkley. Code Extraction Al-
gorithms which Unify Slicing and Concept Assignment. In Proceedings of the
Ninth IEEE Working Conference on Reverse Engineering (WCRE’02), pp. 11–
21, Richmond, VA, October–November 2002.

[HGMC+97] J. Hammer, H. Garćıa-Molina, J. Cho, A. Crespo, and R. Aranha. Extracting
Semistructured Information from the Web. In Proceedings of the NSF–ESPRIT
Workshop on Management of Semistructured Data, pp. 18–25, Tucson, AZ,
May 1997.

136

[HH01] M. Harman and R. Hierons. An Overview of Program Slicing. Software Focus,
Vol. 2(3):pp. 85–92, June 2001.

[HM97] S. Haller and S. McRoy. Computational Models for Mixed Initiative Interaction
(Papers from the 1997 AAAI Spring Symposium). Technical Report SS-97-04,
AAAI/MIT Press, 1997.

[Hof02] D. Hofstadter. Analogy as the Core of Cognition. September 2002. Colloquium.

[HR01] D. Hiemstra and S. Robertson. Relevance Feedback for Best Match Term
Weighting Algorithms in Information Retrieval. In A. F. Smeaton and J. Callan,
editors, Proceedings of the Joint DELOS-NSF Workshop on Personalisation
and Recommender Systems in Digital Libraries, pp. 37–42, Dublin, Ireland,
June 2001. Dublin City University.

[HRB90] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural Slicing Using Depen-
dency Graphs. ACM Transactions on Programming Languages and Systems,
Vol. 12(1):pp. 26–60, January 1990.

[Ian60] Y. I. Ianov. The Logical Schemes of Algorithms. In Problems of Cybernetics,
Vol. 1, pp. 82–140. Pergamon Press, New York, NY, 1960.

[JFM97] T. Joachims, D. Freitag, and T. M. Mitchell. WebWatcher: A Tour Guide
for the World Wide Web. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI’97), pp. 770–777, Nagoya, Aichi,
Japan, August 1997. Morgan Kaufmann.

[JGS93a] N. D. Jones, C. K. Gomard, and P. Sestoft. Aspects of Similix: A Partial Eval-
uator for a Subset of Scheme. In Partial Evaluation and Automatic Program
Generation, Chapter 10, pp. 204–228. Prentice Hall International, 1993.

[JGS93b] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International, 1993.

[JGS93c] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation for the C Lan-
guage. In Partial Evaluation and Automatic Program Generation, Chapter 11,
pp. 229–259. Prentice Hall International, 1993.

[JK96] B. E. John and D. E. Kieras. The GOMS Family of User Interface Analy-
sis Techniques: Comparison and Contrast. ACM Transactions on Computer-
Human Interaction, Vol. 3(4):pp. 320–351, December 1996.

[Jon96] N. D. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys,
Vol. 28(3):pp. 480–503, September 1996.

[Jon97] N. D. Jones. Computability and Complexity from a Programming Perspective.
Foundations of Computing Series. M.I.T. Press, 1997.

137

[Jon98] C. V. Jones. Visualization and Optimization. Interactive Transactions of
ORMS, Vol. 2(1), 1998.

[JPK98] A. Joshi, C. Punyapu, and P. Karnam. Personalization and Asynchronicity to
Support Mobile Web Access. In Proceedings of the Seventh International Con-
ference on Information Knowledge Management (CIKM’98), Bethesda, MD,
November 1998. ACM Press.

[JR94a] D. Jackson and E. J. Rollins. A New Model of Program Dependences for
Reverse Engineering. In D. S. Wile, editor, Proceedings of the Second ACM
SIGSOFT Symposium on Foundations of Software Engineering, pp. 2–10, New
Orleans, LA, December 1994. ACM Press. Also appears in ACM SIGSOFT
Software Engineering Notes, Vol. 19(5):pp. 2–10, December 1994.

[JR94b] D. Jackson and E. J. Rollins. Chopping: A Generalisation of Slicing. Tech-
nical Report CMU-CS-94-169, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1994.

[KB96] J. Koenemann and N. J. Belkin. A Case for Interaction: A Study of Interactive
Information Retrieval Behavior and Effectiveness. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI’96), pp. 205–212,
Vancouver, Canada, 1996. ACM Press.

[KH02] S. Kumar and S. Horwitz. Better Slicing of Programs with Jumps and Switches.
In Proceedings of Fundamental Approaches to Software Engineering (FASE’02),
Grenoble, France, April 2002. Springer-Verlag.

[KL88] B. Korel and J. Laski. Dynamic Program Slicing. Information Processing
Letters, Vol. 29(3):pp. 155–163, October 1988.

[KL90] B. Korel and J. Laski. Dynamic Slicing of Computer Programs. Journal of
Systems and Software, Vol. 13(3):pp. 187–195, November 1990.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold.
In C. Knoblock and A. Y. Levy, editors, Information Gathering from Heteroge-
neous, Distributed Environments, pp. 85–91. AAAI Press, Stanford, CA, 1995.
AAAI Spring Symposium Series Technical Report.

[KMA+98] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi, I. Muslea,
A. G. Philpot, and S. Tejada. Modeling Web Sources for Information In-
tegration. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), pp. 211–218, Madison, WI, July 1998. AAAI Press.

[KNV00] J. Kramer, S. Noronha, and J. Vergo. A User-Centered Design Approach to
Personalization. Communications of the ACM, Vol. 43(8):pp. 45–48, August
2000.

138

[KS99] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation, Enu-
meration, and Search, Section 3.2: Set partitions, Bell and Stirling numbers.
The CRC Series on Discrete Mathematics and Its Applications. CRC Press,
1999.

[KSS97] H. Kautz, B. Selman, and M. Shah. Referral Web: Combining Social Networks
and Collaborative Filtering. Communications of the ACM, Vol. 40(3):pp. 63–
65, March 1997.

[KWD97] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper Induction for Inform-
ation Extraction. In Proceedings of the Fifteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’97), pp. 729–737, Nagoya, Aichi, Japan,
August 1997. Morgan Kaufmann.

[Lai00] J. Lai. Conversation Interfaces. Communications of the ACM, Vol. 43(9):pp.
24–27, September 2000.

[LFW01] H. Lieberman, C. Fry, and L. Weitzman. Exploring the Web with Recon-
naissance Agents. Communications of the ACM, Vol. 44(8):pp. 69–75, August
2001.

[LG98] S. Lawrence and C. Lee Giles. Searching the World Wide Web. Science, Vol.
280:pp. 98–100, April 1998.

[LSCS97] Z. Lacroix, A. Sahuguet, R. Chandrasekar, and B. Srinivas. A Novel Approach
to Querying the Web: Integrating Retrieval and Browsing. In D. W. Embley
and R. C. Goldstein, editors, Proceedings of the ER’97 Workshop on Conceptual
Modeling of Multimedia Information Seeking, Los Angeles, CA, November 1997.
Springer.

[Luc01] A. De Lucia. Program Slicing: Methods and Applications. In Proceedings of the
First IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’01), Florence, Italy, November 2001.

[LW87] J. R. Lyle and M. D. Weiser. Automatic Program Bug Location by Program
Slicing. In Proceedings of the Second International Conference on Computers
and Applications, pp. 877–882, Peking, China, June 1987.

[MAB00] M. D. Mulvenna, S. S. Anand, and A. G. Büchner. Personalization on the
Net using Web Mining. Communications of the ACM, Vol. 43(8):pp. 122–125,
August 2000.

[Mad94] K. H. Madsen. A Guide to Metaphorical Design. Communications of the ACM,
Vol. 37(12):pp. 57–62, December 1994.

[Mae87] P. Maes. Concepts and Experiments in Computational Reflection. In Con-
ference Proceedings on Object-Oriented Programming Systems, Languages and
Applications, pp. 147–155, Orlando, FL, October 1987. ACM Press.

139

[Mar97] G. Marchionini. Information Seeking in Electronic Environments. Cambridge
Series on Human-Computer Interaction. Cambridge University Press, 1997.

[MB00] P. Maglio and R. Barrett. Intermediaries Personalize Information Streams.
Communications of the ACM, Vol. 43(8):pp. 96–101, August 2000.

[MBD+01] S. McGlashan, D. Burnett, P. Danielsen, J. Ferrans, A. Hunt, G. Karam,
D. Ladd, B. Lucas, B. Porter, K. Rehor, and S. Tryphonas. Voice eXtensible
Markup Language: VoiceXML. Technical report, VoiceXML Forum, October
2001. Version 2.0.

[MBG+01] F. Mintzer, G. W. Braudaway, F. P. Giordano, J. C. Lee, Karen A. Magerlein,
S. D’Auria, A. Ribak, G. Shapir, F. Schiattarella, J. Tolva, and A. Zelenkov.
Populating the Hermitage Museum’s New Web Site. Communications of the
ACM, Vol. 44(8):pp. 52–60, August 2001.

[MCS00] B. Mobashier, R. Cooley, and J. Srivastava. Automatic Personalization Based
on Web Usage Mining. Communications of the ACM, Vol. 43(8):pp. 142–151,
August 2000.

[MLP00] K. D. Munroe, B. Ludäscher, and Y. Papakonstantinou. Blending Browsing and
Querying of XML in a Lazy Mediator System. In C. Zaniolo, P. C. Lockemann,
M. H. Scholl, and T. Grust, editors, Proceedings of Seventh International Con-
ference on Extending Database Technology (EDBT’00), Konstanz, Germany,
March 2000. Springer. In Exhibitions section.

[MM00] R. C. Miller and B. A. Myers. Integrating a Command Shell Into a Web
Browser. In Proceedings of the 2000 USENIX Annual Technical Conference,
pp. 158–166, San Diego, CA, June 2000. The USENIX Association.

[MMLP97] J. Mostafa, S. Mukhopadhyay, W. Lam, and M. Palakal. A Multilevel Approach
to Intelligent Information Filtering: Model, System, and Evaluation. ACM
Transactions on Information Systems, Vol. 15(4):pp. 368–399, October 1997.

[MP00] K. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Browsing
and Querying XML. In H. Arisawa and T. Catarci, editors, Proceedings of Fifth
Working Conference on Visual Database Systems (VDB5), Fukuoka, Japan,
May 2000. Kluwer Academic Publishers.

[MP02] P. Mukhopadhyay and Y. Papakonstantinou. Mixing Querying and Navigation
in MIX. In Proceedings of the Eighteenth International Conference on Data
Engineering (ICDE’02), San Jose, CA, February–March 2002.

[MPR00] U. Manber, A. Patel, and J. Robinson. Experience with Personalization on
Yahoo! Communications of the ACM, Vol. 43(8):pp. 35–39, August 2000.

[MS01] H. Meuss and K. U. Schulz. Complete Answer Aggregates for Treelike
Databases: A Novel Approach to Combine Querying and Navigation. ACM
Transactions on Information Systems, Vol. 19(2):pp. 161–215, April 2001.

140

[MTW95] R. J. Miller, O. G. Tsatalos, and J. H. Williams. Integrating Hierarchical Nav-
igation and Querying: A User Customizable Solution. In I. F. Cruz, J. Marks,
and K. Wittenburg, editors, Proceedings of ACM Workshop on Effective Ab-
stractions in Multimedia Layout, Presentation, and Interaction, San Francisco,
CA, November 1995. ACM Press.

[MVPB93] P. G. Marchetti, S. Vazzana, R. Panero, and N. J. Belkin. BRAQUE (ab-
stract): An Interface to Support Browsing and Interactive Query Formula-
tion in Information Retrieval Systems. In Proceedings of the Sixteenth Annual
International ACM Conference on Research and Development in Information
Retrieval (SIGIR’93), p. 358, Pittsburgh, PA, June–July 1993. ACM Press.

[NAM97] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring Structure in Semistruc-
tured Data. SIGMOD Record, Vol. 26(4):pp. 39–43, December 1997. Special
Issue on Management of Semi-Structured Data.

[NAM98] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema From
Semistructured Data. In L. M. Haas and A. Tiwary, editors, Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data
(SIGMOD’98), pp. 295–306, Seattle, WA, June 1998. ACM Press.

[NS97] D. G. Novick and S. Sutton. What is Mixed-Initiative Interaction? In S. Haller
and S. McRoy, editors, Proceedings of the AAAI Spring Symposium on Com-
putational Models for Mixed Initiative Interaction, pp. 114–116. AAAI/MIT
Press, 1997.

[NWPR04] M. Narayan, C. Williams, S. Perugini, and N. Ramakrishnan. Staging Trans-
formations for Multimodal Web Interaction Management. In Proceedings of the
Thirteenth ACM International World Wide Web Conference (WWW’04), pp.
212–223, New York, NY, May 2004. ACM Press.

[OC03] C. Olston and E. H. Chi. ScentTrails: Integrating Browsing and Searching on
the Web. ACM Transactions on Computer-Human Interaction, Vol. 10(3):pp.
177–197, September 2003.

[O’L97] D. O’Leary. The Internet, Intranets, and the AI Renaissance. IEEE Computer,
Vol. 30(1):pp. 71–78, January 1997.

[Pan01] C. Pancake. The Ubiquitous Beauty of User-Aware Software. Communications
of the ACM, Vol. 44(3):p. 130, March 2001.

[Par98] D. L. Parnas. Successful Software Engineering Research. ACM SIGSOFT
Software Engineering Notes, Vol. 23(3):pp. 64–68, May 1998.

[PE00] M. Perkowitz and O. Etzioni. Adaptive Web Sites. Communications of the
ACM, Vol. 43(8):pp. 152–158, August 2000.

[Ped00] E. P. D. Pednault. Representation is Everything. Communications of the ACM,
Vol. 43(8):pp. 80–83, August 2000.

141

[PGF04] S. Perugini, M. A. Gonçalves, and E. A. Fox. Recommender Systems Research:
A Connection-Centric Survey. Journal of Intelligent Information Systems, Vol.
23(2):pp. 107–143, September 2004.

[PMB96] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill and Webert: Identifying
Interesting Web Sites. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence (AAAI-96), pp. 54–61, Portland, OR, August 1996.
AAAI Press.

[PMR+04] S. Perugini, K. McDevitt, R. Richardson, M. A. Pérez-Quiñones, R. Shen,
N. Ramakrishnan, C. Williams, and E. A. Fox. Enhancing Usability in
CITIDEL: Multimodal, Multilingual, and Interactive Visualization Interfaces.
In Proceedings of the Fourth ACM/IEEE Joint Conference on Digital Libraries
(JCDL’04), pp. 315–324, Tucson, AZ, June 2004. ACM Press.

[Pok01] J. Pokorny. Static Pages are Dead: How a Modular Approach is Changing
Interaction Design. ACM Interactions, Vol. 8(5):pp. 19–24, September–October
2001.

[POS+01] M. Perry, K. O’Hara, A. Sellen, B. Brown, and R. Harper. Dealing with
Mobility: Understanding Access Anytime, Anywhere. ACM Transactions on
Computer-Human Interaction, 8(4):pp. 323–347, 2001.

[PPR+03] S. Perugini, M. E. Pinney, N. Ramakrishnan, M. A. Pérez-Quiñones, and M. B.
Rosson. Taking the Initiative with Extempore: Exploring Out-of-turn Inter-
action Interfaces with Faceted Websites. Technical Report cs.HC/0312016,
Computing Research Repository (CoRR), December 2003. In communication
to ACM Transactions on Computer–Human Interaction, May 2004.

[PQ96] M. A. Pérez-Quiñones. Conversational Collaboration in User-initiated Inter-
ruption and Cancellation Requests. Ph.D. dissertation, The George Washington
University, May 1996.

[PRa] S. Perugini and N. Ramakrishnan. A Programmatic Model for Information
Personalization. In communication to IEEE Transactions on Software Engi-
neering, May 2004.

[PRb] S. Perugini and N. Ramakrishnan. Program Transformations for Information
Personalization. In communication to ACM Transactions on Internet Technol-
ogy, May 2004.

[PR03a] S. Perugini and N. Ramakrishnan. Personalizing Interactions with Information
Systems. In M. V. Zelkowitz, editor, Advances in Computers, Vol. 57: Inform-
ation Repositories, pp. 323–382. Academic Press, September 2003.

[PR03b] S. Perugini and N. Ramakrishnan. Personalizing Web Sites with Mixed-
Initiative Interaction. IEEE IT Professional, Vol. 5(2):pp. 9–15, March–April
2003.

142

[PRF04] S. Perugini, N. Ramakrishnan, and E. A. Fox. Automatically Generating In-
terfaces for Personalized Interaction with Digital Libraries. Technical Report
cs.DL/0402022, Computing Research Repository (CoRR), February 2004.

[PS83] H. Partsch and R. Steinbrüggen. Program Transformation Systems. ACM
Computing Surveys, 15(3):pp. 199–236, 1983.

[PSC+02] J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar,
and T. Breuel. Personalized Search. Communications of the ACM, Vol.
45(9):pp. 50–55, September 2002.

[PSDB99] C. Plaisant, B. Shneiderman, K. Doan, and Tom Bruns. Interface and Data Ar-
chitecture for Query Preview in Networked Information Systems. ACM Trans-
actions on Information System, Vol. 17(3):pp. 320–341, July 1999.

[QHKM03] D. Quan, D. Huynh, D. R. Karger, and R. Miller. User Interface Continuations.
In Proceedings of the Sixteenth Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST’03), pp. 145–148, Vancouver, Canada, November
2003. ACM Press.

[Que00] C. Queinnec. The Influence of Browsers on Evaluators or, Continuations to
Program Web Servers. In Proceedings of the Fifth ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’00), pp. 23–33, Montreal,
Canada, September 2000. ACM Press. Also appears in ACM SIGPLAN No-
tices, Vol. 35(9), September 2000.

[Ram00] N. Ramakrishnan. PIPE: Web Personalization by Partial Evaluation. IEEE
Internet Computing, Vol. 42(9):pp. 21–31, November–December 2000.

[RB69] B. Randell and J. N. Buxton, editors. Software Engineering Techniques: Re-
port of a Conference sponsored by the NATO Science Committee, Rome, Italy,
October 1969. Brussels, Scientific Affairs Division, NATO (1970). 164 pp..

[RCCR02a] G. G. Robertson, K. Cameron, M. Czerwinski, and D. Robbins. Animated
Visualization of Multiple Intersecting Hierarchies. Information Visualization,
Vol. 1:pp. 50–65, April 2002.

[RCCR02b] G. G. Robertson, K. Cameron, M. Czerwinski, and D. Robbins. Polyarchy
Visualization: Visualizing Multiple Intersecting Hierarchies. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI’02), pp.
423–430, Minneapolis, MN, April 2002. ACM Press.

[RCPQ02] N. Ramakrishnan, R. Capra, and M. A. Pérez-Quiñones. Mixed-Initiative In-
teraction = Mixed Computation. In P. Thiemann, editor, Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM’02), pp. 119–130, Portland, OR, January 2002.
ACM Press. Also appears in ACM SIGPLAN Notices, Vol. 37(3), March 2002.

143

[Rie00a] D. Riecken. Personal End-User Tools. Communications of the ACM, Vol.
43(8):pp. 89–91, August 2000.

[Rie00b] D. Riecken. Personalized Views of Personalization. Communications of the
ACM, Vol. 43(8):pp. 27–28, August 2000.

[Rie01] J. Riedl. Personalization and Privacy. IEEE Internet Computing, Vol. 5(6):pp.
29–31, November-December 2001.

[Roc71] J. J. Rocchio. Relevance Feedback in Information Retrieval. In G. Salton,
editor, The SMART Retrieval System: Experiments in Automatic Document
Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[Ros99] M. B. Rosson. Integrating Development of Task and Object Models. Commu-
nications of the ACM, Vol. 42(1):pp. 49–56, January 1999.

[RP97] J. Rcuker and M. J. Polano. Siteseer: Personalized Navigation for the Web.
Communications of the ACM, Vol. 40(3):pp. 73–75, March 1997.

[RP01] N. Ramakrishnan and S. Perugini. The Partial Evaluation Approach to Inform-
ation Personalization. Technical Report cs.IR/0108003, Computing Research
Repository (CoRR), August 2001. In communication to Information Processing
and Management.

[RR95] T. Reps and G. Rosay. Precise Interprocedural Chopping. In G. E. Kaiser,
editor, Proceedings of the Third ACM SIGSOFT Symposium on Foundations of
Software Engineering, pp. 41–52, Washington, DC, October 1995. ACM Press.
Also appears in ACM SIGSOFT Software Engineering Notes, Vol. 20(4):pp.
41–52, October 1995.

[RRC01] N. Ramakrishnan, M. B. Rosson, and J. M. Carroll. Explaining Scenarios
for Information Personalization. Technical Report cs.HC/0312016, Computing
Research Repository (CoRR), November 2001.

[RS97] D. Rus and D. Subramanian. Customizing Information Capture and Access.
ACM Transactions on Information Systems, Vol. 15(1):pp. 67–101, January
1997.

[RT96] T. Reps and T. Turnidge. Program specialization via Program Slicing. In
O. Danvy, R. Glueck, and P. Thiemann, editors, Proceedings of the Dagstuhl
Seminar on Partial Evaluation; Lecture Notes in Computer Science, Vol. 1110,
pp. 409–429, Schloss Dagstuhl, Wadern, Germany, February 1996. Springer-
Verlag.

[RT01a] F. Ricca and P. Tonella. Understanding and Restructuring Web Sites with
ReWeb. IEEE MultiMedia, Vol. 8(2):pp. 40–51, April–June 2001.

144

[RT01b] F. Ricca and P. Tonella. Web Application Slicing. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’01), pp. 148–157, Florence,
Italy, November 2001. IEEE Computer Society.

[RTB01] F. Ricca, P. Tonella, and I. D. Baxter. Restructuring Web Applications via
Transformation Rules. In Proceedings of the First International Workshop on
Source Code Analysis and Manipulation (SCAM’01), pp. 150–160, Florence,
Italy, November 2001. IEEE Computer Society.

[RTB02] F. Ricca, P. Tonella, and I. D. Baxter. Web Application Transformations based
on Rewrite Rules. Information and Software Technology, Vol. 44(13):pp. 811–
825, October 2002.

[RV97] P. Resnick and H. R. Varian. Recommender Systems. Communications of the
ACM, Vol. 40(3):pp. 56–58, March 1997.

[SA99] A. Sahuguet and F. Azavant. Looking at the Web through XML Glasses.
In Proceedings of the Fourth IFCIS International Conference on Cooperative
Information Systems (CoopIs’99), pp. 148–159, Edinburgh, Scotland, Septem-
ber 1999. IEEE Computer Society.

[Sac00] G. M. Sacco. Dynamic Taxonomies: A Model for Large Information Bases.
IEEE Transactions on Knowledge and Data Engineering, Vol. 12(3):pp. 468–
479, May–June 2000.

[Sac02] G. M. Sacco. Conventional Taxonomies vs. Dynamic Taxonomies, 2002. Com-
municated for publication.

[SAL02] Speech Application Language Tags (SALT) Specification. Technical report,
SALT Forum, July 2002. Version 1.0.

[SB02] S. Srinivasan and E. Brown. Is Speech Recognition Becoming Mainstream?
IEEE Computer, Vol. 35(4):pp. 38–41, April 2002.

[SCDT00] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web Usage Mining:
Discovery and Applications of Usage Patterns from Web Data. SIGKDD Ex-
plorations, Vol. 1(2):pp. 12–23, January 2000.

[Shn92] B. Shneiderman. Tree Visualization with Tree-Maps: 2-D Space-Filling Ap-
proach. ACM Transactions on Graphics, Vol. 11(1):pp. 92–99, January 1992.

[Smi00] D. C. Smith. Building Personal Tools by Programming. Communications of
the ACM, Vol. 43(8):pp. 92–95, August 2000.

[Spi00] M. Spiliopoulou. Web Usage Mining for Web Site Evaluation. Communications
of the ACM, Vol. 43(8):pp. 127–134, August 2000.

[Suc87] L. A. Suchman. Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University Press, 1987.

145

[SV99] C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to the
Network Economy. Harvard Business School Press, November 1999.

[SW93] M. F. Schwartz and D. C. M. Wood. Discovering Shared Interests Using Graph
Analysis. Communications of the ACM, Vol. 36(8):pp. 78–89, August 1993.

[SW01] B. Shneiderman and M. Wattenberg. Ordered Treemap Layouts. In Proceedings
of the IEEE Symposium on Information Visualization (INFOVIS’01), pp. 73–
78, San Diego, CA, October 2001. IEEE Computer Society.

[SYV01] M. P. Singh, B. Yu, and M. Venkatraman. Community-Based Service Location.
Communications of the ACM, Vol. 44(4):pp. 49–54, April 2001.

[Tak91] A. Takano. Generalized Partial Computation for a Lazy Functional Language.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’91), pp. 1–11, New Haven,
CT, 1991. ACM Press.

[THA+97] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS:
A System for Sharing Recommendations. Communications of the ACM, Vol.
40(3):pp. 59–62, March 1997.

[Tho98] B. Thomas. URL Diving. IEEE Internet Computing, Vol. 2(3):pp. 92–93,
May–June 1998.

[Tid01] D. Tidwell. XSLT. O’Reilly and Associates, Inc., Sebastopol, CA, 2001.

[Tip95] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming
Languages, Vol. 3(3):pp. 121–189, 1995.

[TL98] H. B. K. Tan and T. W. Ling. Correct Program Slicing of Database Operations.
IEEE Software, 15(2), March/April 1998.

[TMK+02] J. J. Thomas, D. R. McGee, O. A. Kuchar, J. W. Graybeal, D. L. McQuerry,
and P. L. Novak. What is your Relationship with your Information Space? In
Proceedings of Computer Graphics International, Bradford, UK, July 2002.

[Van01] M. L. Van De Vanter. Preserving the Documentary Structure of Source Code
in Language-based Transformation Tools. In Proceedings of the International
Conference on Software Maintenance (SCAM’01), pp. 131–141, Florence, Italy,
November 2001. IEEE Computer Society.

[Ven91] V. A. Venkatesh. The Semantic Approach to Program Slicing. In Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 107–119, Toronto, Canada, June 1991. ACM Press. Also appears in
ACM SIGPLAN Notices, Vol. 26(6):pp. 107–109, 1991.

[War99] M. Ward. Assembler to C Migration using the FermaT Transformation Sys-
tem. In Proceedings of the International Conference on Software Maintenance,
Oxford, England, August–September 1999.

146

[War00] M. Ward. Reverse Engineering from Assembler to Formal Specifications via
Program Transformations. In Proceedings of the Seventh Working Conference
on Reverse Engineering, Brisbane, Queensland, Australia, November 2000.
IEEE Computer Society.

[War01a] M. Ward. The FermaT Assembler Re-engineering Workbench. In Proceed-
ings of the International Conference on Software Maintenance, Florence, Italy,
November 2001. IEEE Computer Society.

[War01b] M. Ward. The Formal Transformation Approach to Source Code Analysis and
Manipulation. In Proceedings of the First International Workshop on Source
Code Analysis and Manipulation, Florence, Italy, November 2001. IEEE Com-
puter Society. Keynote speech.

[War02] M. Ward. Program Slicing via FermaT Transformations. In Proceedings of
the Twenty-sixth Annual International Computer Software and Applications
Conference (COMPSAC’02), Oxford, England, August 2002. IEEE Computer
Society.

[WB99] R. M. Wilson and R. D. Bergeron. Dynamic Hierarchy Specification and Visu-
alization. In Proceedings of the IEEE Symposium on Information Visualization
(INFOVIS’99), pp. 65–72, San Francisco, CA, October 1999. IEEE Computer
Society.

[Wei79] M. Weiser. Program Slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. Ph.D. dissertation, University
of Michigan, 1979.

[Wei82] M. Weiser. Programmers use Slices when Debugging. Communications of the
ACM, 25(7):pp. 446–552, July 1982.

[Wei84] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):pp. 352–357, July 1984.

[Wei91] M. Weiser. The Computer for the Twenty-First Century. Scientific American,
pp. pp. 94–104, September 1991.

[Wid99] J. Widom. Data Management for XML: Research Directions. IEEE Data
Engineering Bulletin, Vol. 22(3):pp. 44–52, September 1999.

[Wil84] M. D. Williams. What makes RABBIT run? International Journal of Man-
Machine Studies, Vol. 21:pp. 333–352, 1984.

[Wil04] C. S. Williams. WS://IM: A Software Framework for Multimodal Web Interac-
tion Management. Master’s thesis, Department of Computer Science, Virginia
Tech, May 2004.

147

[WM99] A. Wexelblat and P. Maes. Footprints: History-Rich Tools for Information For-
aging. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’99), pp. 270–277, Pittsburgh, PA, May 1999. ACM Press.

[Wyn00] B. S. Wynar. In A. G. Taylor, editor, Waynar’s Introduction to Cataloging and
Classification, Library and Information Science Text Series. Libraries Unlim-
ited, Inc., Englewood, CO, Ninth edition, 2000.

[WZ91] W. N. Wegman and F. K. Zadeck. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Languages and Systems, Vol.
13(2):pp. 181–210, April 1991.

[Xie02] H. Xie. Patterns between Interactive Intentions and Information-Seeking
Strategies. Information Processing and Management, Vol. 38(1):pp. 55–77,
January–February 2002.

[Yan96] N. Yankelovich. How Do Users Know What To Say? ACM Interactions,
3(6):pp. 32–43, November–December 1996.

[ZBC+00] W. Zadrozny, M. Budzikowski, J. Chai, N. Kambhatla, S. Levesque, and N. Ni-
colov. Natural Language Dialogue for Personalized Interaction. Communica-
tions of the ACM, Vol. 43(8):pp. 116–120, August 2000.

[Zhu02] Q. Zhu. 5SGraph: A Modeling Tool for Digital Libraries. Master’s thesis,
Department of Computer Science, Virginia Tech, November 2002.

148

Appendix A

XSchema OTML Language Definition

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:annotation>

<xsd:documentation>This is the XML Schema for OTML.</xsd:documentation>

</xsd:annotation>

<xsd:element name="otml" type="OTMLType"/>

<xsd:complexType name="OTMLType">

<xsd:element name="input-textbox-label" type="xsd:string" minOccurs="0"/>

<xsd:element name="input-textbox-maxlength" type="xsd:positive-integer" minOccurs="0"/>

<xsd:element name="submit-button-label" type="xsd:string" minOccurs="0"/>

<xsd:element name="clear-button-label" type="xsd:string" minOccurs="0"/>

<xsd:element name="interactions" type="Interactions" minOccurs="0"/>

</xsd:complexType>

<xsd:complexType name="Interactions">

<xsd:element name="what" type="What" minOccurs="0"/>

<xsd:element name="restructure-classification" type="RestructureClassification" minOccurs="0"/>

<xsd:element name="collect-results" type="CollectResults" minOccurs="0"/>

<xsd:element name="inverse-personalization" type="InversePersonalization" minOccurs="0"/>

</xsd:complexType>

<xsd:complexType name="What">

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="tip" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

<xsd:complexType name="RestructureClassification">

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="tip" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

<xsd:complexType name="CollectResults">

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="tip" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

<xsd:complexType name="InversePersonalization">

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="tip" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

</xsd:schema>

149

Appendix B

Some Miscellaneous
Program Transformations

This dissertation has primarily focused on the use of partial evaluation and static program
slicing for information personalization. In this appendix, I identify some extensions to these
transformations which can potentially be incorporated into a personalization model.

B.1 Dynamic Slicing

Unlike static slicing, the computation of a dynamic slice [KL88, KL90] considers program
input. The slicing criterion for a dynamic slice is thus augmented for the program’s input and
therefore a triple. In addition, the statement component of the criterion becomes a particular
occurrence (e.g., first, second, or third, denoted with a superscript) of a statement w.r.t. the
execution history of the program. Fig. B.1 (right) illustrates a dynamic slice (of left). For
an introduction to program slicing, techniques for computing slices, and applications, I refer
the interested reader to [BG96, HH01, Tip95].

Program slicing was originally observed as a task which programmers manually per-
formed while debugging, analyzing, and understanding programs [Wei82]. It has since
been automated and thus reapplied to those tasks and additionally applied in many di-
verse areas of software engineering. Application areas include (semantic) program differenc-
ing and integration, testing, software maintenance and metrics, reverse engineering, (com-
ponent) re-use, (functional) cohesion measurement and management, software quality as-
surance, software conformance certification, software safety, parallelization, and compiler
tuning. The application of slicing in these domains is collectively covered or referenced
in [BG96, HBD03, HH01, Tip95]. A modified version of slicing has been developed to ad-
dress shortcomings when applied to database operations involving I/O [TL98]. Lastly and
useful for my purposes, static slicing methods can detect dead-code [BC85]. Detection is
typically conducted in a debugging context since such statements are usually unexecutable
due to the presence of a bug [Tip95].

Current research in program slicing entails relaxing or removing constraints of charac-
teristics of slices which adversely affect their accuracy [Tip95]. Rather than developing new
algorithms for constructing existing slices, some researchers are focused on articulating new

150

line program dynamic (a=1; b=3; c=2, 111, max)

(1) read (a, b, c); read (a, b, c);

(2) if (a > b) if (a > b)

(3) if (a > c)

(4) max = a;

(5) else

(6) max = a;

(7) else if (b > c) else if (b > c)

(8) max = b; max = b;

(9) else else

(10) max = c;

(11) write (max); write (max);

Figure B.1: Illustration of dynamic slicing. (left) A program which computes the maximum
of three integers. (right) A dynamic slice (of left) w.r.t. (a=1; b=3; c=2, 111, max).

slicing criteria [HDSS96], which typically results in a new type of slice. A survey of some new
slices and a comparison of a variety of slicing criteria for these are presented in [HDSS96].
This research is important because it provides opportunity for new application domains.

B.2 More Variants of Slicing

While [BG96, HH01, Tip95] focus primarily on static and dynamic program slicing (back-
ward and forward; executable and closure), there are many other variants of slicing [Luc01,
HDSS96, HH01] (I refer the reader to [Ven91] for an introduction, including semantic defini-
tions, of these eight combinations.). For instance, quasi-static slicing, introduced in [Ven91],
was the first attempt at a hybrid slice between static and dynamic slicing [Luc01]. Others
have articulated richer and more generalized versions of quasi-static slicing. For exam-
ple, conditioned slicing [CCDL98] is also a hybrid between static and dynamic slicing. While
the slicing criteria for a static slice contains no conditions on the initial state (i.e., specific
values for program inputs are not considered), the criteria of a dynamic slice contains a
particular initial state (i.e., assignment of values to all inputs; see Fig. B.1). The criteria for
a conditioned slice places a condition on the initial state of the program. In other words,
rather than a total assignment of program inputs, only a partial assignment is required.
Conditioned slicing is therefore similar to partial evaluation [Luc01, War02]. As opposed
to the traditional direction in which slices are computed (i.e., backward), conditioned slic-
ing typically uses forward conditioning [Luc01]. Analogously, backward conditioning [Ven91]
has been proposed for program comprehension. For more information on conditioned slicing,
see [HDSS96, HH01]. Another generalization is parametric slicing [FRT95], which yields con-
strained slices, where ‘parametric’ refers to the program input and the ‘constraint’ refers to
the amount of input given [BG96].

Amorphous slicing [HD97], which is a combination of slicing and non-syntax preserving
transformations, is yet another slicing method. Executable backward static slices have been
called syntactic slices since they are syntax-preserving [War01b]. In other words, they are

151

partial evaluation

mixed computation
generalized

partial evaluation
parameterized

syntactic operational

backward

static conditioned

executable non−executable

dynamic

syntax and semantic preserving

forward (interprocedural)

(parametric)
dicing

chopping

semantic (amorphous)

only semantic preserving

Figure B.2: A taxonomy of program transformations, including partial evaluation and slic-
ing. A directed arrow represents a specialization relation. An undirected line represents an
association, while a dotted line represents a range.

created by only deleting (irrelevant) statements from the original program. An amorphous
slice on the other hand, which has analogously been called a semantic slice [War01b], need
not be a subset of the original program. It can be realized by any transformation which
preserves the original program’s semantics w.r.t. the slicing criteria. Amorphous slicing
makes bugs salient in programs and has been used as a program comprehension tool to help
students find array out-of-bounds errors [BHRC00, HBD03].

Analogous to conditioned slicing, operational slicing [War02] is a hybrid between syntactic
and semantic slicing. Operational slicing is an intermediate operation to preserve operational
semantics [War02]. I refer the interested reader to [BG96, BHRC00, Luc01, HDSS96, HH01,
Tip95, War01b, War02], which collectively discuss or reference these derivatives.

B.3 Variants of Partial Evaluation

While traditional partial evaluation may only exploit static values for program input, gen-
eralized partial computation may utilize additional properties of a program, such as logical
structure, abstract data types, and primitive functions [FNT91]. Similarly, parameterized
partial evaluation is ‘a generic form of partial evaluation w.r.t. user-defined static proper-
ties’ [CK93]. These two variants of partial evaluation may be helpful to support inform-
ation seeking which entails pursuing multiple interaction sequences simultaneously. Such
information-seeking activities require transformations capable of preserving multiple flows of
control. Fig. B.2 presents a taxonomy of program transformations, including some of those
discussed in this appendix.

152

Appendix C

Program Transformation Systems

Program transformation systems conduct source-to-source transformations which are typ-
ically implemented as tree-to-tree rewrites [ET99]. I used C-Mix and Similix, two partial
evaluators for C and (a large higher-order subset of) Scheme, respectively, to experiment with
the program transformation techniques involving partial evaluation (not-syntax-preserving,
semantic-preserving transformations). C-Mix [JGS93c] is an off-line partial evaluator mean-
ing that it specializes programs at compile time, but not at run time. It is developed and
maintained by the TOPPS (which approximately abbreviates ‘Semantics-based Program
Analysis and Manipulation’ in Danish) group at DIKU (the Department of Computer Sci-
ence at the University of Copenhagen, Denmark). Neil D. Jones, the author of many highly
cited articles on partial evaluation [Jon96], is a member of TOPPS which is the leading
research group on partial evaluation in Europe. C-Mix is available at http://www.diku.
dk/forskning/topps/activities/cmix/. Similix [JGS93a] also is an off-line partial evaluator
developed and maintained by the TOPPS group at DIKU. Similix is available at http://
www.diku.dk/forskning/topps/activities/similix.html. I used CodeSurfer and the FermaT
Transformation Engine, two popular program transformation systems, to experiment with
program slicing (and other syntax-preserving, not-semantic preserving transformations).

CodeSurfer [ART03] is the academic and industry state of the art tool for program slicing.
It analyzes ANSI C and relies on ‘system dependence graphs’ as a fundamental intermediate
structure to represent programs [ART03]. In addition to slicing, CodeSurfer can perform pro-
gram dicing and chopping [JR94b, JR94a, RR95]. CodeSurfer has been used for applications
ranging from computing amorphous slices for student program comprehension [BHRC00] to
security and safety assurance. For more information, see http://www.grammatech.com/
products/codesurfer/.

FermaT [War02, War01a] also is an academic and industry strength transformation sys-
tem. It is based on the WSL (Wide Spectrum Language) [War01b, War02] transformation
theory. FermaT has been used commercially in assembler to C migration projects [War99]
and to reverse engineer from assembler to formal specifications [War00]. FermaT can com-
pute several slices, including conditioned slices [DOH+02]. For more information, see http://
www.cse.dmu.ac.uk/∼mward/fermat.html.

I refer the interested reader to [PS83] for a detailed survey of program transformation
systems.

153

Appendix D

Problem-Solving Task for
Evaluating Interaction Interfaces

It is course scheduling time, once again, at Virginia Tech, and you need to develop your
schedule of courses for the following semester. You have a full-time job and are working
on your undergraduate degree as a part-time student. You will complete your degree next
semester. Your task is to develop a schedule of courses which meets all of the following
requirements.

Hint: This problem is a puzzle. Please read the entire set of conditions completely and
carefully before you begin to develop your schedule. Not only must the schedule you develop
meet all of the following conditions, but it also must have no time/day conflicts (i.e., the
schedule must permit you to attend every class meeting in full). You may assume that you
have the prerequisite(s) and corequisite(s) for any course.

1. You are an undergraduate student and therefore are eligible for only undergraduate
courses.

2. To accommodate your full-time work schedule you want to take as many online courses
as possible. However, a departmental policy states that no student may take more than
one online course per semester.

3. You do not want to take more than 4 courses.

4. Your work schedule permits you to come to campus only twice per week:

• Tuesdays at or after 4p.

• Thursdays at any time after 10a.

5. A departmental policy forbids you from taking more than 2 math courses in one
semester.

6. In an effort to minimize your trips to campus, you want a course that meets only on
Tuesday. The course must start at 4p or later & should not be a lab or recitation.

154

7. You only need 11 more credits to graduate. You are on a strict budget. Since tuition
is proportional to number of credits and costly, you can only afford to register for the
minimum number of credits necessary to fulfill your credit requirement for your degree.

8. You want to take a statistics course as you feel it will be useful in the future.

9. You are not keen on taking courses ‘for fun’ and therefore do not want to schedule any
0-credit courses.

10. You are not pursuing a thesis of any form and therefore are not eligible for research
credits.

11. You have been told that independent studies are flexible, but consume an enormous
amount of time. Since you work full-time, you cannot afford to trade time for flexibility,
and therefore do not want to take an independent study.

12. You are very busy with your full-time job and don’t want to be bothered by arranged
courses.

Provide your answers in the following table:

Course Abbrev. and No. Day(s) Time Credit(s)

1. online online
2. Tuesday
3.
4.

Total: 11

155

Vita

Saverio Perugini was born in Waterbury, Connecticut on December 15, 1976. After garnering
an interest in computers while casually programming in Pascal on an IBM XT during his
middle school years, his interests shifted to basketball during high school. Although still a
passion, his hoop dreams ended with his final high school varsity game in March 1994 at
Sacred Heart High School (but provided copious amounts of stress relief while in graduate
school!).

In August 1994, he relocated to Main Line Philadelphia to study at Villanova University
with the Augustinians. He spent the next four years there studying computer science, and
theatre to escape the vacuum of a technical major. While at Villanova, Perugini contributed
to the development of a leading CS1 textbook: Java Software Solutions, by J. A. Lewis (his
undergraduate advisor) and W. P. Loftus (his employer during his undergraduate years).
Perugini completed a Bachelor of Science in Computer Science in May 1998. His work with
John Lewis at Villanova ultimately led him to pursue graduate studies at Virginia Tech.

In August 1998, he joined the Department of Computer Science at Virginia Tech. While
in graduate school, Perugini worked on personalization with Naren Ramakrishnan, his thesis
advisor, and was funded by him as a research assistant. He also assisted the department in
its teaching mission by serving as the teaching assistant and primary instructor for several
courses. In May 2001, Perugini completed a Master of Science in Computer Science.

Perugini is a member of the ACM, IEEE, IEEE Computer Society, and ΥΠE honor soci-
ety. His research interests include the application of concepts from programming languages
and data mining to problems in interactive information retrieval and web modeling.

In June 2000, Perugini was recognized by the Washington, D.C. Chapter of the ACM
with the Samuel N. Alexander ACM Fellowship. Upsilon Pi Epsilon and the IEEE Computer
Society recognized him with an ΥΠE/IEEE-CS Award for Academic Excellence (one of only
four such awards given internationally each year) in April 2001. In March 2004, Perugini
was recognized by Virginia Tech as the College of Engineering Ph.D. Student Researcher of
the Year, with the P. E. Torgersen Graduate Student Research Excellence Award (first-place
winner). He credits his parents, grandparents, and thesis advisor for providing him with a
blueprint for success which has ultimately shaped him into the person he is today.

In the Fall 2004, Perugini will join the faculty of the Department of Computer Science
at the University of Dayton, a Marianist community in Ohio, as an Assistant Professor of
Computer Science. New hopes for knowledge and science; and colleagues and friends are
there and beyond. And therefore, as he sets sail, he asks God’s blessing for the greatest
adventure on which he has ever embarked.

156

	University of Dayton
	eCommons
	2004

	Program Transformations for Information Personalization
	Saverio Perugini
	eCommons Citation

	thesis.dvi

