
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

2003

The Staging Transformation Approach to Mixing
Initiative
Robert Capra
Virginia Polytechnic Institute and State University

Michael Narayan
Virginia Polytechnic Institute and State University

Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Naren Ramakrishnan
Virginia Polytechnic Institute and State University

Manuel A. Pérez-Quiñones
Virginia Polytechnic Institute and State University

Follow this and additional works at: http://ecommons.udayton.edu/cps_fac_pub

Part of the Databases and Information Systems Commons, Graphics and Human Computer
Interfaces Commons, Numerical Analysis and Scientific Computing Commons, OS and Networks
Commons, Other Computer Sciences Commons, Software Engineering Commons, Systems
Architecture Commons, and the Theory and Algorithms Commons

This Article is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Capra, Robert; Narayan, Michael; Perugini, Saverio; Ramakrishnan, Naren; and Pérez-Quiñones, Manuel A., "The Staging
Transformation Approach to Mixing Initiative" (2003). Computer Science Faculty Publications. Paper 38.
http://ecommons.udayton.edu/cps_fac_pub/38

http://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cps_fac_pub/38?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

The Staging Transformation Approach to Mixing Initiative

Robert Capra, Michael Narayan, Saverio Perugini,
Naren Ramakrishnan, and Manuel A. Pérez-Quiñones

Department of Computer Science
Virginia Tech, Blacksburg, VA 24061

Abstract

Mixed-initiative interaction is an important facet of
many conversational interfaces, flexible planning
architectures, intelligent tutoring systems, and in-
teractive information retrieval systems. Software
systems for mixed-initiative interaction must en-
able us to both operationalize the mixing of ini-
tiative (i.e., support the creation of practical di-
alogs) and to reason in real-time about how a flexi-
ble mode of interaction can be supported (e.g., from
a meta-dialog standpoint). In this paper, we present
the staging transformation approach to mixing ini-
tiative, where a dialog script captures the structure
of the dialog and dialog control processes are real-
ized through generous use of program transforma-
tion techniques (e.g., partial evaluation, currying,
slicing); this allows control to be cast as the pro-
cess of moving from one dialog script to another.
In this approach, operationalizing mixed-initiative
interaction becomes the task of finding a suitable
program transformation to stage the interaction be-
tween the two participants. We highlight the advan-
tages of this approach and present its realization in
various modalities for information seeking dialogs.
We also outline how high-level reasoning capabil-
ities about dialogs can be provided in the staging
transformation framework.

1 Introduction
Mixed-initiative interaction [Allen et al., 1999] is an impor-
tant facet of many conversational interfaces, flexible planning
architectures, intelligent tutoring systems, and interactive in-
formation retrieval systems. In conversational interfaces, MII
provides the ability to accommodate the shift of control be-
tween agents participating in a dialog. In planning archi-
tectures such as TRIPS [Allen et al., 2001], MII naturally
arises from considerations of how to improve the effective-
ness of the planning system and the desire to achieve con-
textual goals. MII for intelligent tutoring systems [Graesser
et al., 2001] helps accommodate the diverse needs of partic-
ipants and enables the software system to react or act proac-
tively, as appropriate. Finally, in interactive information re-
trieval [Brunner et al., 1992], the goal is to foster a dialog
between the information seeker and the retrieval engine, in

order to overcome the mismatch between how the informa-
tion space is represented and how the information seeker de-
sires to navigate or browse it. In all of these applications,
MII is crucial for fostering an active dialog between the par-
ticipants, and its use encourages an interactive approach to
problem solving; in particular, it avoids the tendency to seek
‘one-shot’ solutions, is tolerant of failures, permits changes
in focus, and encourages an evolving understanding of the
underlying context.

MII is a multi-faceted concept that can be viewed along
several dimensions. For instance, James Allen [Allen et al.,
1999] has outlined four levels of mixing initiative that range
from an agent merely being able to provide unsolicited in-
formation to agents using negotiation to determine who will
have the initiative. [Chu-Carroll and Brown, 1997] differ-
entiate between task initiative and dialog initiative. [Novick
and Sutton, 1997] describe three elements of MII: choice of
task, choice of speaker, and choice of outcome. To system-
atize the study of MII, researchers have proposed many orga-
nizing principles for dialog management systems – one such
high-level classification, proposed by Allen, is based on task
complexity [Allen et al., 2001].

In Allen’s assessment, as task complexity increases, so
does the sophistication of the techniques required to process
the dialog. At the lower levels of task complexity (finite-
state scripts and frame-based systems), the opportunities and
mechanisms to support MII are limited. Allen notes that
many finite-state systems are fixed system-initiative and that
frame-based systems can be fixed user-initiative. At the
higher levels of task complexity (agent-based and plan-based
models [Kitano and Ess-Dykema, 1991]), Allen observes that
“the tasks are too complicated to represent as a series of pa-
rameterized contexts. In fact, these tasks require the system to
maintain an explicit model of the tasks and/or world, reason
about these models, ... [and] one also needs to start explicitly
modeling the collaborative problems solving process that the
system and user engage in”([Allen et al., 2001], p.29).

The experiences reported in this paper primarily grew out
of work in information personalization [Ramakrishnan, 2000]
and web-based dialog processing [Perugini and Ramakrish-
nan, 2003], where one of the agents is an information system,
and the task complexities of dialogs fall in the lower half of
Allen’s classification. At the same time, we have found that
having an explicit representation of the dialog can be crucial
for supporting and sustaining a responsive and personalized
interaction with the user. Our focus has been on representa-

0 Caller: ≺calls Joe’s Pizza on the phone�
1 System: Thank you for calling Joe’s pizza ordering system.
2 System: What size pizza would you like?
3 Caller: I’d like a sausage pizza, please.
4 System: Okay, sausage.
5 System: What size pizza would you like?
6 Caller: Medium.
7 System: What type of crust do you want?
8 Caller: Deep-dish.
9 System: So that is a medium sausage pizza with deep-dish crust. Is this correct?
(conversation continues to get delivery and payment information)

pizzaorder (size, topping, crust) {
if (unfilled (size)) {

/* prompt for size */
}
if (unfilled (topping)) {

/* prompt for topping */
}
if (unfilled (crust)) {

/* prompt for crust */
}

}

Figure 1: (left) Example of a mixed-initiative form-filling dialog. The user takes the initiative in line 3 and specifies a topping
when prompted for size; the system registers the out-of-turn input in line 4 and repeats the question about size in line 5. (right)
Modeling the pizza dialog as a program parameterized by slot variables that are passed by reference.

tions of dialogs that allow us to both operationalize the mix-
ing of initiative (i.e., permit the creation of practical dialog
processing engines) and to reason in real-time about how a
flexible mode of interaction can be supported (e.g., from a
meta-dialog standpoint).

From the perspective of operationalization, one of the im-
portant aspects of MII elusive to capture in a representation is
that of control, e.g., who can say what at a given point in the
dialog, what should be done if a shift of initiative happens,
and so on. Traditionally, mechanisms for handling control
in MII have relied on extensive use of state and anticipating
and tracking all the ways in which transfers of control can
be effected. Researchers such as Bridge [Bridge, 2002] have
explored principles of conversational analysis to derive rules
that guide the mixing of initiative and control of dialog flow.
From the perspective of flexibility of reasoning, the represen-
tation has to be malleable enough to permit, for instance, the
dynamic insertion of a clarification subdialog before resum-
ing other aspects of information assessment. This requires
that the representation also support higher-level reasoning ca-
pabilities, such as reflection and goal revision.

We approach mixed-initiative dialog processing from a tra-
ditional viewpoint of thinking of dialogs as program scripts
representing salient aspects of information communication.
However, we do not use the sequentiality of program scripts
to capture dialog control; rather the scripts merely capture
the structure of the dialog, and dialog control processes are
realized through generous use of program transformation
techniques (e.g., partial evaluation, currying, slicing) [Jones,
1996; Jones et al., 1993]. This allows control to be cast as the
process of transforming one dialog script into another. We
refer to this approach as the staging transformation frame-
work and argue that it can be used as a powerful organiz-
ing principle for mixed-initiative dialogs. In this approach,
operationalizing MII becomes the task of applying program
transformation techniques (repeatedly) to a representation. In
addition, program transformation techniques can also be used
for analysis of dialog specifications, providing reasoning and
meta-dialog functionality.

The use of staging transformations helps systematically
extend the MII capabilities of dialog processing systems
that utilize finite-state, frame-based, and sets-of-context ap-
proaches. In finite-state and frame-based systems, staging

transformations allows designers to specify what informa-
tional elements are important to collect in a specified order
and what elements may be provided in any sequence (at any
time). In the sets-of-context designs [Allen et al., 2001], stag-
ing transformations operate at a higher level of dialog or-
ganization than informational elements and allow us to use
program transformation techniques hierarchically to achieve
greater functionality.

2 Basic Approach
Consider how we can support mixed-initiative functionality
in a slot filling dialog, e.g., a pizza ordering service (see
Fig. 1, left). The traditional approach is to have explicit mech-
anisms that recognize when a shift of initiative has happened
and distinguish between regular slot filling (where the user
has provided a responsive input) and out-of-turn processing
(for cases when the user has provided an out-of-turn, but in-
vocabulary input). By anticipating and modeling the shift of
initiative as a transfer of control, the software design makes
extensive use of state for tracking the flow of the dialog.

In the staging transformation approach, a form-filling dia-
log is represented as a program script soliciting input from
users (Fig. 1, right), and a program transformation tech-
nique is utilized to repeatedly process inputs provided by
the users [Ramakrishnan et al., 2002]. One such program
transformation technique is partial evaluation, an approach
to specializing programs given some, but not all, of their in-
put [Jones et al., 1993]. For instance, given the value of ex-
ponent set to 2 as shown in Fig. 2 (left), the loop can be
unrolled and the value of the prod variable forward propa-
gated to yield the program in Fig. 2 (right). Partial evaluators
are available for C, Scheme, and many other languages.

Fig. 3 describes how partial evaluation can be used to stage
the dialog of Fig. 1. At each step of Fig. 3, the first applicable
prompt is played and the user’s input is utilized by the par-
tial evaluator to produce a revised dialog script. We can think
of dialog management as being organized into tuples of three
steps each: (i) examine the structure of the dialog script and
play a prompt, (ii) collect the utterance from the user, and (iii)
apply a program transformation to the script with the user’s
utterance. The two participants in the dialog are thus the pro-
gram script interactor (in this case, a single stepper) and the
user. The partial evaluator plays the role of a stager who me-

int pow(int base, int exponent) { int pow2(int base) {
int prod = 1; return (base * base);
for (int i=0;i<exponent;i++) }
prod = prod * base;

return (prod);
}

Figure 2: Illustration of the partial evaluation technique. A general purpose power function written in C (left) and its specialized
version (with exponent statically set to 2) to handle squares (right).

pizzaorder (size, topping, crust) {
if (unfilled (size)) {

/* prompt for size */
}
if (unfilled (topping)) {

/* prompt for topping */
}
if (unfilled (crust)) {

/* prompt for crust */
}

}

pizzaorder (size, crust) {
if (unfilled (size)) {

/* prompt for size */
}
if (unfilled (crust)) {

/* prompt for crust */
}

}

pizzaorder (crust) {
if (unfilled (crust)) {

/* prompt for crust */
}

}

θ

Figure 3: Staging the dialog of Fig. 1 (left) using partial evaluation. θ denotes the empty dialog.

diates between the two participants. Thus, partial evaluation
is used to support a form of unsolicited reporting [Allen et
al., 1999].

This approach has two advantages. First, it loses the dis-
tinction between a responsive input and an out-of-turn input
– both of them require the same processing, namely partial
evaluation! Second, since the script is divorced from the pro-
gram transformation, the parts of the system soliciting input
are different from the parts of the system that process a re-
ceived input. This facet allows us to retain the sequential na-
ture of directed dialog prompting in the representation and yet
realize non-sequential behavior by an appropriate sequence of
program transformations (in this case, partial evaluations).

3 Application Prototypes and Systems
In this section, we outline two different software implementa-
tions of our staging transformation framework and also relate
it to the dialog processing engine underlying the VoiceXML
framework [McGlashan et al., 2001]. The first implementa-
tion, available in Haskell and Scheme, is purely functional
and can be used as the substrate for many applications. The
second describes an interaction instrument and an instantia-
tion of our framework for website interactions. We then relate
our approach to the VoiceXML implementation and finally
describe ongoing work using the new SALT (Speech Appli-
cation Language Tags) standard, which allows the creation
of multimodal interfaces where the user can interact via both
web hyperlinks and voice.

3.1 Functional Stagers
To support the construction of practical dialogs, we view
stagers as mechanisms for functionally specifying the set of
interaction sequences that are to be supported. For instance,
we can specify the pizza dialog as:

PE

s t c

which indicates that the dialog comprised of prompts s (for
size), t (for topping), and c (for crust) is being staged with a
partial evaluator. This specification allows all 3! orderings of
the pizza attributes (13, if we allow multiple attributes per ut-
terance) to be achieved, without explicitly programming for
them. However, it uses an all-or-nothing stager that cannot
enforce (i.e., require) a particular ordering. Using interpreta-
tion (I) instead of PE allows us to enforce an ordering, but this
enforces only one ordering at a time, causing the dialog to be-
come a directed dialog. Yet another option is to use a curryer
(C) for a stager, whose legal inputs can only be prefixes of
the original list of arguments; thus only four interaction se-
quences are supported. There are a number of other program
transformations that can potentially be used as stagers, such
as slicing (SL) [Binkley and Gallagher, 1996], and deforesta-
tion (D). Given a dialog script as input, they enforce/allow
different sets of orderings and interactively transform the di-
alog script based upon user input.

Consider a simple variant of the pizza dialog – ordering
breakfast over a hotel service. Let us suppose that this in-
volves specification of a {eggs, coffee, bakery item} tuple.
The user can specify these items in any order, but each item
involves a second clarification aspect. After the user has spec-
ified the choice of eggs, a clarification of ‘how do you like
your eggs?’ might be needed. Similarly, when the user is
talking about coffee, a clarification of ‘do you take cream
and sugar?’ might be required, and so on. This form of
MII is known as subdialog invocation [Allen et al., 1999].
We specify such dialogs using multi-layered compositions of
constructs, and which can be subsequently staged using a di-
verse mix of stagers. So, the breakfast dialog is defined as:

PE
C

e1 e2

C

c1 c2

C

b1 b2

where e1, e2 are egg specification aspects, c1, c2 are associ-
ated with coffee specification, and b1, b2 specify the bakery

PE|C

(x : PE|C|θ)
= x (1)

[
PE|C

(a : T)
given a] = θ (2)

[
PE

(x : PE|C|T)∗(a : T)(y : PE|C|T)∗
given a] =

PE

xy
(3)

[
C

(a : T)(x : PE|C|T)∗
given a] =

C

x
(4)

[
PE

(x : PE|C|T)∗(y : PE|C)(z : PE|C|T)∗
given a filling y] =

C

[y given a]PE

xz

(5)

[
C

(x : PE|C)(y : PE|C|T)∗
given a filling x] =

C

[x given a]y
(6)

[
PE

(x : PE|C|T)
given any input] =

PE

x
(7)

[
C

(x : PE|C|T)
given any input] =

C

x
(8)

Figure 4: Reduction rules for currying and partial evaluation stagers.

item. Notice that the dialog staged by PE is itself a sequential
dialog comprised of stagings by a curryer (C). It should be
clear that arbitrarily complex hierarchies of dialog subunits
can be specified where the scope of mixing initiative can be
tailored to a desired level of granularity (useful in the sets-of-
context designs). In this sense,

PE

a b c d

is not the same as PE
PE

a b

PE

c d

The former allows all 4! permutations of {a, b, c, d} whereas
the latter precludes utterances such as c a b d.

For this form of specification to be effective, we must de-
fine the semantics of repeated applications of program trans-
formations to dialog specifications. Fig. 4 outlines a set of
transformation rules that describe what happens to a {dialog
script, program transformer} pair when a given input is re-
ceived. For illustration purposes, these rules are summarized
for only the PE and C stagers. In order to facilitate the de-
scription of these rules, the following notation is used.

PE

X

This expression represents a dialog script X being staged
with a partial evaluator. Likewise,

C

X

represents dialog script X being staged with a curryer. In
each of these notations, the X could be either:

(a : T)

meaning that the dialog script is a simple script consisting of
one attribute a to be input from the user, and that a is of a

primitive input type T . An example of a primitive input type
is a pizza topping, or egg specification such as ‘sunny side
up,’ or ‘scrambled.’ Such a dialog script, given an appropriate
input a, would be simplified by rule 2 to θ, the empty dialog.
In addition, X could be:

(x : PE|C|T)

meaning that the dialog script could be one of three options:
(i) a complex script being staged by a partial evaluator (PE),
(ii) a complex script being staged by a curryer (C), or (iii) a
simple script with one attribute as described above. We also
use the Kleene star operator ∗ to represent repetitions of these
basic types. Precedence matters when applying the rules in
Fig. 4 so they are shown in order of decreasing precedence.

As an example of these rules in operation, let us stage the
breakfast dialog presented earlier and assume that the user’s
input arrives in the order: {c1, c2, b1, e1, b2, e1, e2}. Note that
the first occurrence of e1 is an invalid input. The sequence
of transformations are shown in Fig. 5. Each =⇒ in Fig. 5
describes a transformation based on user input and each −→
describes a simplification of the dialog structure. The rule
numbers from Fig. 4 are shown alongside the reductions.

Before we describe implementations of this framework, it
is helpful to note that the use of a program transformer such as
a PE simplifies some tasks (like turn management in MII) but
certain others, such as state maintenance, revisiting ‘filled’
parts of a dialog, and imposition of orderings have to be han-
dled outside the staging transformation framework; these are
situations where we must violate the functional tenet. Nev-
ertheless, by using program transformers to ‘compress’ spec-
ifications of interaction sequences, our approach aids in the
automated software engineering of mixed-initiative dialogs,
namely bringing specification of dialog structure closer to re-
alization. In Section 4 we also describe how simple reasoning
and ‘stateful’ capabilities can be provided using other forms
of transformation techniques.

PE
C

e1 e2

C

c1 c2

C

b1 b2

· c1 ⇒ C
C

c1 c2
·c1

P E

C

e1 e2

C

b1 b2

⇒ C
C

c2

P E

C

e1 e2

C

b1 b2

Rule 5, Rule 4

C
C

c2

P E

C

e1 e2

C

b1 b2

· c2 ⇒ C
C

c2
·c2

P E

C

e1 e2

C

b1 b2

⇒ C
P E

C

e1 e2

C

b1 b2

→ PE
C

e1 e2

C

b1 b2

Rule 6, Rule 2, Rule 1

PE
C

e1 e2

C

b1 b2

· b1 ⇒ C
C

b1 b2
·b1

P E

C

e1 e2

⇒ C
C

b2

P E

C

e1 e2

Rule 5, Rule 4

C
C

b2

P E

C

e1 e2

· e1 ⇒ C
C

b2

P E

C

e1 e2

Rule 7

C
C

b2

P E

C

e1 e2

· b2 ⇒ C
C

b2
·b2

P E

C

e1 e2

⇒ C
P E

C

e1 e2

→ PE
C

e1 e2

→ C

e1 e2

Rule 6, Rule 2, Rule 1, Rule 1

C

e1 e2

· e1 ⇒ C

e2

Rule 4

C

e2

· e2 ⇒ θ Rule 2

Figure 5: Input induced transformations on the breakfast dialog. The transformation where rule 7 is applied indicates an
input that could not fill any currently applicable slot, and would presumably lead to an error message, but does not result in a
simplified dialog.

Figure 6: (top) Starting webpage for personalizing information about US congressional officials. (bottom) Response of the
system to an out-of-turn interaction by the user.

3.2 MII in Web Site Interactions
We now turn our discussion to studying MII in website inter-
actions. The predominant way in which we interact with web
sites is to click on presented hyperlinks, where we are merely
responding to the choices put forth by the website. Due to the
statelessness of the HTTP access protocol, and a fundamen-
tal lack of interaction instruments for MII, web access does
not naturally lend itself to supporting mixed-initiative inter-
action. As a result, site designers have typically anticipated
all the forms of interactions possible and hardwired them as
navigation flows in the website structure. Using our staging
transformation framework and an out-of-turn toolbar we have
developed (called Extempore), we can provide a more per-
sonalized experience for the user without hardwiring all the
possible interaction sequences. Consider the US Congres-
sional portion of the Project Vote Smart web site (www.vote-
smart.org). The site provides information about political in-
dividuals; users interact with the site by specifying choices of
state, party, branch of congress, and seat, in that order. With
MII support, we allow the user to specify these attributes in
any order and have the site automatically transformed to re-
flect the partial information provided.

Fig. 6 describes a sample session with Extempore. The site
initially presents choice of a state to the user who, however,
prefers to specify politicians in terms of party and branch of
congress (i.e., ‘Democratic Senators’). The result of the stag-
ing transformation removes many states, restricting the op-
tions to only those states that have democratic senators. We
also employed query expansion techniques based on contain-
ment and functional dependency to provide a more personal-
ized experience. For instance, if the user says ‘Senior seat,’
she is referring to a Senator, not a Representative. So, we
can partially evaluate w.r.t. these additional variables. Say-
ing ‘North Dakota’ and ‘Representative’ in the 2003 political
landscape defines a unique member of Congress (no party in-
formation is needed), and so on. It is important to consider
such facets in order to deliver a compelling personalized ex-
perience. The net effect of such considerations will be the ini-
tialization of multiple program variables based on the user’s
input and thus the site created at every stage will reflect an
accurate summary of the remaining dialog options. For more
details, please see [Perugini and Ramakrishnan, 2003].

3.3 Relationships to the VoiceXML Architecture
VoiceXML is a language that is designed to support simple
system-directed and mixed-initiative dialogs for telephone-
based interactions [Potter and Larson, 2002]. VoiceXML
markup tags describe ‘prompts,’ ‘forms,’ and ‘fields’ that
constitute a dialog. Dynamics of interaction are handled by
a form interpretation algorithm (FIA) that (i) selects the first
unfilled field in the active form, (ii) collects information by
playing any prompts associated with the field and getting an
utterance from the user, and finally (iii) processes the utter-
ance using the specified speech recognition grammar to de-
termine what slots can be filled based on the utterance, and
copying the recognized values into variables associated with
each appropriate field item [McGlashan et al., 2001].

For example, a greatly simplified representation of a
VoiceXML form to handle a pizza ordering dialog can be

given as:

form=place_order
field=size, prompt="What size?"
field=topping, prompt="What topping?"
field=crust, prompt="What crust?"

endform

Combined with the grammar given by:

size = small | medium | large;
topping = sausage | onions | pepperoni;
crust = regular | thin;

the FIA would produce a system-directed, single-step dialog
in the order shown (first prompting for size, then topping,
then crust). If the user provided out-of-turn input (e.g., saying
‘sausage’ when asked for the size), the system would reject
the utterance and re-prompt for the size without filling the
topping field. If, however, we specified that the form should
use a form-level grammar:

sizetoppingcrust = (size|topping|crust)*;
size = small | medium | large;
topping = sausage | onions | pepperoni;
crust = regular | thin;

then the FIA would support a mixed-initiative mode of fill-
ing the fields in the dialog. In [Ramakrishnan et al., 2002],
we showed that when the form-level grammar contains all
permutations of specifying the pizza aspects, then the FIA re-
duces to a partial evaluation transformer. However, the FIA’s
implementation is not a purely functional one, since it doesn’t
trap the over-riding of slots even after they are filled; in our
framework progressive dialog simplification happens as a nat-
ural consequence. Since VoiceXML’s architecture uses gram-
mars for both utterance recognition and staging specification,
it is difficult to abstract staging from the dialog structure at
the level that is possible in our approach.

3.4 Multimodal Interfaces
The emergence of multimodal interfaces, motivated by ac-
cessibility and mobile computing considerations, provides
additional opportunities for investigating MII. Using mul-
tiple modes of communication can increase conversational
bandwidth, reduce ambiguity, increase common ground,
and streamline dialog. Speech Application Language Tags
(SALT) is one effort to integrate voice input as part of mul-
timodal interaction with existing web applications and archi-
tectures. While SALT shares many ideas of dialog specifi-
cation with VoiceXML, these two technologies differ consid-
erably in their execution models [Potter and Larson, 2002].
SALT uses an event-driven model typical of web applica-
tions, leaving the specific implementation of dialog control
to designers. Thus, it provides a lower-level interface to con-
trolling the flow of the dialog than does the built-in FIA of
VoiceXML. This means that our staging transformations are
an ideal candidate for supporting dialog management in this
setting. From this point of view, SALT tags permit the captur-
ing of out-of-turn input, and web pages embedded with SALT
tags can be transformed (by stagers) to reflect the processing
of such input. In our approach, most such transformations are
handled by a specially configured proxy server but some of
them can be conducted at the browser itself, using embedded
code.

4 Reasoning about Dialogs
Our discussion thus far has concentrated on operationalizing
MII but our emphasis on representations and using program
transformations allows us to support many forms of meta-
dialog reasoning as well. We broadly classify these forms
of reasoning into (i) reasoning about scripts, (ii) reasoning
about scripts and stagers, and (iii) reasoning about scripts,
stagers, and interaction sequences. The first form of reason-
ing uses program transformations such as slicing [Binkley
and Gallagher, 1996] to perform analyses on the structure of
the dialog script. Slicing is a program transformation tech-
nique that allows the incorporation of partial information in
a more expressive form than is possible in PE, where it is re-
stricted to static values of program arguments. Forward slic-
ing aids in what-if analyses and accommodates user requests
such as ‘what are the options available if I selected pepper-
oni?’ Backward slicing is useful when the user is concerned
that he might be going down the wrong path in the dialog
(e.g., ‘will this dialog give me a contact phone number at the
end?’).

The second form of reasoning is concerned with the repre-
sentation of the dialog as a whole (both stagers and scripts).
In this category, user negotiation can result in the dynamic re-
placement of the stager and/or restructuring the dialog (e.g.,
‘ask me the questions in topping-crust-size order’). Another
example is determining when the dialog can be pruned (e.g.,
‘pepperoni pizzas are available in only large form, so there
is no need to prompt the user for size’). These forms of di-
alog revision can be handled in a manner akin to replanning
functionality.

The final form of reasoning brings in data about user
interaction sequences and studies them from the perspective
of either improving interaction for future dialogs or dynamic
control of the current dialog. For instance, in [Ramakrishnan
et al., 2001] we have described how prototype scenarios
of interaction can be ‘explained’ with respect to a domain
theory (of information seeking) and how templates for
interaction can be derived. Using sample interaction data to
optimize dialog policy for specific tasks has been recently
undertaken [Singh et al., 2002]; such dynamic updates to
dialog structure can be formally posed in the staging trans-
formation framework. And finally we have been recently led
to investigating how dialog-based interaction is influenced by
the granularity (and expressiveness) with which information
can be addressed — the representation-based theme espoused
in this paper provides promising directions to study such
issues.

Acknowledgements: This work was supported in part by US
NSF grants IIS-0049075, IIS-0136182, and by a grant from
IBM to explore the use of VoiceXML within their WebSphere
product.

References
[Allen et al., 1999] J.F. Allen, C.I. Guinn, and E. Horvitz. Mixed-

Initiative Interaction. IEEE Intelligent Systems, Vol. 14(5):pp.
14–23, Sep-Oct 1999.

[Allen et al., 2001] J.F. Allen, D.K. Byron, M. Dzikovska, G. Fer-
guson, L. Galescu, and A. Stent. Towards Conversational

Human-Computer Interaction. AI Magazine, Vol. 22(4):pp. 27–
37, 2001.

[Binkley and Gallagher, 1996] D.W. Binkley and K.B. Gallagher.
Program Slicing. Advances in Computers, Vol. 43:pp. 1–50,
1996.

[Bridge, 2002] D. Bridge. Towards Conversational Recommender
Systems: A Dialogue Grammar Approach. In Proceedings of
the Mixed-Initiative Case-Based Reasoning Workshop, European
Conference on Case-Based Reasoning, pages 9–22. 2002.

[Brunner et al., 1992] H. Brunner, G. Whittemore, K. Ferrara, and
J. Hsu. An Assessment of Written/Interaction Dialogue for In-
formation Retrieval Applications. Human-Computer Interaction,
Vol. 7:pages 197–249, 1992.

[Chu-Carroll and Brown, 1997] J. Chu-Carroll and M.K. Brown.
Tracking Initiative in Collaborative Dialog Interactions. In Pro-
ceedings of the 35th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 262–270. 1997.

[Graesser et al., 2001] A.C. Graesser, K. VanLehn, C.P. Rose, P.W.
Jordan, and D. Harter. Intelligent Tutoring Systems with Conve-
sational Dialogue. AI Magazine, Vol. 22(4):pp. 39–51, 2001.

[Jones et al., 1993] N.D. Jones, C.K. Gomard, and P. Sestoft. Par-
tial Evaluation and Automatic Program Generation. PHI, 1993.

[Jones, 1996] N.D. Jones. An Introduction to Partial Evaluation.
ACM Computing Surveys, Vol. 28(3):pages 480–503, September
1996.

[Kitano and Ess-Dykema, 1991] H. Kitano and C.V. Ess-Dykema.
Toward a Plan-Based Understanding Model for Mixed-Initiative
Dialogues. In Proceedings of the 29th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 25–32.
1991.

[McGlashan et al., 2001] S. McGlashan et al. Voice eXtensible
Markup Language: VoiceXML. Technical report, VoiceXML Fo-
rum, Oct 2001. Version 2.00.

[Novick and Sutton, 1997] D.G. Novick and S. Sutton. What is
Mixed-Initiative Interaction? In S. Haller and S. McRoy, ed-
itors, Procedings of the AAAI Spring Symposium on Computa-
tional Models for Mixed Initiative Interaction, pages 114–116.
AAAI/MIT Press, 1997.

[Perugini and Ramakrishnan, 2003] S. Perugini and N. Ramakrish-
nan. Personalizing Web Sites with Mixed-Initiative Interaction.
IEEE IT Professional, Vol. 5(2):pp. 9–15, Mar-Apr 2003.

[Potter and Larson, 2002] S. Potter and J.A. Larson. VoiceXML
and SALT. Speech Technology Magazine, Vol. 7(3), May/June
2002.

[Ramakrishnan et al., 2001] N. Ramakrishnan, M.B. Rosson, and
J.M. Carroll. Explaining Scenarios for Information Personal-
ization. Technical Report cs.HC/0111007, Computing Research
Repository (CoRR), August 2001.

[Ramakrishnan et al., 2002] N. Ramakrishnan, R. Capra, and M.A.
Pérez-Quiñones. Mixed-Initiative Interaction = Mixed Computa-
tion. In P. Thiemann, editor, Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM), pages 119–130. ACM, 2002.

[Ramakrishnan, 2000] N. Ramakrishnan. PIPE: Web Personal-
ization by Partial Evaluation. IEEE Internet Computing, Vol.
4(6):pages 21–31, Nov-Dec 2000.

[Singh et al., 2002] S. Singh, D. Litman, M. Kearns, and
M. Walker. Optimizing Dialogue Management with Reinforce-
ment Learning: Experiments with the NJFun System. Journal of
Artificial Intelligence Research, Vol. 16:pp. 105–133, 2002.

	University of Dayton
	eCommons
	2003

	The Staging Transformation Approach to Mixing Initiative
	Robert Capra
	Michael Narayan
	Saverio Perugini
	Naren Ramakrishnan
	Manuel A. Pérez-Quiñones
	eCommons Citation

	tmp.1412708819.pdf.Y01wm

