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Abstract

With the explosive growth of web-based cameras and mobilieet, billions
of photographs are uploaded to the internet. We can tiyvi@llect a huge
number of photo streams for various goals, such as imagé¢ediug, 3D
scene reconstruction, and other big data applications.edexy such tasks
are not easy due to the fact the retrieved photos can have \amations
in their view perspectives, resolutions, lighting, nojsasd distortions. Fur-
thermore, with the occlusion of unexpected objects likepteovehicles, it
is even more challenging to find feature correspondencesemomstruct re-
alistic scenes. In this paper, we propose a structure-basmge completion
algorithm for object removal that produces visually plaleicontent with
consistent structure and scene texture. We use an edgeinggtiethnique to
infer the potential structure of the unknown region. Drikmnthe estimated
structure, texture synthesis is performed automaticdypgthe estimated
curves. We evaluate the proposed method on different typiesages: from
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highly structured indoor environment to natural scenes: €gperimental
results demonstrate satisfactory performance that camteatmlly used for
subsequent big data processing, such as image localizatiect retrieval,
and scene reconstruction. Our experiments show that tpimagh achieves
favorable results that outperform existing state-of-dhetechniques.

1 Introduction

In the past few years, the massive collections of imagenherirtternet have
inspired a wave of work on many interesting big data topics. &xample,
by entering a keyword, one can easily download a huge numbphato
streams related to it. Moreover, with the recent advanceage processing
techniques, such as feature descriptors [1], pixel-dommeitrix factorization
approaches [2+4] or probabilistic optimization [5], imagan be read in an
automatic manner rather than relying on the associated Teid leads to a
revolutionary impact to a broad range of applications, fiorage clustering
or recognition [[6=1R2] to video synthesis or reconstruc{ib8-15] to cyber-
security via online images analysis [16+19] to other sdienapplications
[20+24].

However, despite the numerous applications, poor accucacy be
yielded due to the large variation of the photo streams, sischesolution,
illumination, or photo distortion. In particular, diffidigs arise when unex-
pected objects present on the images. Taking the Googlet stiev as an
example, the passing vehicles or walking passengers cdfelct ¢he accu-
racy of image matching. Furthermore such unwanted objéstsiatroduce
noticeable artifacts and privacy issue in the reconstduciews.

To resolve these issues, object remolal [25, 26] is an afeetéchnique
that has been widely used in many fields. A common approachuse tex-
ture synthesis to infer missing pixels in the unknown regguch as/[2[7, 28].
Efros and Leund [29] use a one-pass greedy algorithm to théeunknown
pixels based on an assumption that the probability digidhuof a target
pixel's brightness is independent from the rest of the imgigen its spatial
neighborhood. Some studies propose example-based appsoszx fill the
unknown regions, such as |27-+29]. These approaches failpteserve the
potential structures in the unknown region. Bertalri@l. [30] apply par-
tial differential equations (PDE) to propagate image Laplacians. While the
potential structures are improved in the filled region, ifems from blurred
synthesized texture. Droet al. [31], propose an enhanced algorithm to im-
prove the rendered texture. Baal. [32] propose an texture-segmentation
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based approach using tensor-voting to achieve the sameRyaatheir ap-
proaches are computationally expensive. A widely used @riagpainting
technique developed by Criminisi al. [26] aims to fill the missing region
by a sequence of ordered patches by using the proposed caudideap. The
priority of each patch is determined by the edge strengti fiee surrounding
region. However, the potential structures in the in-paimegion can not be
well preserved, especially for those images with saliemictires. The au-
thors Suret al. in [33] make an improvement through structure propagation,
while this approach requires additional user intervenéiod the results may
depend on the individual animators.

As an extension of our early work [B4], we propose an autarrattject
removal algorithm for scene completion, which would berlafije imagery
processing. The cue of our method is based on the structdreegture con-
sistency. First, it predicts the underlying structure @& dtcluded region by
edge detection and contour analysis. Then structure patipagis applied
to the region followed by a patch-based texture synthesis. fdoposed
approach has two major contributions. First, given an imaige its target
region, we develop an automatic curve estimation approadhfer the po-
tential structure. Second, an orientated patch matchoygyighm is designed
for texture propagation. Our experiments demonstratefaatory results that
outperform other techniques in the literature.

The rest of the paper is organized as follows: in section 2give an
example to demonstrate the basic steps of our image cowmplalgorithm.
Then we define the model and notations in section 3. Detadl$uather ex-
plained in section 4. The experiment results are presentsettion 5. Finally
we conclude the paper and our future work in section 6.

2 A Simple Example

The process of our framework is: for a given image, usersifgpeée object

for removal by drawing a closed contour around it. The enckss consid-
ered as the unknown or target region that needs to be filletdyemaining

region of the image. Figure a shows an example: the red calestsd as the
removing object. In the resulting image, the occluded reggautomatically
recovered based on the surrounding available pixels.

Our algorithm is based on two observations: spacial textoierence
and structure consistency along the boundaries betweeartiet and source
regions. To ensure spacial coherence, many exemplar-lvasttbds have
been proposed to find the potential source texture for tlgetaegion. By
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traversing the available pixels from the known region, ao$ébest patches”

are found to fill the target region. Here the definition of “bpatch” refers

to a small region of contiguous pixels from the source reg@t can maxi-

mize a certain spacial coherence constraint specified Brelift algorithms.

A typical example can be found in_[26]. However, a naive capg-paste

of image patches may introduce noticeable artifacts, thahg candidate
patches can maximize a local coherence. To resolve thidgmmlstructure

preservation is considered to ensure the global consistéhere have been
several techniques presented for structure propagatiengore smooth and
natural transitions among salient edges , such as the Seitteoh[33], which

requires additional user input to finish the task.

3 The Approach

First let us define some notations for the rest of paper. Tigetaegion for
filling is denoted a€?; the remaining par®(= I — ) is the region whose
pixels are known. The boundary contours are denoted(ashat separate
® and Q. A pixel's value is represented hy= I(x,y), where x and y are
the coordinates on the imade The surrounding neighborhood centered at
(x,y) is considered as a patch, denoteddhy whose coordinates are within
[z + Az, y+ Ayl. In our framework, there are three stages involved:strectu
estimation, structure propagation, and remaining pairgjill

Structure Estimation: In this stage, we estimate the potential structures
in the target regiof2. To achieve this, we applgPb Contour Detector [35]
to extract the edge distribution on the image:

0 0
Tedge = \/[%(I * Gp)]? + [8_3/([ * Gy)]2 1)
where,G, andG, are the first derivative of Gaussian function with respect
to z andy axis G, = #&”’)) After computingl.4,., most of the strong

edges can be extracted via threshold suppression. Indpyrédte level lines
techniquel[36], the edges {a can be estimated by linking matching pairs of
edges along the contour.

Structure Propagation: After the structures are estimated, textures along
the structures are synthesized and propagated into thet tagion(2. We
use Belief Propagation to identify optimal patches of textitom the source
region® and copy and paste them to the structureQ.in
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Remaining Part Filling: After the structure propagation, the remaining
unfilled regions inf2 are completed. We adopt the Criminisi’'s method| [26],
where a priority-based patch filling scheme is used to retiteremaining
target region in an optimal order.

In the following subsections, we present the details of estelp of
the proposed algorithm. In particular, we give emphasishi first two
steps: structure estimation and structure propagatioichwdrovide the most
contribution of this proposed technique.

3.1 Structure Estimation

In this stage, we estimate the potential structureQ by finding all the pos-
sible edges. This procedure can be divided into two stepstdDo Detection
in ® and Curve Generation 0.

3.1.1 Contour Detection in ®

We first segment the regioh by usinggPb Contour Detector [35], which
computes the oriented gradient sigr@(z,y,6) on the four channels of
its transformed image: brightness, colar color b and texture channel.
G(z,y,0) is the gradient signal, wherer, y) indicates the center location
of the circle mask that is drawn on the image @riddicates the orientation.
The gPb Detector has two important componentsiPb Edge Detector and
sPb Soectral Detector [35]. According to the gradient ascent on F-measure,
we apply a linear combination ofPb andsPb (factored bys and~):

Thus a set of edges i can be retrieved vigPb. However, these edges
are not in close form and have classification ambiguitiessalee this prob-
lem, we use th®riented Watershed Transform [35] and Oriented Watershed
Transform [37] (OWT-UCM) algorithm to find the potential contours by seg-
menting the image into different regions. The outpuOWT-UCM is a set
of different contours{C;} and their corresponding boundary strength levels

{L:}.

3.1.2 Curve Generation in 2

After obtaining the contour$C;} from the above procedure, salient bound-
aries in® can be found by traversingC;}. Our method for generating the
curves in2 is based on the assumption: for the edges on the boundary in
® that intersects with thé(, it either ends insidé) or passes through the
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missing regiorf2 and exits at another point 6f2. Below is our algorithm for
identifying the curve segments &

Algorithm 3.1 Identifying curve segmentsin §2

Require: Reconstruct missing curves segment&in

Ensure: The estimated curves provide smooth transitions betwegessd®
1: Initial t = 1.0

2. Fort=t—- At

3 if e {C}: ENIQ#(D
4: Inserte into { E'}

5. Endift < dr
6:

7

8

9

Sett = t¢, retrieve all the contours ifiC; } with L; > t
Obtain< ¢,.1, ¢2 > for eachk,,
DP on{< ¢o1, o2 >, < é11, $12 >, ...} to find optimal pairs
According to the optimal pairs, retrieve all the correspogdedge-pairs:
{(EI17 EIQ)? (Ezs.’ EI4)’ )}
10: Compute a transition curv&; for each{(F, E;)}.

In algorithm[3.1, it has three main parts: (a) collect allgmial edges
{E,} in ® that hits9<; (b) identify optimal edge pairg(Es, E;)} from
{E.}; (c) construct a curvé,,; for each edge paitEs, E;).

Edges Collection: The output ofOWT-UCM are contours set&; } and
their corresponding boundary strength levefs}. Given different thresholds
t, one can remove those contodrsvith weak £. Motivated by this, we use
theRegion-Split scheme to gradually demerge the whéleto multiple sub-
regions and extract those salient curves. This processried¢aut on lines
1-9: at the beginning the whole regidnis considered as one contour; then
iteratively decrease to let potential sub-contour&C;} faint out according
the boundary strength; Every time when any edgieem the newly emerged
contours{C} were detected of intersecting wilf2, they are put into the set
{E}.

Optimal Edge Pairs. the motivation of identifying edge pairs is based
on the assumption if an edge is broken up{bythere exists a pair of cor-
responding contour edges dnthat intersect witto€). To find the potential
pairs{(Es, E;)} from the edge lis{ E, }, we measure the corresponding en-

closed regions similarities. The neighboring subregiansy), ¢ > which
are partitioned by the edge; are used to compare with the corresponding
subregions< ¢§f3),¢§2 > of another edge®,;. This procedure is described
on lines7 — 9 of the algorithm[_3.IL. For simplicity, the superscrigty and
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(t) are removed and the neighboring subregiens,, , ¢,, > are list in a
sequential order. Each neighboring region is obtained tynip down the
threshold value to faint out its contours.

To compute the similarity between regions, we useXisen-Shannon
divergence [38] method that works on the color histograms:

d(Hy, Hy) = Z{Hl log— + HS -1 2

0g— 12 3
H1—|—H2 gH2+H1} 3)

whereH; andH, are the histograms of the two regiofig ¢-; 7 indicates
the index of histogram bin. For any two ed@é;, E;), the similarity between
them can be expressed as:

[|Ls — Lil|

Lmar

M(E87 Et) = ’ min{d(HSiv Hti) + d(HSja Htj)} (4)

i andj are the exclusive numbers {1, 2}, where 1 and 2 represent the
indices of the two neighboring regions @ around a particular edge. The
La. 1S the max value of the two comparing edges’ strength levdis.first
multiplier is a penalty term for big difference between thesgth levels of
the two edges. To find the optimal pairs among the edge listamyc pro-
gramming is used to minimize the global distange; , M (Es, E;), where
s # tands,t € {0,1,...,size({E;})}. To enhance the accuracy, a maximum
constraint is used to limit the regions’ differene&:H,, Hy) < o0p. If the
individual distance is bigger than the pre-specified thokkhy, the corre-
sponding region matching is not considered. In this waynguees if there
are no similar edges existed, no matching pairs would beifibh

Generate Curves for each (Es, E;) : we adopt the idea of fitting the
clothoid segments with polyline stoke data first before gatmeg a curve
[39]. Initially, a series of discrete points along the twagedF; and E; are
selected, denoted d®s0, Ps1, ---, Psn, Pto, Pt1, -, Prm }- ThesSe points have a
distance with each other by a pre-specified valye For any three adjacent
points {p;_1, p;, pi+1}, the corresponding curvatuig could be computed
according to[[40]:

b 2 - det(p; — pi—1,Pi+1 — Pi) 5)
llpi — picall - llpivr — pill - |1piv1 — pial|
Combining the above curvature factors, a sequence of pelglie used to
fit these points. The polylines are expected to have a pgssithll number of
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line segments while preserving the minimal distance ag#iesoriginal data.

Dynamic programming is used to find the most satisfied paydiequence by
giving a penalty for each additional line segment. A set off@id segments
can be derived corresponding to each line segment. Afteriesseotations

and translations over the clothoid, a final cut/és obtained by connecting
each adjacent pair witd? continuity [39].

3.2 Structure Propagation

After the potential curves are generatedlima set of texture patches, denoted
as{¥g, ¥y,...}, need to be found from the remaining regi®nand placed
along the estimated curves by overlapping with each othér wicertain
proportion. Similar to the Sun’s methdd [33], an energy mization based
Belief Propagation(BP) framework is developed. We giveedint definitions
for the energy minimization and passing messages, thelslefavhich can
be found in algorithni_3]2.

Algorithm 3.2 Belief Propagation for Structure Completion
Require: Render each patch; along the estimated structures(in
Ensure: Find the best matching patches while ensuring texture aemnice
1: For each curv€ in Q, define a series a@inchor pointsonit, {a;,|i =1 — n}
2. Collect exemplar-texture patch¥,,} in @, wheret; € [1,m]
3: Setup a factor grapi = {V, £} based o{C} and{a;}
4: Defining the energy functioflt for eacha;: E;(¢;), wheret; is the index in
[1, M]
Defining the message functidwl;; for each edge in G, with initial value
Mi]‘ 0
Iteratively update all the messaglek;; passed betweefn, }
Mij — minai {Ez(tl) + Eij (t“ t]) + ZkEN(i),k;ﬁj M]ﬂ}
end untilAM,;; < 6, Vi, j (by Convergence)
Assign the best matching texture patch frof;} for each a; that
argmingr, g{>_,ey Ei(t:) + 22 jee Eis(ti )}, whereT and R represent

the translation and orientation of the patch;, }

a

In our algorithm, theanchor points are evenly distributed along the curves
with an equal distance from each othedl. These points represent the center
where the patche§¥;} (I x [) are placed. In practice, we defidel = % - 1.
The {I,} is the source texture patchesdn They are chosen on from the
neighborhood around€2. According to the Markov Random Field definition,
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eacha; is considered as a vert®) and&;; = a;a; represents a edge between
two neighboring nodesandj.

Among the traditional exemplar-based methods, when copgxture
patch from the source regiod to the target regiorf2, eachW¥; have the
same orientation a;,, which limits the varieties of the texture synthesis.
Noticing that different patch orientations could produdéedent results, we
introduce a scheme callédiaptive Patch by defining a new configuration for
the energy metri® and messagi/.

Intuitively, the node energ¥;(¢;) can be defined as tigum of Square
Difference(SSD) by comparing the known pixels in each pafichwith the
candidate patch ini/tz.. But this could limit the direction changes of the
salient structure. So instead of using SSD on the two comgapatches,
rotation transformation is performed to the candidatetpb&fore computing
the SSD. Mathematicallj; (¢;) can be formulated as:

Ei(ti) = ax- P- Y [|W; — R(0) - ¥y, [} (6)

where R represents the 2D rotation matrix with an input angle patante
along the orthogonal vector that is perpendicular to thegenglane. Since
the size of a patch is usually small, the rotation angjlean be specified
with an arbitrary number of values. In our experiment, it &ined as) <
{0,+£%,£5,7}. Parameten represents the number of known pixelsiin

that overlap with the rotated patcinti. P is a penalty term that discourage
the candidate patches with smaller proportion of overlagmixels with the
neighboring patches. Here, we defiReas P = l% (L is the length ofd). a,
is the corresponding normalization factor.

In a similar way, the energlg;;(¢;,t;) on each edgé;; can be expressed
as:

Eij(tit;) = ax- P |[Wilts, 0) — ;(t;, 001X )
wherei andj are the corresponding indices of the two adjacent patches in
Q. The two parameters fob; indicate the index and rotation for the source
patches in{\i/tz.}. We adopt a similar message passing schemg_as [33] that
message\/;; passes by patchds; is defined as:

Mz‘j = Ez(tz) + Eij (ti, tj) (8)

Through iterative message passing on the MRF graph to ngirtie

global energy, an optimal configuration ff;} for the patches i{¥;} can
be obtained. The optimal matching patch indgis defined as:
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t; = arg IT%]II{El (t;) + Z My} 9)
! k

Wherek is the index of one of the neighbors of the pateh & € N (i).
To compute an minimum energy cost, dynamic programminged:ust each
step, different states af;, can be chosen. The edgg represents the transi-
tion cost from the state oifti at stepi to state ofti/tj at stepj. Starting from

i = 0, an optimal solution is achieved by minimizing the total regyes; (¢;):

§i(ti) = Ei(t:) + min{Ey;(ti, ;) + §i-1(ti-1)} (10)

whereg; (t;) represents a set of different total energy values at thewcustep
i. Inthe cases of multiple intersections between cufyege adopted the idea
of Sun’s method [33], where readers can refer to for furttetaits.

3.3 Remaining Part Filling

After the structure curves are generateirwe fill the remaining regions by
using the exemplar-based approachlin [26], where patcleesamied from
the source regio® to the filling region{2 in a priority order. The priority is
determined by the extracted edgesbitthat intersect wittd€2. To ensure the
propagated structures {hmaintain the same orientation asinhigher prior-
ities of texture synthesis are given to those patches #hatlthe continuation
of stronger edges .

According to Criminisi’s algorithm[[26], each pixel on a igm has a
confidence value and color value. The color value can be erfjitys in
the unfilled regiorf). For a given patci, at a pointp, its priority is defined
as:priority(p) = C(p) - D(p), whereC(p) and D(p are the confidence map
and data term that are define as:

2ped, Nz-0) C(a)

Cp) = o) (11)
and
T | L
Dy = 2l ol (12)

whereq represents the surrounding pixelspin the patch¥,. |V, | is the
area of the patcl,. The variableny, is a unit orthogonal vector that is per-
pendicular to the bounda@(2 on the pointp. The normalization factot: is
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set as 255 as all the pixels are in the raftg@55] for each color channel. So
in such a way, the priority for each pixel can be computed fiidher details,
we refer readers to the Criminisi’s algorithm [26] for mos@knations.

4 Experiments

In our experiments, to evaluate our algorithm, differerlest of images
are tested from natural scenes to indoor environment thatstrect struc-
ture. Our algorithm obtains satisfactory results in terifnexture coherence
and structural consistency. The algorithm is implemente@++ code with
OpenCV library. All the images results are generated on &chra PC with
CPU 2.13GHz and Memory 2G. For the images with the regularugen
640 x 480, the average computation cost is about 52 seconds.

Figure 2 demonstrates the advantage of our method by pregethe
scene structure after removing the occluded object. Tiggnaldiimage data
can be find publicly at the websife Figure 2 shows the target region (the
bungee jumper) for removal marked in green color. Figureé@e4he image
reconstruction results by the Criminisi’s and our methasispectively. One
can notice the roof area in figure 5 is broken by the grass wihicbduces
noticeable artifact, while the corresponding part remaitesct in our result.
Furthermore, in contrast to the Criminisi's method, theelakundary is natu-
rally recovered thanks to our structure estimation procedas shown in 6. In
terms of the time performance for the original image@s x 307 pixels, our
method performed0.5 seconds on the computer of dual-core PC with CPU
2.13GHz and 2GB of RAM, to be compared witR seconds of Criminisi’s
on a 2.5 GHz Pentium IV with 1 GB of RAM.

Another existing work we choose to compare with is the Suréshod,
which also aims to preserve the original structure in th@vered image.
However, the difference is that Sun’s method requires maintervention
during the completion process. The potential structurehenttairget region
needs to be manually labeled by the designer, which can v@graing
to individuals. Figure 7 demonstrates a comparison betvéers and our
methods. In the original image, the car is considered asatiget object for
removal, which is marked in black color in figure 8. In figurest® potential
structures in the target region are labeled by [33] and aatically estimated
by our method, which produce different results, as shownguaréis 10, 11.
To compare the computation speed, our methods performed setonds

L http://www.cc.gatech.edu/ sooraj/inpainting/
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to process this image40 x 457), in contrast with the Sun’s fewer than 3
seconds for each curve propagation (3 curves in total) an®@ seconds for
each subregion (4 subregions in total) on a 2.8 GHz PC. Merewe save
the potential labor work on specifying the missing struesuby the user.

To further demonstrate the performance, a set of images seé for
scene recovery: ranging from indoor environment to natscahes. Figure
12 shows the case of indoor environment, where highly siratpatterns
often present, such as the furniture, windows, walls. Inr&gle, the green
bottle on the office partition is successfully removed wigteserving the
remaining structure. In this example, five pairs of edgesigeatified and
connected by the corresponding curves that are generattit inccluded
region(). Guided by the estimated structure, plausible textureriéion is
synthesized to form a smooth intensity transition acroesottluded region
with little artifact.

For the outdoor environment, as there are fewer straigés lor repeating
patterns existing in the natural world, the algorithm sdguiovide the flex-
ibility to generate irregular structures. Figure 13 and fdvs the results of
removing trees in the nature scenes. Several curves areeiifiey matching
the broken edges along(2? and maximizing the continuity. We can notice
the three layers of the scene (sky, background trees, asd lgnad) are well
completed. In Figure 15, it shows a case that a perching ®irehnoved from
the tree. Our structure estimation successfully compléetree branch with
smooth geometric and texture transitions. Without sualcsire guidance,
those traditional exemplar-texture based methods caty gasduce notice-
able artifacts. For example, multiple tree branches maydmemted as the
in-painting process and directions largely rely on the imatg patches.

5 Conclusion

In this paper, we present a novel approach for foregroundctbjremoval
while ensure structure coherence and texture consistdingy.core of our
approach is to use structure as a guidance to complete treniegn scene,
which demonstrates its accuracy and consistency. This workd benefit
a wide range of applications, from digital image restorat{e.g. scratch
recovery) to privacy protection (e.g. remove people fromgbene). In par-
ticular, this technique can be promising for the online rivassollections of
imagery, such as photo localization and scene recongingctBy removing
foreground objects, the matching accuracy can be dranfigtingoroved as
the corresponding features are only extracted from thécstaene rather
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than those moving objects. Furthermore it can generate reafistic views
because the foreground pixels are not involved in any imeggestormation
and geometric estimation.

As one direction of our future work, we will apply this objegmoval
technique to scene reconstruction applications that caergee virtual views
or reconstruct the 3D data from a set of images. Multiple iesagan give
more cues of the potential structure and texture in the tenegion. For
example, through corresponding features among differaages, intrinsic
and extrinsic parameters can be estimated. Then the seuahd texture
information can be mapped from one image to another imagéorSopar-
ticular target region for completion, multiple source®(irdifferent images)
can contribute the estimation. As such, Our current algariheeds to be
modified adaptively to take the advantage of the extra inédion. An opti-
mization framework could be established to identify optirstauctures and
textures to fill the target region.
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