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Abstract Video self modeling (VSM) is a behavioral intervention technique in which a learner

models a target behavior by watching a video of him- or herself. In the field of speech language

pathology, the approach of VSM has been successfully used for treatment of language in children

with Autism and in individuals with fluency disorder of stuttering. Technical challenges remain

in creating VSM contents that depict previously unseen behaviors. In this paper, we propose a

novel system that synthesizes new video sequences for VSM treatment of patients with voice dis-

orders. Starting with a video recording of a voice-disorder patient, the proposed system replaces

the coarse speech with a clean, healthier speech that bears resemblance to the patient’s origi-

nal voice. The replacement speech is synthesized using either a text-to-speech engine or selecting

from a database of clean speeches based on a voice similarity metric. To realign the replacement

speech with the original video, a novel audiovisual algorithm that combines audio segmentation
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with lip-state detection is proposed to identify corresponding time markers in the audio and video

tracks. Lip synchronization is then accomplished by using an adaptive video re-sampling scheme

that minimizes the amount of motion jitter and preserves the spatial sharpness. Results of both

objective measurements and subjective evaluations on a dataset with 31 subjects demonstrate the

effectiveness of the proposed techniques.

Keywords video self modeling · positive feedforward · voice disorder · computational multimedia ·
frame interpolation · voice imitation · audio segmentation · lip reading

1 Introduction

(a) (b)

Fig. 1 (a) System Setup; (b) User Interface

Nowadays, one can learn just about anything by watching a video on the web, on television or

from the thousands of DVD/Blue-ray titles available from different sources. Watching a video to

learn or model a target positive behavior is in fact a well-studied technique in behavior therapy

called Video Modeling (VM) interventions. They are widely used in rehabilitation and education of

patients recovering from surgery [28] and cancer [31] as well as job and safety training for hospital

staffs [33] and office workers [6]. VM is also effective in a school setting to teach children and

young adolescents various skills including social interactions, communication, self-monitoring and

emotional regulation [25].

Rather than watching others, some researchers have argued that we can learn even more ef-

fectively by watching our own positive behaviors. Such form of self modeling is classically done

with a mirror and one of the most prominent examples is the use of the “mirror box” in treating

phantom limb pain among amputees [38]. Seeing or visualizing oneself accomplishing the target

behavior provides the most ideal form of behavior modeling. Though still in its early development,

effectiveness of VSM has been demonstrated for many different types of disabilities and behavio-

rial problems ranging from stuttering, inappropriate social behaviors, autism, selective mutism to

sports training. A summary of this research can be found in [12].

There are two forms of VSM: positive self-review and feedforward [16]. In positive self-review,

the portions of the recorded video showing poorly executed routines are removed leaving only the
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positive target behaviors. The resulting video will be reviewed to enhance fluency of the skills

that have already been acquired by the learner but not yet perfected. On the other hand, the

feed-forward VSM focuses on teaching new skills to a learner by showing novel skills that have

never been observed but still within the reach of the learner. Evidence shows that the feed-forward

approach delivers a more dramatic learning effect than the positive self-review approach [12]. One

explanation of these findings comes from the psychological theory of self-efficacy - “I know I can

because I have done it before” [9]. There is an inherent difficulty associated with the production of

VSM material. Prolonged and persistent video recording is required to capture the rare, if existed

at all, snippets that can be used to string together in forming novel video sequences of the target

skill. An example of feedforward VSM can be found in [12] – the author records more than six hours

of video from a child who can only speak one or two-word utterances to produce a two-minute clip

of the same child saying one full sentence.

This problem can be potentially solved by using computational multimedia techniques. From

computer generated imagery to speech synthesis, there exist a myriad of multimedia tools that can

synthesize realistic video content. The goal is to adapt such tools for the development of feedforward

VSM systems that can be used by a learner and his/her therapist in creating VSM contents with

minimum amount of training data. For such system to be useful in practice, the synthesis process

must be automatic and real-time so that rapid feedback can be provided. The synthetic content

should be perceptually indistinguishable from real video footage. Such systems can have a significant

impact in reducing the time and effort to achieve the target learning objectives.

In this paper, we propose a novel feedforward VSM content production system for patients

suffering from a specific type of vocal disorders called vocal hyperfunction. Vocal hyperfunction

refers to the use of excessive muscle force and physical effort in the production of voice, and

usually requires a prolonged period of speech therapy. Long-standing untreated voice disorders

can detrimentally affect an individual psychosocially and academically and can be a source of

substantial economic cost to society in terms of higher health care costs. The goal of our system

is to reduce the amount of time on therapy using the principle of video self modeling. Our system

records a video of a patient at the clinic reciting a known script, and synthesizes a new video with

a “healthier” voice for self-modeling. The purpose of this new video is to encourage patients to

continue practising of the skills learned at the clinic in order to accelerate the behavioral changes.

The proposed video self modeling approach can be used for voice therapy in individuals with

vocal fold nodules, functional dysphonia. It can also be used in speech therapy for post-surgical

management of individuals with vocal fold polyps and vocal fold cysts. However, before subjecting

the approach of video self modeling to empirical testing with traditional voice therapy approaches

it is critical to test the robustness / accuracy of the image processing algorithm. Our system uses a

data-driven approach in selecting a replacement speech best resembled that of the patient. A novel

joint audio-visual algorithm is developed to synchronize the old speech with the replacement speech.

The synchronization process produces a set of time markers which are then used to re-sample the

video to achieve perfect lip synchronization. To minimize the amount of motion jitter introduced

during the re-sampling process, we introduce a novel adaptive sampling strategy to preserve the

motion energy of the original video. Extensive objective and subjective testing have been conducted

to demonstrate the effectiveness of the proposed system. Compared with an earlier version of
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this work in [42], we have substantially improved the synchronization process and expanded the

subjective testing to validate our system.

Figure 1(a) shows the setup of the system. It captures the raw video of the patient through a

web camera situated on top of a desktop computer. Figure 1(b) shows the user interface. A red

square is shown in the middle of the screen to provide a visual cue to anchor the head position. In

order to capture a proper eye gaze, the left-to-right scrolling script is shown near the camera.

The rest of the paper is organized as follows: Section 2 discusses the severity of the vocal

hyperfunction problem and motivates the treatment potential of VSM in voice disorders. Section 3

reviews related work in video synthesis and lip synchronization. Section 4 provides an overview of

our proposed system, which consists of the analysis and the synthesis portion. The algorithms for

our audiovisual analysis of the input signals are presented in Section 5. The synthesis of the speech

replacement and video re-sampling are presented in Section 6. Section 7 presents the experimental

results. Section 8 concludes the paper with a discussion on possible future work.

2 VSM for Voice Disorder

Voice disorders appear to be the most common communication disorder across the lifespan, are

disabling and compromise quality of life. Considering that 3-9% of the population has some type

of voice disorder at any given point in time [43], is a significant medical problem. According to the

National Institute on Deafness and Other Communication 7.5 million people in the United States

have trouble using their voices. Voice disorders can have significant personal as well as societal

impact. Voice disorders are a source of substantial functional loss for individuals, and a source of

substantial economic cost to society in terms of higher health care costs.

Voice therapy is often the primary choice of treatment for voice disorder called vocal hyper-

function. Vocal hyperfunction is one type of voice disorders that is defined as the use of excessive

muscle force and physical effort in the production of voice [11]. The traditional model of voice ther-

apy typically involves participation in one or two 40-45 minute sessions per week over the course

of eight weeks with the speech language pathologist to facilitate behavior change in production of

voice. High dropout rates of 16% to 65% [24,30,40] coupled with reduced long-term success rates of

51% to 68% [41], suggest the need for development of new approaches for delivery of voice therapy

to improve treatment success [39] [36].

Access to voice therapy services for management of voice disorders in rural areas and developing

countries is particularly lacking, due to difficulties in recruiting and retaining speech language

pathologists and the expenses of time and travel for the required voice therapy program necessary

to remediate the voice disorder. The use of VSM for voice therapy is a novel application where the

pathologist can use the proposed system to create videos of a patient speaking with an improved

voice. The patients can either take these videos after their initial visit to the clinic or access

them through internet, and continue their behavioral modeling in their home. This new form of

treatment has the potential of reducing the length of the treatment program and the number of

therapy sessions, thereby reducing health disparities in rural populations.
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3 Related Work

Our goal of synthesizing new talking head video bears resemblance with the large body of work

in facial animation using either real video footage [29] and avatars [15, 37]. The key difference

is that we have exploited the requirements from the domain application in developing a fully

automated real-time system. For example, we only need to re-sample the video sequence to achieve

lip synchronization rather than a complete re-rendering of a new sequence as in [29]. Also it is

unimportant for us to preserve emotion as in [15,37]. On the other hand, there are more stringent

audio requirements that we need to overcome in synthesizing a new speech track with a healthy

voice that bears strong resemblance to the patient.

The problem of lip synchronization has been extensively studied in literature, which can be

grouped into three different categories according to the data source: audio-based, video-based, and

joint audiovisual processing. For pure audio-based techniques, Mermelstein’s algorithm [34] is an

influential rule-based syllable segmentation approach. It locates syllable boundaries by computing

the convex hull of the intensity envelope between 500Hz and 4kHz. A modification to Mermelstein’s

convex hull algorithm based on periodicity and normalized energy was developed in [45] for syllable

nuclei detection. In [2], Howitt incorporated Neural Network into an energy-based vowel detector

using Mermelstein’s algorithm. In [35], a multi-pass automatic speech segmentation algorithm was

proposed, which involves a broad segmentation by intensity dips in the filtered speech, followed by

further adjustments for syllable nuclei. Despite the sophistication of audio segmentation techniques,

consistent segmentation across speakers remains a very challenging problem.

As for video based techniques, a lip-motion recognition method using Hidden Markov Model

(HMM) is proposed in [27]. Lip contour boundary was extracted based on the contrast intensity

of the image. Similarly, in [18] and [23], a lip segmentation algorithm was developed by contour

detection and model fitting. However, these methods require a priori knowledge about lip struc-

ture, which makes it difficult to achieve full automation. To avoid the training steps, a geometric

deformable model was proposed in [8]. They used spatial fuzzy clustering to create a probability

map about the lip image. Then, the lip position was obtained by maximizing the join probability

of the lip region and non-lip region. Nevertheless, this method requires heavy computation due

to the complex probability model, which makes it hard to achieve realtime or close-to-realtime

performance. In [17], the authors provided an efficient implementation through field-programmable

gate array (FPGA). In their system, a naive Bayes classifier was used to extract lips features. But

this method may be error-prone if the lip color is close to that of the skin. In [14], an improved ac-

tive contour model was developed to extract the lip shapes by iteratively minimizing the proposed

energy functions. Similar to our approach, it is based on the snake algorithm. But ours is simpler

since for our problem, we do not need to track the lip motion over time.

Lip-motion and audio analysis are often combined to enhance the accuracy of speech recognition.

There is a body of research termed audio-visual speech recognition(AVSR) which incorporates lip-

motion as additional features in building the speech recognition engines [5, 7, 10, 21, 22, 26]. In

our paper, both visual and audio information are also combined in the production of the output

video. The difference is that we use them for the alignment of the original speech signal and the

replacement speech signal, rather than recognition of specific phones. As such, our focus is on the

accuracy in identifying the same set of markers across speeches from different individuals. Once the
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alignment is identified, they are used to re-sample the video to establish lip-synchronization with

the replacement speech.

4 System Overview

Figure 2 shows the audiovisual analysis and the VSM content generation process. After the raw

video is captured, the audio track is extracted. The audio is segmented to extract time markers

corresponding to the phone boundaries. The system then generates a replacement speech using

either perceptually similar pre-recorded healthy voice or text-to-speech synthesis. The merits of

both methods will be studied in the experimental section. Time markers for phone boundaries in

the replacement speech will also be identified using the same segmentation module. Both sets of

markers are needed to align the video track with the replacement speech in order to minimize motion

jitter and provide lip-synchronization. Frame interpolation is then applied to re-sample the video

track which is then combined with the new speech track. Our audio-visual synchronization process

is described in Section 5 while the generation of the replacement speech and video re-sampling are

presented in Section 6.

Fig. 2 VSM Contenet Generation

5 Audiovisual Analysis

The goal of the audiovisual analysis is to identify a set of time timers that partition the speech

signal at the phone boundaries. Two sets of markers are identified based on the variation of the

loudness of the speech signal and the lip openness detected in the video signal. They are then

combined to obtain a robust alignment between the original and the replacement speech tracks

using dynamic programming. The details are described in the following subsections.
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5.1 Audio Analysis

Our audio segmentation module uses a derivative-based approach which consists of three steps:

signal envelop calculation, differentiation, and minima identification. An example of this three-step

process is shown in Figure 3. First, the signal envelope is computed by applying a low pass filter

on the cepstrum of the smoothed input signal. The envelope is obtained by the following equation:

E = exp(F−1(W (F (log(y))))) (1)

where y is the input audio signal, and W is a low-pass window. F is the Fourier transformation.

During the recording phase, we use sliding text to control the display speed for the speaker to

read the script. This can roughly partition the speech signal into alternative continuous speech and

silence periods. Starting with these rough partitions, we use a sliding window over the envelope

to compute the short-term signal variance. A significant increase in the variance indicates the

beginning of the speech period and a significant drop represents the end. Second, we compute the

derivative of the envelope by convolving it with a Gaussian derivative filter. In the final step, the

local minima of the envelope are identified based on the increasing zero-crossings of the derivative

signal. Each local minimum is treated as the boundary between two phones.

The audio segmentation method does not necessarily recover the true partition of all phones.

When the algorithm runs through multiple phones where there is no volume fall-off, it will interpret

them as a single phone, resulting in time marker omissions. Such an error is not consistent across

different speakers. Discrepancies in time markers between the source and target speech signals

can significantly degrade the performance of the subsequent speech alignment. A misalignment

due to an omission of a time marker in one signal can propagate to a much longer period before

synchronization can be re-established at the end of a continuous speech period. To enhance the

correct detection of all time markers, we turn to the video and analyze the lip movement.

5.2 Video Analysis

Lip state detection is employed to enhance the accuracy and robustness of phone segmentation.

Unlike lip-reading techniques, it is not necessary for us to identify the exact lip shape. Instead, we

notice a significant change in lip change from open to close or vice versa coincide well with time

markers of some phones. As such, we employ the following procedure to detect changes in the shape

of the lip.

5.2.1 Face Detection

For each frame, the speaker’s face is first detected using an Adaboost classifier on Haar-like fea-

tures [44]. As this classifier is primarily for detecting frontal upright faces, the input image is rotated

about the center by a range of small angles and the classifier is applied to each rotated image to

ensure proper face detection.
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Fig. 3 Three steps of phone segmentation: envelope calculation (top), differentiation of envelop (middle), minima

identification (bottom).

5.2.2 Mouth Detection

In this step, we modify the approach described in [19] to detect the mouth region. The face region

is first converted to the HSV space. An edge map is then obtained by applying the Sobel edge filter

on the difference between the hue and the luminance channels. Connected component clustering

is then applied to the edge map. The mouth blob is determined to be the largest blob straddling

the vertical centerline of the face region. Sample results from these steps are illustrated in Figure

4(a)-(c).

5.2.3 Lip Contour Tracking

After detecting the mouth region, the contours of the lips are extracted in this step. Figure 4(d)

shows the saturation channel of a face image. As the lip is more saturated in color than the

skin tone, we can take advantage of this observation to track the contour of the inside of the lip

and determine if the mouth is open or close. To track the contour of the inside lip, we use the

active snake algorithm from [32]. A snake is simply a piece-wise linear contour that is computed

based on the optimization of an appropriately chosen objective function. Two snakes, tracking the
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(a) (b) (c) (d)

Fig. 4 Processing results on the face image: (a) Original face (b) Sobel Filter on hue-luminance differnce (c)

Mouth boundary by blob detection (d) Inside-lip contour

upper and lower lips, are initiated from the left corner of the mouth which is detected using the

feature point detection from [20]. The extension of the snakes from their starting point is guided by

the gradient vector field of the hue channel. Specifically, the end-points of the segments of a snake,

{P0,P1,P2, . . . ,Pn} ∈ <2 with a fixed starting point P0, are recursively computed by maximizing

the normalized line integral along each line segment:

Pi , arg maxP∈Si

∫
Pi−1P

∇H(r) · dr
|Pi−1P|

(2)

where H(·) is the hue image and Pi−1P is the line segment between Pi−1 and Pi. Si defines

the search region for the endpoint Pi. In our implementation, the integral in Equation (2) is

approximated by the corresponding discrete sum, ∇H(r) by the Sobel edge detector over the hue

channel, and Si , {(x0 + i∆x, y) : yi−1 −∆1
y < y < yi−1 +∆2

y)} where Pi = (xi, yi). ∆x controls

the resolution along the x-direction and ∆1,2
y controls the search range in the y-direction. ∆1

y < ∆2
y

is used for the upper snake and ∆1
y > ∆2

y for the lower snake. These parameters are all empirically

determined.

5.2.4 Lip States Classification

In our system, the lip shape is classified into two states: open and close. The state is determined by

the angle made by the upper and lower snakes. As such, the two snakes are only grown until they

reach the centerline of the mouth. Two regression lines are then fit to the upper and lower snakes

and the angle ϑ between them is measured. An example of the two regression lines are shown in

Figure 4(d). A temporal median filter is then used to remove noise in the time series of ϑ. The close

state is assigned to time intervals where ϑ is close to zero. Time markers are recorded when the

lip state changes from open to close or vice versa. The measurement of lip state provides a visual

cue for lip synchronization that cannot be provided by the audio segmentation step. However, not

every phone involves closing of the lip and the number of lip-state changes is typically far fewer

than the actual number of phones. To provide an accurate set of time markers, the time markers

from this section must be intelligently combined with those from Section 5.1 to obtain the final

answers.
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5.3 Fusion of audio and video time markers for alignment

From Sections 5.1 and 5.2, we find that results from audio and video segmentations could both be

used to perform temporal alignment. Yet neither one produces accurate enough markers for align-

ment. Audio segmentation may miss markers that separate closely spaced phones, a phenomenon

that differs from speaker to speaker. Lip-state segmentation is consistent across speakers, but not

every phone can be detected based on changes in lip states. Robust alignment is only possible if

we combine both sets of time markers together.

The combination is performed after the time markers for both the original and the replacement

speech track have been produced. We first normalize all the time markers by the corresponding

duration of the speech tracks so that they are between 0 and 1. Denote the two sets of lip-state

time markers as M1 = {s1, s2, . . . , sm} and M2 = {t1, t2, . . . , tn} with m ≤ n. The alignment ti(k)

in M2 for each sk in M2 is obtained by minimizing the following objective function:

S , min

min(m,n)∑
k=1

|sk − ti(k)| (3)

The optimal alignment with the constraint of a monotonic increasing i(k) can be obtained by

applying dynamic programming to minimize S. The video alignment produces a coarse but reli-

able alignment of the two speech tracks. For each pair of corresponding segments (sk−1, sk) and

(ti(k−1), ti(k)), we collect all the audio time markers within and apply exactly the same alignment

procedure again to these time markers. This step provides the finer level of alignment of phones

between successive video markers.

The fusion of video and audio alignment enhances the matching accuracy and is more robust

to handle errors. For example, if there is an absence of audio time markers, it could decrease the

overall accuracy of the time marker matching between speech tracks. However, with the fusion of

the audio and video, the influence of the wrong or missing time marker can be reduced. As we first

use the lip state to divide all the (audio) time marks into several subsets. Only time markers from

the corresponding subset are considered for matching. So a wrong or missing audio time maker can

only affect the matching accuracy of those time markers from the same subset. In this way, the

errors are stopped from propagating down to the whole speech track.

6 VSM content synthesis

In this section, we describe the process of generating the replacement speech signal and re-sampling

of the original video signal for lip synchronization based on the optimal alignment determined in

Section 5.

6.1 Replacement Speech Generation

To generate the replacement speech track, we have tested two different approaches - the first one is

to use a commercially available text-to-speech synthesizer from Cereproc [13] and the second one

is to use a speech corpus of healthy voices. The motivation of using the second approach is due to
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the questionable quality of the synthesized speech from the text-to-speech engine. While the text-

to-speech engine offers great flexibility in generating arbitrary scripts and produces reasonably

sounding speech, it still lacks the naturalness in real human speech. Since the scripts used in a

typical therapy session are usually fixed, we collect speech clips from a diverse set of individuals

with healthy voice reciting the same script used in the therapy session. Then, we identify among

all the speakers in the corpus the one who sounds most similar to the patient’s voice. To compute

speaker similarity, we use a state-of-the-art text-independent speaker identification system called

ALIZE [4]. ALIZE represents individual speaker models using Gaussian Mixture Model (GMM)

over linear frequency cepstral coefficient features. We use the data collected from a generic speech

corpus to construct a 2048 component world GMM model, which is then adapted to individual

speaker models in our voice corpus. In the actual deployment, we use the patients voice as input

and find the speaker that produces the maximum likelihood ratio between the respective GMM

models among all speakers in the corpus. To make the selected or generated speech signal sound

even closer to the patient, we have further experimented with a non-parallel voice conversion process

described in [3]. This module modifies the speech based on the vocal tract model constructed using

the patients speech. The voice conversion algorithm warps the source speakers spectrum to the

target spectrum in time domain using vocal tract model. During the training phase, the warping

parameter and the fundamental frequency ratio are computed. During the conversion, the synthetic

speech from the text-to-speech engine or the healthy voice speech selected from the corpus is warped

using these parameters towards the target spectrum.

6.2 Adaptive Video Re-sampling

The objective of the video processing unit is to re-sample the input video track so that it will be

lip-synchronized with the replacement speech track. Due to the differences in the word durations

between the original and replacement voice tracks, adaptive re-sampling must be applied to achieve

lip synchronization. During the segmentation phase in Section 5, time markers have already been

identified for all segments containing phones. The result is a one-to-one mapping between the

segments from the original and from the replacement speech tracks. The goal of the re-sampling

scheme will be to re-sample each segment of the original video track to match the length of the

corresponding segment in the replacement speech track.

The most straightforward approach is to apply uniform re-sampling for each segment indepen-

dently. Based on our preliminary study, we notice that while the differences in the duration between

corresponding word segments from two speech tracks are relatively small, there are large variations

among the corresponding silence segments in between. Significant up-sampling or down-sampling

creates unevenness in motion or motion jitter, making the resulting video unnatural. While we

maintain a uniform re-sampling for all the word segments, we adopt a different approach for the

silence segments to preserve the original motion as much as possible. In the case of down-sampling,

we would keep more frames at the portions with higher motion to better preserve the movement.

In the case of up-sampling, we would add frames or expand the static portions so that we will not

slow down or distort the significant object movements. This procedure is illustrated in Figure 5.
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Fig. 5 Up-sampling and Down-sampling

This results in the proposed adaptive re-sampling algorithm for the silence segments shown in

Algorithm 1. The re-sampling is treated as a process of creating the set of output frames with

a target number of frames M from the input set of N original frames. Step 1 preserves all the

original frames in the case of up-sampling. Motion energy is computed between successive frames

in step 2. In step 3 and 4, we identify the pairs of original frames that have the highest or the

lowest motion energy, depending on whether the goal is to up-sample or down-sample the sequence.

For up-sampling, the new frame will be added to the lowest motion energy to stretch the static

region. For down-sampling, the new frame is added to give priority to the portion with the highest

energy. The routine INTERPOLATE is used to interpolate a video frame between two different

frames. The simplest technique is to use bilinear interpolation which can lead to motion blurriness

and ghosting. As such, we have also tested bidirectional interpolation based on dense optical flow

vectors. The forward and backward optical flow vectors are estimated based on the pyramidal Lucas-

Kanade algorithm as implemented in the OpenCV library. The flow vectors are then smoothed by

a simple median filter. The temporally-scaled forward and backward vectors are then used in

identifying pixels on the input frames that can be combined in creating the intermediate frames.

For pixels in the intermediate frame that are not mapped by neither a forward or backward vectors,

straightforward bilinear interpolation is applied. In step 6 of Algorithm 1, we deliberately remove

portions of the sequence where we have already added new frames - this step prevents clustering

of added frames in a small number of low/high motion areas. The parameter ∆ is empirically

determined to be two frames.
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Algorithm 1 Silence Segment Re-sampling

Input Input frames: I = {I1, I1, . . . , IN}
Output Output frames: J = {J1, J1, . . . , JM}

1. For up-sampling (i.e. M ≥ N), insert all frames of I into J .

2. Compute mean-square error between consecutive input frames:

ei = MSE(Ii, Ii+1) with Ii, Ii+1 ∈ I.

3. For up-sampling, select the pair (Ii, Ii+1) from I with the minimum ei.

4. For down-sampling (i.e.M ≤ N), select the pair (Ii, Ii+1) from I with the maximum ei.

5. Create new frame J = INTERPOLATE(Ii, Ii+1) and add J into J with the time order preserved.

6. Remove Ii−∆+1, Ii−∆+2, . . . , Ii+∆ from I.

7. Repeat previous step 3-6 until |J | = M.

7 Experiments

To test the performance of our system, we capture video clips from a total of 31 participants. The

participants are native English speakers of ages between 18-40. During the recording stage, each

participant read the same script commonly used in speech therapy1, which consists of a series of

isolated words and short sentences. The experiment is conducted in a quiet room that only has a

researcher and the testing subject involved. To accurately track the speakers face, there is a certain

limit in the range of the distance (0.4m to 0.8m) that the subject sits from the camera. The size

of the extracted face region ranges from 160× 240 to 210× 325 in pixels.

We use a Logitech QuickCam Pro 9000 to capture the video at a resolution of 640 × 480, and

an EMU 0404/Electro Voice PL5 combination for the audio recording. The proposed algorithm is

implemented in C++ with the OpenCV library that runs on a computer with the hardware setting:

Intel CoreTM i7-2820QM CPU at 2.3 GHz and 8.0GB of RAM. The video clips are on average 2

minutes and 8 seconds long, and are captured at 30fps (video) and 22.5kHz (audio). For the audio

segmentation, it takes about 43 seconds to identify the boundaries between phones. The time cost

for the audio-visual matching is about 3 seconds. The frame rate of lip state detection is 17 fps. It

takes about 0.244 seconds to synthesize a new video frame from the original sequence.

Out of the 31 participants, 25 of whom are considered to have healthy voice. The speech

recordings and the text-to-speech recordings form the candidate dataset for speech replacement.

The remaining six participants are voice experts who can imitate the strained voice commonly

present in patients with vocal hyerfunction. The speech tracks of their video will be replaced by one

of the tracks from the candidate set, followed by voice conversion process. The optimal alignment

between the original and the replacement tracks is identified and adaptive video re-sampling is

applied to achieve lip-synchronization. In the sequel, we measure the performance of individual

components of our proposed system.

Replacement Speech Generation

We first consider the effect of different audio processing steps in producing a speech sample that

best resembles the healthy voice of the subject. We use the following log-likelihood ratio measured

1 The script can be found in http://vis.uky.edu/nsf-autism/speaktome
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by ALIZE in gauging the similarity between the candidate speech S and the original speech L:

LLR(S|L) = log

(
l(S|L)

l(S|W )

)
(4)

where l(S|L) is the likelihood of S based on the adapted GMM model generated using L as the

training data and l(S|W ) is the likelihood of S based on the world GMM model. The world model

is trained based on the entire TIMIT dataset [1]. This dataset contains 6300 utterances from

630 speakers with both male and female from 8 major dialect regions of United States. Table 1

shows the log-likelihood ratios of different replacement speech candidates. It is unsurprising to see

S LLR

Mimicked Voice 9.03e-2

Best-human 2.26e-2

Best-human + Voice Conversion 0.47e-2

Text-to-speech 1.39e-2

Text-to-speech + Voice Conversion -0.63e-2

Table 1 Similarity to Healthy Voice

that the mimicked voice is the one closest to the healthy voice. Among the other candidates, the

best human voice is ranked top followed by the text-to-speech version. On the other hand, the

application of voice conversion seems to have a detrimental effect. One possible explanation is the

proper selection of the warping parameter α and the fundamental frequency ratio r. The parameters

computed directly by the software produce voices that are non-human like, most likely due to the

non-natural hoarseness in the mimicked voice. We have tuned the parameters in such a way that

the voice is more human but it adversely affects the overall similarity to the target voice.

Time Marker Alignment

Once the replacement speech has been identified, the alignment process is performed between

the original and the replacement speech. Time markers from the automatic audiovisual analysis

are compared against the ground-truth alignment which is manually obtained by listening to the

original and replacement speech tracks. To arrive at an appropriate measurement of alignment,

consider a pair of speech tracks A and B. Let the ground-truth time markers for A and B be

{t1, t2, . . . , tn} and {s1, s2, . . . , sn}. Note that the number of markers in A and B are identical and

the phone (or silence) in A during [ti−1, ti) is the same as those in B during [si−1, si).

After our proposed alignment process, we obtain the correspondences between the automatically-

determined time markers from A and B. Denote the correspondences as ai ↔ bi for i = 1, 2, . . . ,m

where ai and bi are time markers from A and B. To compare with the ground-truth, we first iden-

tify the ground-truth interval [tj(i), tj(i)+1) in A that contains ai for each i. If the ground-truth is

correct, ai from A should roughly correspond to a′i in B based on linear interpolation:

a′i = sj(i) +
(ai − tj(i))(sj(i)+1 − sj(i))

tj(i)+1 − tj(i)
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Thus, the absolute error of the correspondence ai ↔ bi is |bi−a′i|. Each ground-truth interval may

contain zero or more such markers and we want to first measure the matching error over the entire

interval. Consider the set of all automatically-determined time markers MA(j(i)) in [tj(i), tj(i)+1)

of A. We can compute the average relative error:

EA(j(i)) =

{
1 if MA(j(i)) is empty

1
|MA(j(i))|

∑
a∈MA(j(i))

|b−a′|
|tj(i)+1−tj(i)| otherwise

(5)

where |MA(j(i))| denotes the number of markers in of MA(j(i)). We use relative error so that we do

not bias against long intervals. Note that for significantly skewed alignment, i.e. bi /∈ [tj(i), tj(i)+1),

the relative error can be bigger than 1.

This error measurement is not symmetric for the case when bi /∈ [tj(i), tj(i)+1). To derive a

symmetric metric, we reverse the role of A and B: if bi is in interval [sk(i), sk(i)+1) in B, the time

marker in A that corresponds to bi is

b′i = tk(i) +
(bi − sk(i))(tk(i)+1 − tk(i))

sk(i)+1 − sk(i)

The absolute error in this direction would be |ai−b′i| and the corresponding average relative error

within [sk(i), sk(i)+1) is analogously defined:

EB(k(i)) =

{
1 if MB(k(i)) is not empty

1
|MB(k(i))|

∑
b∈MB(k(i))

|a−b′|
|sk(i)+1−sk(i)| otherwise

(6)

Finally, a symmetric average relative error over all the ground-truth intervals can be computed as

follows:

E =
1

2n

n∑
i=1

(EA(i) + EB(i)) (7)

Using the best human sample as the replacement speech, we measure the average relative error

of the alignment for the six strained speech sample. The results are tabulated in Table 2. For

comparison, the performance of using audio only and video only for alignment are also listed. In

Video Pair Number Error (video) Error (audio) Error (combined)

< S1, H4 > 0.7350 0.1854 0.0760

< S2, H10 > 0.7413 0.2066 0.0859

< S3, H10 > 0.7472 0.2040 0.0692

< S4, H23 > 0.7378 0.2125 0.0751

< S5, H24 > 0.7408 0.1721 0.0704

< S6, H1 > 0.7458 0.1714 0.0767

Table 2 Results of forced choice tests

the table, the first column < S∗, H∗ > are pairs of strained and healthy voices, in which each

healthy voice is identified by ALIZE measurement as one bearing maximum resemblance to the

corresponding strained voice. The third column shows the average relative error for alignment using

lip-state changes only. The error is very high but consistent across different speakers. The fourth

column shows the average relative error for alignment using audio segmentation. The results are
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better than those using lip-state only but higher variation is observed across different speakers.

The last column shows the average relative error of combining both together using our proposed

scheme. There is a dramatic reduction in the relative error and the results are accurate across

different speakers.

While Table 2 shows the average relative error, more information can be obtained by showing

the histogram of the relative error (EA(i) +EB(i))/2 across all ground-truth intervals for all pairs

of matched speech tracks. The three histograms corresponding to video only, audio only, and the

combined scheme are shown in Figure 6(a), 6(b), and 6(c) respectively. The bimodal nature of

Figure 6(a) indicates that many phones cannot be detected with the changes of lip-states. The

high variance in the relative error shown in Figure 6(b) is characteristics of audio segmentation as

the accuracy is highly speaker-dependent. The sharp concentration on low average error shown in

Figure 6(c) shows the superior performance of our proposed audiovisual scheme over the other two.

(a) (b)

(c)

Fig. 6 Histograms of relative error using (a) video only, (b) audio only, and (c) proposed audiovisual approach
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Video Interpolation

Figure 7(a) and 7(c) show two sample frame using bilinear interpolation, while Figure 7(b) and 7(d)

the corresponding frame using optical flow interpolation. As expected, optical-flow interpolation

produces a much sharper image, especially around high-motion areas such as eyelids and mouth.

(a) (b)

(c) (d)

Fig. 7 Interpolation methods comparison: (a),(c) Bilinear Interpolation; (b),(d) Optical Flow Interpolation

Adaptive Re-sampling

We also study the effect of our adaptive re-sampling of silence segments. In Figure 8(a), we first plot

the MSE measurements between successive frames for the original sequence. While keeping all the

“word” segments intact, we reduce all the silence segments into one quarter of their original length.

Two methods are tested: uniform re-sampling and our proposed adaptive re-sampling. MSE between

consecutive frames are then measured and the curves re-sampled to be the same time scale as the

original curve. As shown in Figure 8(a), our proposed approach provides a curve that can better
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preserve the original temporal energy than the uniform re-sampling approach. Figure 8(b) shows

a similar trend when we up-sample all silence segments by a factor of four. Figure 9 demonstrates

the up-sampling case. To synchronize the lip motion with the replacing audio, the original video

(on the first and third rows) is prolonged by generating multiple intermediate frames.

(a)

‘

(b)

Fig. 8 MSE curves by Uniform Re-sampling and Adaptive Re-sampling: (a) down-sampling (b) curve-sampling

Fig. 9 Video Sequence Re-sampling Example: the original video (row 1, 3) is prolonged in the synthesized video

(row 2, 4).
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Subject Testing

The above objective measurements, however, may not truly reflect the subjective quality of the

overall videos. As such, we have also performed a series of subjective evaluation tests. Two sets of

questions are administered to 15 test takers who are unaware of the details of our proposed system.

In the first test, they were asked to view and compare different video sequences and rate which one

is more natural and of higher quality. The key to the acronyms used in describing different schemes

are as follows: CA = Combined Alignment, AA = Audio-only Alignment, VC = Voice Conversion,

TTS = text-to-speech, BH = best-human voice, BI = binary interpolation, AS = adaptive re-

sampling and US = uniform re-sampling. The average results for different tests are tabulated in

Table 3. The results for the 15 tests are as expected: testers prefers best-human over TTS, the

absence of voice conversion, optical flow over bilinear interpolation, and adaptive re-sampling over

uniform re-sampling in the test.

Test % favored 1st Common parameters

CA vs. AA 100% BI+AS, BH

no VC vs. VC 100% BI+AS, TTS

no VC vs. VC 100% BI+AS, BH

BH vs. TTS 100% BI+AS, VC

BH vs. TTS 100% BI+AS

OI vs. BI 100% AS, BH

US vs. AS 100% BI, BH

Table 3 Results of forced choice tests

In the second test, the testers first view the mimicked voice video. Then, they are asked to

view five different videos and rank them based on their likelihood of being the heathy voice after

therapy. The results of the subjective evaluation are given in Table 4. While most testers choose

the “correct” answer, i.e. the real video with heathy voice, the synthetic video with best human

comes close. This result is promising as it demonstrates the possibility of using synthetic video in

depicting unseen behavior of an individual, which is precisely the goal of the VSM therapy.

Test Video Average Rank

Healthy Voice 1.8± 1.8

BI+AS, BH 2.0± 0.7

BI+AS, BH+VC 3.4± 1.3

BI+AS, TTS 3.2± 0.4

BI+AS, TTS+VC 4.6± 0.5

Table 4 Results of rank test



20 Ju Shen et al.

8 Conclusion

In this paper, we have demonstrated the use of computational multimedia techniques in automati-

cally generating video material for video self modeling intervention. The advantage of computation-

al techniques lies in its flexibility in creating unseen behaviors. Our proposed system is designed

specifically for voice therapy and produces a video with the patient’s coarse voice replaced by a

healthy voice. Experimental results have shown that natural human voice selected through speak-

er similarity provides the best subjective results. No additional benefit has been found by using

voice conversion techniques due to the inaccurate target models created with the coarse voice.

Optimal alignment between the original and replacement speech has been accomplished through

a combination of automatic audio segmentation and lip-state extraction. Based on the alignment,

an adaptive re-sampling algorithm has been proposed to preserve the motion energy during the

lip-synchronization process. Extensive objective and subjective evaluations have demonstrated the

advantages of our design and a clinical test is currently underway to study the effectiveness of our

system in a larger scale. While our proposed system is domain specific, we believe that the con-

cept of using multimedia techniques for video self modeling has far-reaching importance in many

different areas of health care and behavioral intervention.
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