6-2017

The Isbell-hull of an Asymmetrically Normed Space

Olivier Olela Otafudu
North-West University (South Africa), olivier.olelaotafudu@nwu.ac.za

Jurie Conradie

Hans-Peter Künzi

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the [Geometry and Topology Commons](http://ecommons.udayton.edu/topology_conf), and the [Special Functions Commons](http://ecommons.udayton.edu/topology_conf)

eCommons Citation

Otafudu, Olivier Olela; Conradie, Jurie; and Künzi, Hans-Peter, "The Isbell-hull of an Asymmetrically Normed Space" (2017). *Summer Conference on Topology and Its Applications*. 37.
http://ecommons.udayton.edu/topology_conf/37

This Topology + Asymmetric Structures is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
The Isbell-hull of an asymmetrically normed space

Olivier Olela Otafudu
School of Mathematical Sciences
North-West University (Mafikeng Campus)

University of Dayton, Dayton, Ohio, USA
1. Introduction

2. Injective asymmetrically normed spaces

3. The injective hull of an asymmetrically normed space
Asymmetrically normed spaces

A function \(p : X \rightarrow [0, \infty) \) on a real vector space \(X \) will be called an
asymmetric seminorm on \(X \) if for all \(x, y \in X \) and \(\lambda \in [0, \infty) \),
(a) \(p(\lambda x) = \lambda p(x) \);
(b) \(p(x + y) \leq p(x) + p(y) \).
If in addition we also have
(c) \(p(x) = p(-x) = 0 \) if and only if \(x = 0 \),
\(p \) will be called an asymmetric norm, and the pair \((X, p)\) an asymmetrically
normed space.
If (a) is replaced by by:
\((a') \) \(p(\lambda x) = |\lambda| p(x) \) for all \(\lambda \in \mathbb{R} \), then \(p \) is called a semi-norm.
If \(p \) is an asymmetric norm on \(X \), the function \(p^t : X \rightarrow [0, \infty) \) defined by
\[
p^t(x) = p(-x), \quad x \in X
\]
is also an asymmetric norm, the asymmetric norm conjugate to \(p \).
The symmetrisation of the asymmetric norm \(p \) is the function \(p^s : X \rightarrow [0, \infty) \)
given by
\[
p^s(x) = \max\{p(x), p(-x)\}, \quad x \in X
\]
and this is easily seen to be a norm on \(X \).
An asymmetric norm p induces a T_0-quasi-metric d_p on X defined by

$$d_p(x, y) = p(y - x) \text{ for all } x, y \in X.$$

For $x \in X$, $r > 0$ we define the balls

$$B^p_r(x) = \{ y \in X : d_p(x, y) < r \} = \{ y \in X : p(y - x) < r \}$$

and

$$B^p_r[x] = \{ y \in X : d_p(x, y) \leq r \} = \{ y \in X : p(y - x) \leq r \}.$$

The family $\{B^p_r(x) : r > 0 \}$ forms a fundamental system of neighbourhoods for x for a T_0 topology τ_p on X, which we shall refer to as the topology induced by p.

The Hausdorff topology τ_{p^s} induced by the norm p^s is clearly finer than the topologies τ_p and τ_{p^t}.
As a simple but important example we mention the asymmetric norm p_1 on \mathbb{R} (regarded as a real vector space) defined for all $x \in \mathbb{R}$ by

$$p_1(x) = x^+,\$$

where $x^+ = x \vee 0 = \max\{x, 0\}$ is the positive part of x. In this case

$$p_1^t(x) = \max\{-x, 0\} = x^-\$$

$$p_1^s(x) = \max\{x^+, x^-\} = |x|.$$
An asymmetrically normed space \((X, p)\) will be called (a) \textit{Isbell-convex} if for every family \((x_i)_{i \in I}\) of elements of \(X\) and families of non-negative real numbers \((r_i)_{i \in I}\) and \((s_i)_{i \in I}\) it follows that if
\[
p(x_j - x_i) \leq r_i + s_j
\]
whenever \(i, j \in I\), then
\[
\bigcap_{i \in I} B_{r_i}^p[x_i] \cap B_{s_i}^t[x_i] \neq \emptyset.
\]
(b) \textit{metrically convex} if for every two elements \(x, y \in X\) and non-negative numbers \(r\) and \(s\) such that \(p(y - x) \leq r + s\), there exists a \(z \in X\) such that
\[
p(z - x) \leq r \quad \text{and} \quad p(y - z) \leq s.
\]
(c) \textit{Isbell-complete} if for each family \((x_i)_{i \in I}\) of elements in \(X\) and families of non-negative real numbers \((r_i)_{i \in I}\) and \((s_i)_{i \in I}\) such that if \(B_{r_i}^p[x_i] \cap B_{s_j}^t[x_j] \neq \emptyset\) whenever \(i, j \in I\), then
\[
\bigcap_{i \in I} B_{r_i}^p[x_i] \cap B_{s_i}^t[x_i] \neq \emptyset.
\]
Examples

1. $X = \mathbb{R}^2$, \[\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}\] has the binary intersection property.

2. $X = \mathbb{R}^2$, \[\|(x_1, x_2)\| = \sqrt{x_1^2 + x_2^2}\] does not have the binary intersection property.

3. Hence \mathbb{C}, with its usual norm, does not have the binary intersection property.
Note that an asymmetrically normed space \((X, p)\) is Isbell-convex (metrically convex, Isbell-complete) if and only if the \(T_0\)-quasi-metric space \((X, d_p)\) has the same property.
Note that an asymmetrically normed space \((X, p)\) is Isbell-convex (metrically convex, Isbell-complete) if and only if the \(T_0\)-quasi-metric space \((X, d_p)\) has the same property.

Lemma

Every asymmetrically normed space \((X, p)\) is metrically convex.
Note that an asymmetrically normed space \((X, p)\) is Isbell-convex (metrically convex, Isbell-complete) if and only if the \(T_0\)-quasi-metric space \((X, d_p)\) has the same property.

Lemma

Every asymmetrically normed space \((X, p)\) is metrically convex.

Lemma

An asymmetrically normed space \((X, p)\) is Isbell-convex if and only if it is Isbell-complete.
Definition

An asymmetrically normed space \((Y, q)\) is called **1-injective** if for every asymmetrically normed space \((X, p)\) and every linear subspace \(X_0\) of \(X\), every continuous linear map \(T_0 : (X_0, p) \to (Y, q)\) has a continuous extension \(T : X \to Y\) such that \(\|T\|_{p,q} \leq \|T_0\|_{p,q}\).

Lemma

If the asymmetrically normed space \((X, p)\) is Isbell-convex, then so is \((X, p^\dagger)\), and the normed space \((X, p^s)\) is a hyperconvex Banach space, and therefore 1-injective (as a Banach space).
Definition

An asymmetrically normed space \((Y, q)\) is called \textbf{1-injective} if for every asymmetrically normed space \((X, p)\) and every linear subspace \(X_0\) of \(X\), every continuous linear map \(T_0: (X_0, p) \rightarrow (Y, q)\) has a continuous extension \(T: X \rightarrow Y\) such that \(\|T\|_{p,q} \leq \|T_0\|_{p,q}\).

Lemma

If the asymmetrically normed space \((X, p)\) is Isbell-convex, then so is \((X, p^t)\), and the normed space \((X, p^s)\) is a hyperconvex Banach space, and therefore 1-injective (as a Banach space).

Theorem

An Isbell-convex (equivalently, Isbell-complete) asymmetrically normed space \((Y, q)\) is 1-injective.
Let \((X, p)\) be an asymmetrically normed space. Recall that a function pair \(f = (f_1, f_2)\), where \(f_i : X \to [0, \infty)\) for \(i = 1, 2\), is called ample if

\[
p(y - x) \leq f_2(x) + f_1(y),
\]

and that \(f\) is minimal whenever \(g = (g_1, g_2)\) is an ample pair such that if \(g_1(x) \leq f_1(x), g_2(x) \leq f_2(x)\) for all \(x \in X\), then \(g_1 = f_1, g_2 = f_2\). The set of all minimal function pairs on \(X\) will be denoted by \(\mathcal{E}(X, p)\). The following characterisation of the elements of \(\mathcal{E}(X, p)\) is useful; recall that for \(a \in \mathbb{R}\), we write \(a^+ = a \vee 0 = \max\{a, 0\} \).
Let \((X, p)\) be an asymmetrically normed space. Recall that a function pair \(f = (f_1, f_2)\), where \(f_i : X \to [0, \infty)\) for \(i = 1, 2\), is called **ample** if

\[
p(y - x) \leq f_2(x) + f_1(y),
\]

and that \(f\) is **minimal** whenever \(g = (g_1, g_2)\) is an ample pair such that if

\[
g_1(x) \leq f_1(x),
\]

\[
g_2(x) \leq f_2(x)
\]

for all \(x \in X\), then \(g_1 = f_1, g_2 = f_2\). The set of all minimal function pairs on \(X\) will be denoted by \(E(X, p)\). The following characterisation of the elements of \(E(X, p)\) is useful; recall that for \(a \in \mathbb{R}\), we write \(a^+ = a \vee 0 = \max\{a, 0\}\).

A function pair \(f = (f_1, f_2)\) belongs to \(E(X, p)\) if and only if for every \(x \in X\),

\[
f_2(x) = \sup_{s \in X} (p(s - x) - f_1(s))^+
\]

and

\[
f_1(x) = \sup_{s \in X} (p(x - s) - f_2(s))^+.
\]
For every $z \in X$, we define the minimal function pair $f_z = (f_{z,1}, f_{z,2})$ by

\[
f_{z,1}(x) = p(x - z), \quad f_{z,2}(x) = p(z - x).
\]

The mapping $z \mapsto f_z$ is an injection of X into $\mathcal{E}(X, p)$.
For every $z \in X$, we define the minimal function pair $f_z = (f_{z,1}, f_{z,2})$ by

$$f_{z,1}(x) = p(x - z), \quad f_{z,2}(x) = p(z - x).$$

The mapping $z \mapsto f_z$ is an injection of X into $\mathcal{E}(X, p)$. We now define scalar multiplication on $\mathcal{E}(X, p)$. For $\lambda \in \mathbb{R}$ and $f \in \mathcal{E}(X, p)$, we define the function pair $f^\lambda = (f_1^\lambda, f_2^\lambda)$ by

$$f_1^\lambda(x) = \begin{cases} \lambda f_1(\lambda^{-1}x) & \text{if } \lambda > 0, \\ p(x) & \text{if } \lambda = 0, \text{ and} \\ |\lambda| f_2(\lambda^{-1}x) & \text{if } \lambda < 0 \end{cases}$$

$$f_2^\lambda(x) = \begin{cases} \lambda f_2(\lambda^{-1}x) & \text{if } \lambda > 0, \\ p(-x) & \text{if } \lambda = 0, \\ |\lambda| f_1(\lambda^{-1}x) & \text{if } \lambda < 0. \end{cases}$$
Lemma

If $f = (f_1, f_2) \in \mathcal{E}(X, p)$ and $\lambda \in \mathbb{R}$, then $f^\lambda \in \mathcal{E}(X, p)$

It now follows that we can define scalar multiplication in $\mathcal{E}(X, p)$ by putting

$$\lambda f = f^\lambda.$$

We now turn to defining addition on $\mathcal{E}(X, p)$. If $f = (f_1, f_2), g = (g_1, g_2) \in \mathcal{E}(X, p), x \in X$ we put $f \oplus g = ((f \oplus g)_1, (f \oplus g)_2)$, where

$$(f \oplus g)_1(x) = \sup\{(f_1(x - s) - g_2(s))^+ : s \in X\},$$

$$(f \oplus g)_2(x) = \sup\{(f_2(x - s) - g_1(s))^+ : s \in X\}.$$

Lemma (Olela Otafudu, Topology Appl. 166 (2014))

If $f = (f_1, f_2) \in \mathcal{E}(X, p)$, then for $x \in X$,

$$\sup\{(f_1(x + s) - f_1(s))^+ : s \in X\} = p(x),$$

$$\sup\{(f_2(x + s) - f_2(s))^+ : s \in X\} = p(-x).$$
If $f, g \in \mathcal{E}(X, p)$, then $f \oplus g$ is ample.
If $f, g \in \mathcal{E}(X, p)$, then $f \oplus g$ is ample.

Suppose $x, y, z \in X$. Then

\[(f_y \oplus f_z)_1(x) = f_{(y+z),1}(x)\]

and

\[(f_y \oplus f_z)_2(x) = f_{(y+z),2}(x).\]

Lemma

If $f, g \in \mathcal{E}(X, p)$ and $x \in X$, then

\[\sup_{s \in X}(f_1(x - s) - g_2(s))^+ = \sup_{s \in X}(g_1(s) - f_2(x - s))^+\]

and

\[\sup_{s \in X}(f_2(x - s) - g_1(s))^+ = \sup_{s \in X}(g_2(s) - f_1(x - s))^+\].
Let \(f, g, h \in \mathcal{E}(X, p) \).

Then

\[
f \oplus g = g \oplus f
\]

and

suppose \(f \oplus g, g \oplus h \in \mathcal{E}(X, p) \). Then

\[
(f \oplus g) \oplus h = f \oplus (g \oplus h).
\]
Let $f, g, h \in \mathcal{E}(X, p)$. Then
\[f \oplus g = g \oplus f \]
and suppose $f \oplus g, g \oplus h \in \mathcal{E}(X, p)$. Then
\[(f \oplus g) \oplus h = f \oplus (g \oplus h). \]

In the light of the definition of scalar multiplication, the only candidate for the additive identity is $f^0 = (f_1^0, f_2^0)$, with $f_1^0(x) = p(x)$, $f_2^0(x) = p(-x))$. We check this: Let $f = (f_1, f_2) \in \mathcal{E}(X, p)$ and $x \in X$. Then,
\[(f^0 \oplus f)_1(x) = \sup \{(p(x - s) - f_2(s))^+ : s \in X\} = f_1(x), \]
and
\[(f^0 \oplus f)_2(x) = \sup \{(p(s - x) - f_1(x))^+ : s \in X\} = f_2(x). \]
The only candidate for the additive inverse of \(f = (f_1, f_2) \) is
\((-1)f = (f_1^{-1}, f_2^{-1})\). We check this:

\[
(f \oplus f^{-1})_1(x) = \sup \{(f_1(x - s) - f_2^{-1}(s))^+ : s \in X\}
\]
\[
= \sup \{(f_1(x + s) - f_1(s))^+ : s \in X\}
\]
\[
= p(x) = f_1^0(x).
\]

A similar calculation shows that
\[
(f \oplus f^{-1})_2(x) = p^{-1}(x) = f_2^0(x).
\]

We denote the additive inverse of \(f = (f_1, f_2) \in \mathcal{E}(X, p) \) by \(-f\); thus
\(-f = ((-f)_1, (-f)_2), \) where

\[
(-f)_1(x) = f_2(-x),
\]
\[
(-f)_2(x) = f_1(-x)
\]

whenever \(x \in X \). If \(f, g \in \mathcal{E}(X, p) \), then \(f \oplus g \in \mathcal{E}(X, p) \).
Theorem

If scalar multiplication on $\mathcal{E}(X, p)$ is defined by $\lambda f = f^\lambda$ and addition \oplus by

$$(f \oplus g)_1(x) = \sup\{(f_1(x - s) - g_2(s))^+ : s \in X\}$$

and

$$(f \oplus g)_2(x) = \sup\{(f_2(x - s) - g_1(s))^+ : s \in X\}$$

whenever $f, g \in \mathcal{E}(X, p)$ and $\lambda \in \mathbb{R}$, then $\mathcal{E}(X, p)$ is a vector space and the map $x \mapsto f_x$ is a linear isomorphism of X into $\mathcal{E}(X, p)$.
To define an asymmetric norm on \(E(X, p) \) we take our cue from the \(T_0 \)-quasi-metric \(D \) defined on the injective hull of a \(T_0 \)-quasi-metric space \((X, d)\) in [Kemajou, Künzi, Otafudu, Topology Appl. 159 (2012)] by
\[
D(f, g) = \max\{\sup_{s \in X} (f_1(s) - g_1(s))^+, \sup_{s \in X} (g_2(s) - f_2(s))^+\}
\]
for \(f, g \in E(X, p) \), it is shown that
\[
D(f, g) = \sup_{s \in X} (f_1(s) - g_1(s))^+ = \sup_{s \in X} (g_2(s) - f_2(s))^+.
\]
Recall that the additive identity \(f^0 = (f_0^1, f_0^2) \) is defined by
\[
f_1^0(s) = p(s), f_2^0(s) = p(-s).
\]
For \(f \in E(X, p) \) we now put
\[
\tilde{p}(f) = D(f^0, f) = \sup_{s \in X} (f_2(s) - p(-s))^+ = \sup_{s \in X} (p(x) - f_1(s))^+ = f_2(0)
\]
and
\[
\tilde{p}(-f) = D(f, f^0) = f_1(0).
\]
The function \(\tilde{p} : \mathcal{E}(X, p) \to [0, \infty) \) defined above is an asymmetric norm on \(\mathcal{E}(X, p) \) and the map \(x \mapsto f_x \) is an isometry.
The function $\tilde{p} : \mathcal{E}(X, p) \to [0, \infty)$ defined above is an asymmetric norm on $\mathcal{E}(X, p)$ and the map $x \mapsto f_x$ is an isometry.

Theorem

An 1-injective asymmetrically normed space (X, p) is Isbell-convex.
The function $\tilde{p} : \mathcal{E}(X, p) \to [0, \infty)$ defined above is an asymmetric norm on $\mathcal{E}(X, p)$ and the map $x \mapsto f_x$ is an isometry.

Theorem

An 1-injective asymmetrically normed space (X, p) is Isbell-convex.

Lemma

$\mathcal{E}(X, p)$ is Isbell-convex.
