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Abstract—With the explosive growth of web-based cameras
and mobile devices, billions of photographs are uploaded to
the internet. We can trivially collect a huge number of photo
streams for various goals, such as 3D scene reconstruction
and other big data applications. However, this is not an
easy task due to the fact the retrieved photos are neither
aligned nor calibrated. Furthermore, with the occlusion of
unexpected foreground objects like people, vehicles, it is even
more challenging to find feature correspondences and recon-
struct realistic scenes. In this paper, we propose a structure-
based image completion algorithm for object removal that
produces visually plausible content with consistent structure
and scene texture. We use an edge matching technique to
infer the potential structure of the unknown region. Driven
by the estimated structure, texture synthesis is performed
automatically along the estimated curves. We evaluate the
proposed method on different types of images: from highly
structured indoor environment to the natural scenes. Our
experimental results demonstrate satisfactory performance
that can be potentially used for subsequent big data processing:
3D scene reconstruction and location recognition.

Keywords: Image Completion, Texture Synthesis, On-

line Photos, Scene Reconstruction, Object Removal

I. INTRODUCTION

In the past few years, the massive collections of imagery

on the Internet have inspired a wave of work on many

interesting big data topics: scene reconstruction, location

recognition, and online sharing of personal photo streams

[2] [3] [4]. For example, one can easily download a huge

number of photo streams associated with a particular place.

By using features (e.g. SIFT), it is possible to automatically

estimate correspondence information and reconstruct 3D

geometry for the scene [5] [6]. Imagine building a world-

scale location recognition engine from all of the geotagged

images from online photo collections, such as Flickr and

street view databases from Google and Microsoft. However,

it is a challenging task as the photo streams are neither

aligned nor calibrated since they are taken in different

temporal, spatial, and personal perspectives. Furthermore,

with the occlusion of unexpected foreground objects, it is

even more difficult to recover the whole scene or accurately

identify overlapping regions between different photos.

To resolve the above issue, image in-painting is an

effective solution. In this paper, we propose an automatic

object removal algorithm for scene completion, which ben-

efits subsequent large imagery processing. The core of our

method is based on the structure and texture consistency.

Our proposed approach has two major contributions. First,

we develop a curve estimation approach to infer the potential

structure of the occluded region on the image. Second, an

orientated patch matching algorithm is designed for texture

propagation. Our work has a broad range of applications

including image localization [7] [8], privacy protection [9]

[10] [11], and other network based applications [12] [13]

[14] [15] [16].

II. RELATED WORKS

In the literature, image completion or in-painting has been

intensively studied: in [17], Efros and Leung used a one-

pass greedy algorithm to render unknown pixels based on

the assumption that the probability distribution of the pixel’s

brightness is independent to the rest of the image when the

spatial neighborhood is given. In [18], the authors proposed

an example-based approach to fill in the missing regions.

It worked well in filling in small gaps but not in large

ones. The weakness of such approach is that it fails to

preserve the potential structures. Jia et al. [19] designed
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Scene recovery by removing specified foreground object (a) Original Image (b) Our result (c) Contour detection by using OWT-UCM method
[1] (d) Edge extraction (e) Structure generation in the occlusion region by identifying corresponding edge pairs (f) Some denotations in our algorithm.

an image in-painting method based on texture-segmentation

and tensor-voting that created smooth linking structures in

the occluded regions. This method sometimes introduces

noticeable artifact due to the texture inconsistency. Criminisi

et al. [20] made an improvement by assigning in-painting

orders based on the edge strength levels. Their algorithm

used a confidence map and the image edges to determine

the patch completion priority. However, the structures in the

resulting images are not well preserved. The method in [21]

produced a better result via structure propagation, while this

approach requires more interaction. The completion results

largely depend on the animator’s individual technique. Some

other existing work also explored in [22] [23] [24].

III. OUR APPROACH

The process of our framework is: for a given image, users

specify the object for removal by drawing a closed contour

around it. The enclosure is considered an unknown region

that is inferred and replaced by the remaining region of the

image. Figure 1(a) shows an example: the red car is selected

as the removing object. In the resulting image Figure 1(b),

the occluded region is automatically recovered based on the

surrounding environment.

First let us define a set of notations for the rest of our

paper. For an image I, the target region for in-painting is

denoted as Ω; the remaining part of the image is denoted

as φ(= I −Ω), which is also known as source region. The

boundary contour along Ω is denoted as ∂Ω. A pixel’s value

is represented by p = I(x, y), where x and y are the 2D

coordinates on the image. The surrounding neighborhood

centered at (x, y) is often called as a patch, denoted as Ψp.

The coordinates of pixels inside the patch Ψp should be in

the range: [x± Δx, y± Δy]. These concepts are illustrated

in Figure 1(f). In our framework, there are three phases

involved to achieve the scene recovery:structure estimation,

structure propagation, and remaining part filling.

A. Structure Estimation

In this phase, we estimate the potential structure in Ω
by finding all the possible edges. This procedure can be

further decomposed into two steps: Contour Detection in Φ
and Curve Generation in Ω.

1) Contour Detection in Φ: We first segment the region

Φ by using gPb Contour Detector [25]. It is based on the

idea of computing the oriented gradient signal G(x, y, θ) on

the four channels of its transformed image: brightness, color

a, color b and texture channel. G(x, y, θ) is the gradient

signal, where (x, y) indicates the center location of the

circle mask that is drawn on the image and θ indicates the

orientation. The gPb Detector is composed of two important

components: mPb Edge Detector and sPb Spectral Detector
[25]. We apply linear combination on mPb and sPb (factored

by β and γ) according to the gradient ascent on F-measure:

gPb(x, y, θ) = β ·mPb(x, y, θ) + γ · sPb(x, y, θ) (1)

Thus a set of edges in Φ can be retrieved via gPb. Howev-

er, these edges are not in close form and have classification
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ambiguities. To solve this problem, we use the Oriented
Watershed Transform [25] and Ultrametric Contour Map
[1] (OWT-UCM) algorithm to find the potential contours

by segmenting the image into different regions. The output

of OWT-UCM is a set of different contours {Ci} and their

corresponding boundary strength levels {Li} as Figure 1(c)

shows.

2) Curve Generation in Ω: After obtaining the contours

{Ci} from the above procedure, salient boundaries in Φ can

be found by traversing {Ci}. Our method for generating the

curves in Ω is based on the assumption: for the edges on

the boundary in Φ that intersects with the ∂Ω, it either

ends inside Ω or passes through the missing region Ω and

exits at another point of ∂Ω. Below is our algorithm for

identifying the curve segments in Ω:

Algorithm III.1 Identifying curve segments in Ω

Require: Construct curve segments in Ω.
Ensure: The generated curves have smooth transition between

known edges.

1: Initial t = 1.0
2: For t = t − Δt
3: if ∃e ∈ {C} : E ∩ ∂Ω �= ∅
4: Insert e into {E}
5: End if t < δT
6: Set t = t0, retrieve all the contours in {Ci} with Li > t
7: Obtain < φx1, φx2 > for each Ex

8: DP on {< φ01, φ02 >,< φ11, φ12 >, ...} to find optimal pairs
from the list.

9: According to the optimal pairs, retrieve all the corresponding
edge-pairs: {(Ex1, Ex2

), (Ex3
, Ex4

), ...)}.
10: Compute a transition curve Cst for each (Es, Et).

In algorithm III.1, it has three main parts: (a) collect all

potential edges {Ex} in Φ that hits ∂Ω; (b) identify optimal

edge pairs {(Es, Et)} from {Ex}; (c) construct a curve Cst
for each edge pair (Es, Et).

Edges Collection: The output of OWT-UCM are contours

sets {Ci} and their corresponding boundary strength levels

{Li}. Given different thresholds t, one can remove those

contours C with weak L. Motivated by this, we use the

Region-Split scheme to gradually demerge the whole Φ
into multiple sub-regions and extract those salient curves.

This process is carried out on lines 1-9: at the beginning

the whole region Φ is considered as one contour; then

iteratively decrease t to let potential sub-contours {Ci} faint

out according the boundary strength; Every time when any

edges e from the newly emerged contours {C} were detected

of intersecting with ∂Ω, they are put into the set {E}.

Optimal Edge Pairs: the reason of identifying edge pairs

is based on the assumption if an edge is broken up by

Ω, there must exist a pair of corresponding contour edges

in Φ that intersect with ∂Ω. To find the potential pairs

{(Es, Et)} from the edge list {Ex}, we measure the cor-

responding enclosed regions similarities. The neighboring

regions < φx1, φx2 > which is partitioned by the edge

Es are used to compare with the corresponding regions of

another edge Et. This procedure is described on lines 7− 9
of the algorithm III.1. Each neighboring region is obtained

by lowing down the threshold value t to faint out more

detailed contours as Figure 1(d) shows.

To compute the similarity between regions, we use the

Jensen-Shannon divergence [26] method that works on the

color histograms:

d(H1, H2) =

n∑

i=1

{Hi
1 · log

2 ·Hi
1

Hi
1 +Hi

2

+Hi
2 · log

2 ·Hi
2

Hi
2 +Hi

1

}

(2)

where H1 and H2 are the histograms of the two regions

φ1, φ2; i indicates the index of histogram bin. For any two

edge (Es, Et), the similarity between them can be expressed

as:

M(Es, Et) =
||Ls − Lt||

Lmax
· min{d(Hsi, Hti) + d(Hsj, Htj)}

(3)

i and j are the exclusive numbers in {1, 2}, where 1 and

2 represent the indices of the two neighboring regions in φ
around a particular edge. The Lmax is the max value of the

two comparing edges’ strength levels. The first multiplier

is a penalty term for big difference between the strength

levels of the two edges. To find the optimal pairs among

the edge list, dynamic programming is used to minimize

the global distance:
∑

s,t M(Es, Et), where s �= t and

s, t ∈ {0, 1, ..., size({Ei})}. To enhance the accuracy, a

maximum constraint is used to limit the regions’ difference:

d(H1, H2) < δH. If the individual distance is bigger than

the pre-specified threshold δH, the corresponding region

matching is not considered. In this way, it ensures if there

are no similar edges existed, no matching pairs would be

identified.

Generate Curves for each (Es, Et) : we adopt the idea

of fitting the clothoid segments with polyline stoke data first

before generating a curve [27]. Initially, a series of discrete

points along the two edges Es and Et are selected, denoted

as {ps0, ps1, ..., psn, pt0, pt1, ..., ptm}. These points have a

distance with each other by a pre-specified value Δd. For

any three adjacent points {pi−1, pi, pi+1}, the correspond-

ing curvature ki could be computed according to [28]:

ki =
2 · det(pi − pi−1, pi+1 − pi)

||pi − pi−1|| · ||pi+1 − pi|| · ||pi+1 − pi−1||
(4)

Combining the above curvature factors, a sequence of

polyline are used to fit these points. The polylines are

expected to have a possibly small number of line seg-

ments while preserving the minimal distance against the

original data. Dynamic programming is used to find the
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most satisfied polyline sequence by giving a penalty for

each additional line segment. A set of clothoid segments

can be derived corresponding to each line segment. After

a series rotations and translations over the clothoid, a final

curve C is obtained by connecting each adjacent pair with

G2 continuity [27]. Figure 1(e) demonstrates the curve

generation result.

B. Structure Propagation:

After the potential curves are generated in Ω, a set

of texture patches, denoted as {Ψ0, Ψ1, ...}, need to be

found from the remaining region Φ and placed along the

estimated curves by overlapping with each other with a

certain proportion. Similar to [21], an energy minimization

based method is proposed in a Belief Propagation (BP)

framework. However, we have different definitions for the

energy and message passing functions. The details are in

the algorithm III.2.

Algorithm III.2 BP Propagation Algorithm

Require: Render the texture for each patch Ψi in Ω along the
estimated structures.

Ensure: Find the best matching patches while ensuring the global
coherence and consistency.

1: For each curve C in Ω, define a series of anchor points on it,
{ai, |i = 1→ n}.

2: Collect exemplar-texture patches {Ψ̂ti } in Φ, where ti ∈ [1,m]
3: Setup a factor graph G = {V, E} based on {C} and {ai}
4: Defining the energy function E for each ai: Ei(ti), where ti

is the index in [1,M].
5: Defining the message function Mij for each edge E in G, with

initial value Mij ← 0
6: Iteratively update all the messages Mij passed between {ai}
7: Mij ← minai

{Ei(ti) + Eij(ti, tj) +
∑

k∈N (i),k �=j Mki}

8: end until ΔMij < δ, ∀i, j (by Convergence)
9: Assign the best matching texture patch from {Ψ̂t} for each ai

that arg min[T,R]{
∑

i∈V Ei(ti) +
∑

(i,j)∈E Eij(ti, tj)}. Here T

is an n dimensional vector [t1, t2, ..., tn], where i ∈ [1, n];
R is also an n dimensional vector [r1, r2, ..., rn] with each
element representing the orientation of source patch Ψ̂ti .

In the algorithm, the anchor points are evenly distributed

along the curves with an equal distance from each other Δd.

These points represent the center where the patches {Ψi}

(l× l) are synthesized, as shown in Figure 1(f). In practice,

we define Δd = 1
4
· l. The {Ψ̂t} is the source texture patches

in Φ. They are chosen on from the neighborhood around

∂Ω. For the factor graph building, we consider each ai as

a vertex Vi and Eij = aiaj, where i, j are the two adjacent

points.

In previous works [21] [20], each Ψi have the same

orientation as Ψ̂ti , which limits the varieties in the source

texture. Noticing that different patch orientations could

produce different results, we introduce a scheme called

Adaptive Patch by defining a new formulas for E and M
in the structure propagation.

Traditionally, the node energy Ei(ti) is defined as the

Sum of Square Difference(SSD) by comparing the known

pixels in each patch Ψi with the candidate corresponding

portion in Ψ̂ti . But this method limits the salient structure

directions. Instead of using SSD on the two patches, a

series of rotations are performed on the candidate patch

before computing the similarity. Mathematically, Ei(ti) can

be formulated as:

Ei(ti) = αλ · P ·
∑

||Ψi − Ṙ(θ) · Ψ̂ti ||
2
λ (5)

Where Ṙ represents different rotations on the patch Ψ̂ti .

Since the size of a patch is usually small, the rotation

can be specified with an arbitrary number of angles. In

our experiment, it is specified as θ ∈ {0,±π
4
,±π

2
, π}. The

parameter λ represents the number of known pixels in Ψi

that overlap with the rotated patch Ψ̂ti . P is a penalty

term, the more number of overlapping pixels, the higher

of similarity is assigned. So we use P to discourage the

patches with smaller number of sharing pixels. Here, the

percentage is expressed as P = λ
l2

(l is the length of Ψ).

αλ is the corresponding normalized scalar. Thus the best

matching patch Ψ̂ is represented by two factors: index ti
and rotation Ri.

In a similar way, the energy Eij(ti, tj) on each edge Eij
can be expressed as:

Eij(ti, tj) = αλ · P ·
∑

||Ψi(ti, θti) − Ψj(tj, θtj)||
2
λ (6)

Here i and j are the indices of the two adjacent patches in

Ω. A penalty scheme is applied to the similarity comparison.

The two parameters for Ψi indicate the index and rotation

for the source patches in {Ψ̂ti }. The messages propagation

is derived from the results of the above energy functions.

We adopt a similar method as [21], where the message Mij

passes by patches Ψi is defined as:

Mij = Ei(ti) + Eij(ti, tj) (7)

Through iterative updating on the BP graph, an optimal

decision of {ti} for the patches in {Ψi} is made by minimiz-

ing the nodes’ energy. This principle can be formulated in

the definition below:

t̂i = arg min
ti

{Ei(ti) +
∑

k

Mki} (8)

Where k is one of the neighbors of the patch Ψi: k ∈
N (i). t̂i is the optimal index for the matching patch. To

achieve minimum global energy cost, dynamic programming

is used. Each assignment for Ψi or ai is considered as a

stage. In each stage, the choices of Ψ̂ti represent different

states. The edge Eij represents the transit cost from state Ψ̂ti

at stage i to state Ψ̂tj at stage j. Starting from i = 0, an
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optimal solution is achieved by minimizing the total energy

ξi(ti) from last step:

ξi(ti) = Ei(ti) +min{Eij(ti, tj) + ξi−1(ti−1)} (9)

where ξi(ti) represents a set of different total energy

values at current stage i. In the situation of multiple inter-

sections among curves C, we adopted the idea in [21], where

readers can refer for further details.

C. Remaining Part Filling:

After the curves are generated in Ω, we fill the remaining

regions by using the exemplar-based approach in [20].

The ∂Ω is getting smaller and smaller by spreading out

the known pixels Φ in a certain order. To enhance the

accuracy, all the pixels in the above generate patches along

the estimated curves are assigned with a pre-computed

confidence value based on the confidence updating rule in

[20].

IV. EXPERIMENTS

(a) (b)

(c) (d)

Fig. 2. Kanizsa Triangle Experiment (a) The original Image (b)Curve
reconstruction for the missing region Ω (c) Result by Criminisi’s method
(d) Our result.

In our experiments, we first evaluate our proposed ap-

proach in terms of structure coherence by comparing our

result with the one in [20] that works on the well-known

Kanizsa triangle. As shown in Figure 2(a), the white triangle

in the front is considered as the occluded region Ω that

needs to be removed. First, a structure propagation is carried

out based on the detected edges along ∂Ω. The dash lines in

Figure 2(b) indicate the estimated potential structures in Ω.

Texture propagation is applied to the rest of the image based

on the confidence and isophote terms. One can notice both

the triangle and the circles are well completed in our result

Figure 2(d) comparing with Criminisi’s method in Figure

2(c).

To further demonstrate the performance, a set of images

are used for scene recovery: ranging from indoor envi-

ronment to natural scenes. Figure 3(e) shows an indoor

case where highly structured patterns often present, such

as the furniture, windows, walls. The green bottle on the

office partition is successfully removed while preserving the

remaining structure. In this example, three pairs of edges are

identified and connected by the corresponding curves that

are generated in the occluded region Ω. Figure 3(g) and

3(f) show the results of removing trees in the nature scenes.

Several curves are inferred by matching the broken edges

along ∂Ω and maximizing the continuity. We can notice

the three layers of the scene (sky, background trees, and

grass land) are well completed. In Figure 3(h), it shows a

case that a perching bird is removed from the tree. Our

structure estimation successfully completes the tree branch

with smooth geometric and texture transitions.

V. CONCLUSION

In this paper, we present a novel approach for foreground

objects removal while ensuring structure coherence and tex-

ture consistency. The core of our approach is using structure

as a guidance to complete the remaining scene. This work

would benefit a wide range of applications especially for

the online massive collections of imagery, such as photo

localization and scene reconstructions. Moreover, this work

is applied to privacy protection by removing people from

the scene.

REFERENCES
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