Fiber Strong Shape Theory for Topological Spaces

Ruslan Tsinaridze
Battumi Shota Rustaveli State University, r.tsinaridze@bsu.edu.ge

Vladimer Baladze
Battumi Shota Rustaveli State University, vbaladze@gmail.com

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the [Geometry and Topology Commons](http://ecommons.udayton.edu/subjectarea_view/58), and the [Special Functions Commons](http://ecommons.udayton.edu/subjectarea_view/100)

This Topology + Foundations is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, msclangen1@udayton.edu.
Mathematics

Fiber Strong Shape Theory for Topological Spaces

Ruslan Tsinaridze

Department of Mathematics, Batumi Shota Rustaveli State University

ABSTRACT. In the paper we construct and develop a fiber strong shape theory for arbitrary spaces over fixed metrizable space B_0. Our approach is based on the method of Mardešić'-Lisica and instead of resolutions, introduced by Mardešić', their fiber preserving analogues are used. The fiber strong shape theory yields the classification of spaces over B_0 which is coarser than the classification of spaces over B_0 induced by fiber homotopy theory, but is finer than the classification of spaces over B_0 given by usual fiber shape theory.

Keywords and Phrases: Fiber shape, Fiber homotopy, Fiber resolution, Fiber shape expansion, Fiber strong expansion, $A(N)R_{B_0}$-space, $A(N)E_{B_0}$-space.

1 Resolution and Strong Expansions of Spaces over B_0

An inverse system of the category Top_{B_0} is a collection $X = (X_\alpha, p_{\alpha\beta}, \mathcal{A})$ of space X_α over B_0 indexed by a directed set \mathcal{A} and f.p. maps $p_{\alpha\beta} : X_\alpha \to X_\beta$, $\beta \leq \alpha$, such that $p_{\alpha\beta} \circ p_{\beta\gamma} = p_{\alpha\gamma}$ and $p_{\alpha\alpha} = 1_{X_\alpha}$, $\alpha \in \mathcal{A}$.

A morphism $(f_\beta, \phi) : X \to Y = (Y_\beta, q_{\beta\gamma}, \mathcal{B})$ of inverse systems of the category Top_{B_0} consists of a function $\phi : \mathcal{B} \to \mathcal{A}$ and of f.p. maps $f_\beta : X_{\phi(\beta)} \to Y_\beta$, $\beta \in \mathcal{B}$, such that whenever $\beta \leq \beta'$, then there is an index $\alpha \geq \phi(\beta), \phi(\beta')$ for which $f_\beta p_{\alpha(\beta)} = q_{\beta\beta'} f_{\beta'} p_{\alpha(\beta')}$.

Two morphisms $(f_\beta, \phi), (g_\beta, \psi) : X \to Y$ are said to be equivalent, $f \sim g$, provided for each $\beta \in \mathcal{B}$ there is an $\alpha \in \mathcal{A}$, $\alpha \geq \phi(\beta), \psi(\beta)$, such that $f_\beta p_{\alpha(\beta)} = g_\beta p_{\alpha(\beta)}$.

Let $\text{pro-}\text{Top}_{B_0}$ be a category, whose objects are the inverse systems X of the category Top_{B_0} and whose morphisms are the equivalence classes \mathfrak{f} of morphisms $(f_\beta, \phi) : X \to Y$ with respect to relation \sim.

A morphism $p = (p_\alpha) : X \to X = (X_\alpha, p_{\alpha\beta}, \mathcal{A})$ from a rudimentary system (X) to an inverse system X consists of the f.p. maps $p_\alpha : X \to X_\alpha$, $\alpha \in \mathcal{A}$, such that $p_\alpha = p_{\alpha\alpha} \circ p_\alpha$, $\alpha \leq \alpha'$.

Definition 1.1 Let X be a space over B_0 and let $X = (X_\alpha, p_{\alpha\beta}, \mathcal{A})$ be an inverse system of the category Top_{B_0}. We say that $p : X \to X$ is a resolution over B_0 or fiber resolution of the space X.

The authors supported in part by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF)
over B_0 provided it satisfies the following two conditions:

R$_{n_0}$ 1. Let $P \in \text{ANR}_{n_0}$, let \mathcal{U} be an open covering of P and let $h : X \to P$ be a f.p. map. Then there exist an index $\alpha \in \mathcal{A}$ and a f.p. map $f : X_{\alpha} \to P$ such that h and $f_{p_{\alpha}}$ are \mathcal{U}-near.

R$_{n_0}$ 2. Let $P \in \text{ANR}_{n_0}$ and let \mathcal{U} be an open covering of P. Then there is an open cover \mathcal{U} of P with the following property: if $\alpha \in \mathcal{A}$ and $f, f' : X \to P$ are f.p. maps such that the f.p. maps $f_{p_{\alpha}}$ and $f'_{p_{\alpha}}$ are \mathcal{U}-near, then there is an index $\alpha' \geq \alpha$ such that the f.p. maps $f_{p_{\alpha'}}$ and $f'_{p_{\alpha'}}$ are \mathcal{U}-near.

If in a fiber resolution $p : X \to \mathcal{X} = (X_{\alpha}, p_{\alpha}, \mathcal{A})$ of the space X over B_0 each X_{α} is an ANR$_{n_0}$, then we say that p is a fiber ANR$_{n_0}$-resolution.

The next theorem is essential in the construction of the fiber shape category for arbitrary spaces over B_0.

Theorem 1.2 Every space X over a metrizable space B_0 admits an ANR$_{n_0}$-resolution over B_0.

In the proof of Theorem 1.2 we shall need the following lemma.

Lemma 1.3 Let $f : X \to Y$ be a f.p. map from the topological space X over B_0 to an ANR$_{n_0}$-space Y. Then there exists an ANR$_{n_0}$-space Z of weight $w(Z) \leq \max\{w(X), w(B_0), n_0\}$ and f.p. maps $g : X \to Z$ and $h : Z \to Y$ such that $f h = g$.

Definition 1.4 Let X be a topological space over B_0, $\mathcal{X} = (X_{\alpha}, p_{\alpha}, \mathcal{A})$ an inverse system in Top_{n_0} and $p = (p_{\alpha}) : X \to X$ a morphism of pro-Top_{n_0}. We call p an expansion over B_0 of the space X over B_0 provided it has the following properties:

E$_{n_0}$ 1. For every ANR$_{n_0}$-space P over B_0 and f.p. map $f : X \to P$ there is an index $\alpha \in \mathcal{A}$ and a f.p. map $h : X_{\alpha} \to P$ such that $h p_{\alpha} \cong f$.

E$_{n_0}$ 2. If $f, f' : X_{\alpha} \to P$ are f.p. maps, $P \in \text{ANR}_{n_0}$ and $f p_{\alpha} \cong f' p_{\alpha}$, then there is an index $\alpha' \geq \alpha$ such that $f p_{\alpha'} \cong f' p_{\alpha'}$.

Definition 1.5 A morphism $p : X \to (X_{\alpha}, p_{\alpha}, \mathcal{A})$ is called a strong expansion over B_0 provided it satisfies condition E_{n_0} 1) and the following condition:

SE$_{n_0}$ 2. Let P be an ANR$_{n_0}$-space, let $f_0, f_1 : X_{\alpha} \to P$, $\alpha \in \mathcal{A}$ be f.p. maps and let $F : X \times I \to P$ be a f.p. homotopy such that

$$S(x, 0) = f_0 p_{\alpha}(x), \quad x \in X,$$
$$S(x, 1) = f_1 p_{\alpha}(x), \quad x \in X.$$

Then there exists a $\alpha' \geq \alpha$ and a f.p. homotopy $H : X_{\alpha'} \times I \to P$, such that

$$H(x, 0) = f_0 p_{\alpha'}(z), \quad z \in X_{\alpha'},$$
$$H(x, 1) = f_1 p_{\alpha'}(z), \quad z \in X_{\alpha'},$$
$$H(p_{\alpha'} \times 1) \cong S(\rel(X \times I)).$$

It is clear that, every strong expansion over B_0 is an expansion over B_0.

If all $X_{\alpha} \in \text{ANR}_{n_0}$, then p is called an ANR$_{n_0}$-expansion and strong ANR$_{n_0}$-expansion,
respectively.

The main result of section 1 is the following theorem.

Theorem 1.6 Let X be a topological space over B_0. Then every resolution $p : X \to X$ over B_0 induces a strong ANR$_{B_0}$-expansion.

Corollary 1.7 Every ANR$_{B_0}$-resolution over B_0 induces ANR$_{B_0}$-expansion.

Corollary 1.8 Every space X over B_0 admits a cofinite strong ANR$_{B_0}$-expansion.

In the proof of Theorem 1.6 we need the following lemma.

Lemma 1.9 Let X be a topological space over metrizable space B_0, let $f : X \to Y$, $h_0, h_1 : P \to P$ be f.p. maps and let $S : X \times I \to P$ be a f.p. homotopy such that

\[
S(x, 0) = h_0 f(x), \quad x \in X.
\]

\[
S(x, 1) = h_1 f(x), \quad x \in X.
\]

Then there exists an ANR$_{B_0}$-space P', f.p. maps $f' : X \to P'$, $h : P' \to P'$ and a f.p. homotopy $K : P' \times I \to P$ such that

\[
h f' = f,
\]

\[
K(z, 0) = h_0 h(z), \quad z \in P'
\]

\[
K(z, 1) = h_1 h(z), \quad z \in P'
\]

\[
K(1 \times x) = S.
\]

Lemma 1.10 Let $p : X \to X$ be a resolution over B_0 and let α, P, f_0, f_1 and F be as in SE$_{B_0}$ 2. Then for every open covering \mathcal{U} of P, there exist a $\alpha' \geq \alpha$ and a f.p. homotopy $H : X_{\alpha'} \times I \to P$ such that

\[
H(y, 0) = f_0 p_{\alpha'}(y), \quad y \in X_{\alpha'}.
\]

\[
H(y, 1) = f_1 p_{\alpha'}(y), \quad y \in X_{\alpha'}.
\]

\[
(S, H(1 \times p_{\alpha'})) \leq \mathcal{U}
\]

2 On Fiber Strong Shape Category

The objects of category \mathbf{SSH}_{B_0} are all topological spaces over B_0. The morphisms of category \mathbf{SSH}_{B_0} are defined by the following way.

Let $p : X \to X$ and $q : Y \to Y$ be an ANR$_{B_0}$-resolution of X and Y, respectively. Let $[f] : X \to Y$ be a morphism of category \mathbf{CPHTop}_{B_0}. Let $p' : X' \to X'$, $q' : Y' \to Y'$, $[f'] : X' \to Y'$ be another triple of fiber resolutions of spaces X and Y over B_0 and morphism of category \mathbf{CPHTop}_{B_0}.

Now define the following equivalence relation. We say the triples $(p, q, [f])$ and $(p', q', [f'])$ are equivalent if

\[
[f'] [i] = [j] [f],
\]

where $[i] : X \to X'$ and $[j] : Y \to Y'$ are isomorphisms of category \mathbf{CPHTop}_{B_0}.

The fiber strong shape morphisms $F : X \to Y$ are the equivalence classes of triples $(p, q, [f])$ with respect to the above defined relation \sim.

Let $F : X \to Y$ and $G : Y \to Z$ be the fiber strong shape morphisms, defined by triples $(p, q, [f])$ and $(q, r, [g])$.
and \((p', q', [g])\), where \(p' : Y \to Y\), \(q : Z \to Z\) and \([g] : Y \to Z\).

As we know there exists an unique morphism \([h] : Y \to Y'\) of category \(\text{CPHTop}_{B_0}\) such that
\[[j][q] = [q'] = [h][q]. \]

Hence, \([j] = [h]\). Besides, \([g][j] = [g][h][1_y]\).

Thus, we can assume that the morphisms \(F\) and \(G\) are given by triples \((p, q, [f])\) and \((p', q', [g])\).

Consequently, we can define the composition \(GF : X \to Z\) as the morphism given by triple \((p, p, [1_x])\).

Let \(X \in \text{ob}(\text{SSH}_{B_0})\). By symbol \(\text{ssh}_{B_0}(X)\) denote the equivalence class of topological space \(X\) and call the fiber strong shape of \(X\).

For each f.p. map \(\varphi : X \to Y\) choose ANR_{B_0}-resolutions \(p : X \to X\) and \(q : Y \to Y\). There exists a unique morphism \([f] : X \to Y\) of category \(\text{CPHTop}_{B_0}\) such that \([q][\varphi] = [f][p]\).

We can define a functor \(\text{SS}'_{B_0} : \text{Top}_{B_0} \to \text{SSH}_{B_0}\). By definition,
\[\text{SS}'_{B_0}(X) = X, \quad X \in \text{ob}(\text{Top}_{B_0}) \]
and
\[\text{SS}'_{B_0}([\varphi]) = \Phi, \quad \varphi \in \text{Mor}_{\text{Top}_{B_0}}(X, Y). \]

Here \(\Phi\) is a fiber strong shape morphism defined by triple \((p, q, [f])\).

As in [L-M] we can prove that functor \(\text{SS}'_{B_0}\) induces a functor \(\text{SS}_{B_0} : \text{HTop}_{B_0} \to \text{SSH}_{B_0}\), which we call the fiber strong shape functor. By definition,
\[\text{SS}_{B_0}(X) = X, \quad X \in \text{ob}(\text{HTop}_{B_0}) \]
and
\[\text{SS}_{B_0}([\varphi]) = \text{SS}'_{B_0}([\varphi]), \quad [\varphi]_{B_0} \in \text{Mor}_{\text{HTop}_{B_0}}(X, Y). \]

Let us define a functor \(S : \text{SSH}_{B_0} \to \text{SH}_{B_0}\). Assume that \(S(X) = X\) for each object \(X \in \text{ob}(\text{SSH}_{B_0})\). Let \(F : X \to Y\) be a fiber strong shape morphism given by a triple \((p, q, [f])\).

Consider the morphism \(E([f])\) as an image of \([f]\) with respect the functor \(E : \text{CPHTop}_{B_0} \to \text{pro-HTop}_{B_0}\). The triple \((Hp, Hq, E[f])\) generates a fiber shape morphism, which we denote by \(S(F) : X \to Y\).

Now we can formulate the following

Theorem 2.5 There exists the following commutative diagram

\[
\begin{array}{ccc}
\text{SSH}_{B_0} & \xrightarrow{S} & \text{SH}_{B_0} \\
\text{HTop}_{B_0} & \xrightarrow{S} & \text{SSH}_{B_0} \\
\end{array}
\]

where \(S_{B_0}\) is V.Baladze fiber shape functor \([B_0]\). □

Corollary 2.6 Let \(X\) and \(Y\) be topological spaces over \(B_0\). If \(\text{ssh}_{B_0}(X) = \text{ssh}_{B_0}(Y)\), then \(\text{sh}_{B_0}(X) = \text{sh}_{B_0}(Y)\). □

Remark 2.7 Using the methods developed in this paper and papers ([B_6], [L-M], [M_1], [M_2]) it is possible to construct fiber strong shape theory for category of arbitrary continuous maps. □
REFERENCES

