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Abstract: We present a new adaptive Wiener filter (AWF) super-resolution
(SR) algorithm that employs a global background motion model but is also
robust to limited local motion. The AWF relies on registration to populate
a common high resolution (HR) grid with samples from several frames.
A weighted sum of local samples is then used to perform nonuniform
interpolation and image restoration simultaneously. To achieve accurate
subpixel registration, we employ a global background motion model with
relatively few parameters that can be estimated accurately. However, local
motion may be present that includes moving objects, motion parallax,
or other deviations from the background motion model. In our proposed
robust approach, pixels from frames other than the reference that are
inconsistent with the background motion model are detected and excluded
from populating the HR grid. Here we propose and compare several
local motion detection algorithms. We also propose a modified multiscale
background registration method that incorporates pixel selection at each
scale to minimize the impact of local motion. We demonstrate the efficacy
of the new robust SR methods using several datasets, including airborne
infrared data with moving vehicles and a ground resolution pattern for
objective resolution analysis.

© 2012 Optical Society of America

OCIS codes: (100.6640) Superresolution; (280.4991) Passive remote sensing; (110.3080) In-
frared imaging.
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1. Introduction

Multiframe super-resolution (SR) techniques have proven to be highly effective for image
restoration with imaging systems limited by detector sampling [1]. Such detector SR algo-
rithms [2] fuse multiple temporal frames to produce a high resolution output with reduced
aliasing, blur, and noise. Detector SR algorithms generally seek to produce imagery with the
highest resolution afforded by the optics. In contrast, optical SR methods [2], seek to produce
imagery with spatial frequency content above the diffraction limited cut-off frequency of the
optics. To treat aliasing, detector SR methods rely on accurate subpixel registration. The chal-
lenge is that this registration must generally be performed using the observed imagery that is
corrupted by aliasing and noise. These degradations negatively impact ones ability to obtain
highly accurate subpixel registration. However, using a parametric motion model with rela-
tively few parameters and a large image region to estimate those parameters, one can usually
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obtain useful registration results with a suitable regression method. For example, the Lucas-
Kanade [3] registration method employs least squares and has proven to be highly effective
for SR with translation [4], rotation [5, 6], and affine motion models [7]. A study of the per-
formance limits for this type of image registration can be found in [8] and a related statistical
performance analysis of SR is provided in [9].

For interframe motion that includes small moving objects, deformable motion, motion par-
allax, and other complex optical flow, accurate subpixel registration from noisy aliased data
can be elusive. Consequently, achieving significant aliasing reduction with such data using SR
is very difficult. However, in many imaging applications, the bulk of the imagery does closely
follow a relatively simple background motion model. For example, with airborne imagery such
as that in considered in [7], it is shown that an affine motion model can be effective for SR on
the static portions of the scene. Local motion effects from motion parallax and moving objects
are not considered in that paper.

In this paper, we extend the work in [7, 10–13] and propose a novel adaptive Wiener filter
(AWF) SR method that is robust to limited local motion. The AWF SR method relies on reg-
istration to populate a common high resolution (HR) grid with samples from several frames.
A weighted sum of local samples is then used to perform nonuniform interpolation and image
restoration simultaneously. Previously, only global motion has been considered with AWF SR.
By adding robustness to local motion, the applicability and utility of the AWF SR method is
greatly enhanced. In our proposed approach, we begin with robust global registration using
a suitable parametric background motion model. This generally allows for accurate subpixel
registration for much of the image. We then employ local motion detection. Pixels found to
be inconsistent with the background motion model are excluded from contributing to the AWF
filter output to prevent distortions in the output. Note that in some cases, larger rigid objects can
be segmented and registered in a manner similar to the background. This has been demonstrated
using other SR methods in several papers including [14–16]. Smaller objects obeying well de-
fined motion trajectories have also been treated in [16]. With local motion owing to motion
parallax, deformable motion, object pose variations, and small objects with unpredictable tra-
jectories, we believe the detect-and-exclude approach is practical and can keep computational
complexity low.

An alternative approach to addressing local motion is to use a much more complex motion
model in an attempt to account for all motion present in the video sequence. However, we shall
show that subpixel registration accuracy is inversely proportional to the block size used. Thus,
if we break up the image into smaller blocks to account for complex local motion, the ability to
achieve the true subpixel registration necessary for aliasing reduction is reduced or lost (without
further constraining assumptions). Thus, small objects moving in aliased imagery may simply
defy attempts to register them with subpixel accuracy. Furthermore, local motion presents a
problem for nonuniform interpolation SR algorithms like the AWF that assume commutation
of the motion and the blurring operators in the observation model. Unless the motion is very
limited, this assumption may be violated with the presence of local motion. So rather than
incurring likely registration and restoration errors from local motion, we tackle the somewhat
easier problem of detecting and segmenting regions exhibiting deviations from the background
motion model.

The problem of adding local motion robustness to SR algorithms is receiving increased at-
tention in recent years as the research community seeks to develop practical fielded SR systems
that may encounter a variety of complex imaging conditions [15, 17–24]. Much of this work
has focused on iterative SR algorithms with a relatively high computational complexity. This
paper is novel in that we are focusing on adding robustness to the fast AWF SR method and
we are exploring both terrestrial and airborne imaging applications [7]. We believe this paper
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Fig. 1. Assumed observation model relating a desired 2-D continuous scene, d(x,y), to the
observed LR image samples, g, from a set of K frames. This model is the basis for the
nonuniform interpolation based SR algorithms, including the AWF SR method.

makes several contributions. First, we present an analysis of the Lucas-Kanade [3] registration
method accuracy as a function of the block size used for different levels of aliasing. This pro-
vides insight into the problem of registering small moving objects in the presence of aliasing.
We propose a variation of Lucas-Kanade that uses a multiscale approach with pixel selection
at each scale to minimize the impact of local motion on the background estimation. We also
provide a novel analysis of several local motion detection methods for operating in aliased im-
agery. We evaluate the performance of the methods using a receiver operating characteristic
(ROC) curve analysis on simulated data. We incorporate several of these local motion detection
algorithms into the AWF SR framework to giving rise to new and robust AWF SR methods.
We demonstrate the efficacy of the robust AWF SR methods using several datasets, including
real airborne infrared data with moving vehicles and a ground resolution pattern for objective
resolution analysis [25].

The remainder of this paper is arranged as follows. In Section 2, we present an overview of
the proposed new robust AWF SR algorithms. Robust registration is considered in Section 3
and local motion detection is explored in Section 4. Robust SR results are provided in Section
5. Finally, conclusions are offered in Section 6.

2. Robust adaptive Wiener filter based super-resolution

In this section, we provide an overview of the new AWF SR method that is robust to local
motion. We begin with the observation model and then we present the top level AWF SR algo-
rithm. Sections 3 and 4 examine the robust registration and local motion detection components,
respectively.

2.1. Observation model

Nonuniform interpolation SR algorithms [1], including the AWF SR method, are based on an
assumed observation model similar to that shown in Fig. 1. Here the desired continuous image
is given by d(x,y) and the ideally sampled image is represented by the vector z = [z1,z2, ...zN ]

T

using lexicographical notation. The continuous image f (x,y) represents the desired image after
convolution with the point spread function (PSF). Observing K low resolution (LR) frames with
global and local motion gives rise to a set of samples that in general are nonuniformly distrib-
uted when placed on a common grid. Let these samples be represented by f = [ f1, f2, ..., fM]T .
Here the background interframe motion for frame k is described by the parameters in βk, and
local motion is described by αk. Local motion will be characterized simply by a detection mask
showing pixels in each observed frame that do not obey the background motion model. More
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Fig. 2. Robust AWF SR with local motion detection. Only pixels consistent with the motion
model (i.e., valid pixels) are used to populate the HR grid. Samples on the HR grid are
filtered to provide the final AWF SR output.

will be said about how local motion is detected and treated in Section 4. Finally, additive noise
is assumed in Fig. 1 yielding g = f+n, where n = [n1,n2, ...,nM]T is an array of noise sam-
ples. We shall assume zero-mean independent and identically distributed Gaussian noise with
a variance of σ2

η .
The model in Fig. 1 is convenient as it gives justification for the fast nonuniform interpolation

SR methods, where a uniform set of samples of f (x,y) are estimated from g and some form
of image restoration is applied to deconvolve the PSF blur and reduce noise. However, the
model effectively incorporates the PSF prior to the interframe motion (which is embedded
in the nonunform sampling block). The physical image acquisition process would have the
motion before the PSF. Thus, the validity of the model in Fig. 1 hinges on the commutation
of the PSF and motion models. This issues is treated in detail in [7] for global affine motion.
It is shown in [7] that for limited zoom and shear and typical PSFs, the commutation error is
negligibly small. This important result opens the door for fast nonuniform interpolation based
SR methods to be applied beyond simple global translational interframe motion. We shall rely
on this result when employing an affine background motion model for airborne applications.
With local motion, like that from a fast moving object, the commutation of the PSF and motion
model cannot be justified using [7]. In this case, the order of the PSF blur and motion can
make a significant difference in the immediate vicinity of the moving object (i.e., within the
span of the PSF). To address this issue, our approach is to use only samples from one frame in
the immediate vicinity of detected local motion when performing the AWF SR filtering process.
Since the AWF SR method is inherently a local moving-window operation, this does not present
a major additional computational burden.

With regard to the PSF model, we follow the approach in [7] and model diffraction and de-
tector integration. Other blurring sources could also be incorporated. With a diffraction limited
optical system, the spatial cut-off frequency is given by ωc = 1/(λN ), where λ is the wave-
length of light used and N is the f-number of the optics. To characterize the level of undersam-
pling in such a system, we shall use the parameter Q = λN /p [26], where p is the detector
pitch. Note that the sampling frequency is given by 1/p and the Nyquist criterion dictates that
1/p > 2ωc. Therefore, when Q = 2, the imaging sensor is sampling at the Nyquist rate. In most
imaging systems, a much lower Q is employed [26]. Resolution in these undersampled systems
may be thought of as limited by the detector (as opposed to optically limited) [2].
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2.2. Robust AWF SR overview

The proposed robust AWF SR methodology is illustrated in Fig. 2. For video processing, we
use a moving temporal window of K frames to estimate the output video frames. Within each
group, we use the most recent frame as the reference and form an SR image aligned with that
image. To begin, the robust global registration described in Section 3 is used to determine the
position of the pixels in the input frames relative to the reference grid. Next, a local motion
detection algorithm is employed to identify LR pixel regions that do not appear consistent with
the global motion model. Local motion detection is explored in Section 4. All the LR pixels
that appear consistent with the global registration are labeled as valid and used to populate a
common HR grid. Note that all pixels from the reference frame are automatically considered
valid and placed into the HR grid. The LR pixels from the other frames augment the reference
samples only if they are considered consistent with the global motion model (i.e., are valid
pixels). Observed pixels that deviate from the global motion model due to moving objects,
motion parallax, occlusion, or other factors are simply excluded from populating the HR grid.
In the limiting case, where only the reference frame pixels are considered valid, the output
corresponds to a single frame AWF SR estimate and does not break down.

Like standard AWF SR [7] and partition weighted sum (PWS) SR [12, 13], the robust AWF
SR method employs a finite moving window on the HR grid. The output pixels are formed as
weighted sum of the observed samples. In particular, let the samples spanned by the moving
window centered about HR pixel i be denoted gi = [gi,1,gi,2, . . . ,gi,Gi ]

T . The output for i =
1,2, ...,N is given by

ẑi = wT
ψ(i)gi, (1)

where ẑi is the estimate of the i’th pixel in the ideal image z, ψ(i) is the population index for
window i, and wψ(i) = [wψ(i),1,wψ(i),2, ...,wψ(i),Gi

]T contains the weights. The population index
is an integer uniquely specifying the spatial pattern of observed valid pixels and this designates
which set of precomputed weights is to be applied at this spatial location. The sampling of
the HR image, relative to a LR frame, is increased by a factor of L in both the horizontal and
vertical dimensions.

The weights are designed to minimize the mean squared error (MSE) based on the positions
of the observed samples in the window and the correlation model used. If the spatially varying
correlation model in [11] or the vector quantization partitioning in [12,13] is used, the weights
also depend on the local intensity pattern of the observed samples. This can provide enhanced
performance, but adds computational complexity. Following the approach in [7], we focus here
on the sample position-based weights using a wide sense stationary (WSS) correlation model.
Thus, we have

wψ(i) = R−1
ψ(i)pψ(i), (2)

where Rψ(i) = E{gigT
i |Ψ = ψ(i)} is the autocorrelation matrix, pψ(i) = E{zigi|Ψ = ψ(i)} is

the cross-correlation vector, and Ψ is a random variable representing the population index. By
sampling the correlation model according to the spatial arrangement of samples, one is able to
fill the autocorrelation matrix and cross-correlation vector. Given a finite number of population
patterns, the weights can be computed and stored in a table. All of the correlations needed are
derived from the assumed autocorrelation function for d(x,y), which is given by

rdd(x,y) = σ2
d ρ

√
x2+y2

, (3)

and the observation model in Fig. 1. The parameter σ2
d gives the assumed signal power for a

zero mean signal and ρ is the one step correlation parameters if x,y are in units of HR pixel
spacings. We refer the reader to [7, 10–13] for further details on the correlation models. The
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main difference here, compare with this earlier work, lies in how the HR grid is populated
based on robust registration and the detection of local motion.

For affine motion, we use the discrete HR grid and look-up table weights based on the re-
duced observation windows described in [7]. This method is naturally suited to handle local-
motion based selective population of the HR grid. This is because the local motion detection
does not change the basic filtering operation. The population patterns are found in the look-up
table of weights in the same fashion as described in [7]. Examples with a variety of partially
populated HR grids and the corresponding AWF SR filter weights are shown in [7]. Inoperable
or excessively noisy pixels (i.e., “bad” pixels) in all but the reference frame can be handled
by excluding them as well. If a reference frame pixel is “bad” and no valid pixel from another
frame fills that HR grid position, the nearest valid reference pixel on the HR grid is substituted.
If multiple pixels belong to the same HR grid position, these values are averaged for simplicity.
These “redundant” pixels could also be placed into gi and given weights according to Eq. (2).

For translational motion, if the non-quantized HR grid approach introduced in [11] is used,
excluding some pixels from the HR grid will disrupt the periodic structure of samples. This
means that custom weights must be computed to deal with each variation in the local population
pattern. This can greatly add to the overall computational complexity. To minimize this for the
case of translational motion with a non-quantized HR grid, we propose limiting the population
patterns to those that use all the frames and that of just the reference frame. The pattern using
all the frames would correspond to areas with no local motion and the pattern using only the
reference frame would be for areas impacted by local motion. The one-frame weights can be
precomputed prior to processing video, and the other weights are computed using the standard
AWF SR method in [11].

3. Robust registration

The key to most multiframe SR algorithms is accurate subpixel registration of the observed
frames. A popular choice for SR registration in the presence of global motion is the Lucas-
Kanade method [3]. The method uses a truncated Taylor series to express a warped frame
in terms of a reference frame plus scaled gradient images. This gives rise to a set of linear
equations, one per pixel. Least squares can be used to obtain an estimate of the motion model
parameters from these equations.

The theoretical performance limits of the Lucas-Kanade method are explored in [8] for
Nyquist sampled imagery. Here we experimentally investigate the subpixel registration accu-
racy of Lucas-Kanade as a function of image block size and aliasing level as given by Q. We use
4 images from the Kodak lossless image suite [27] and process the 8 bit grayscale versions with
the observation model. This includes PSF blurring (with a range of Q values), a one half pixel
shift, downsampling by L = 4, and noise with ση = 1. The results are shown in Fig. 3 where
the mean absolute error (MAE) of the estimated frame position is shown versus the linear di-
mension of the block size used for several values of Q. Note that the blocks to be registered
are aligned to within one LR pixel and a one pixel border is excluded from the LS analysis.
Hence, a 5×5 block is the smallest considered. As expected, increasing the block size lowers
the registration error. Also, we see lower errors for images with less aliasing (i.e., higher Q).
The knee in the curve appears at a block size of approximately 25×25 pixels. This result illus-
trates the challenge of obtaining subpixel registration accuracy on small moving objects in the
presence of aliasing. It should be noted that this is a nearly ideal case since the motion is known
to be translational, there is low noise, and blocks are prealigned to within 1 LR pixel. With
moving objects that exhibit rotational or affine motion, the problem is magnified because of the
increased number of motion parameters. Occlusions, pose variations, and deformable motion
associated with moving objects present even more complexity and potential registration errors.
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Fig. 3. Shift registration error as a function of the image block sizes under test. The error is
mean absolute positional error between the actual shifted block and the estimate. As larger
blocks are used, the error goes down. The shift registration accuracy is also impacted by
the level of aliasing indicated by the Q factor.

While a large block size aides in overcoming aliasing and noise, the presence of local mo-
tion can bias the background motion estimate. To achieve robust background registration, in
consideration of these factors, we proposed a modified multiscale Lucas-Kanade method. In
this modified approach, we employ a Gaussian pyramid [28]. An example of a three level pyra-
mid is shown in Fig. 4. We begin at the lowest resolution scale. Here, local motion tends to be
greatly attenuated. Thus, we are able to get an approximate global registration with an affine
model [7]. After aligning the images at this scale, we compute the absolute error image and
segment pixels with the largest errors. Pixels within these segmented regions are excluded from
the least squares registration at the next scale up. The final exclusion mask at each scale is not
required to include the areas segmented at the prior scale. Registration at each level continues
in this fashion until the top level is reached and the parameters estimated there are used as
the final estimates. Note that the thresholding is done on an independent pixel-by-pixel basis.
Morphological operations could be applied to this mask to help mitigate noise and exploit any
known spatial characteristics associated with local motion. However, we do not use any such
operations for the results presented here.

The segmentation threshold can be selected to achieve desired performance on representative
training data or a fixed percentage of pixels can be segmented. For the results in this paper, we
exclude the pixels with absolute errors in the top 10%. This fraction can be modified according
to the level of local motion expected in an application. An example of the level-specific seg-
mentation mask is shown in Fig. 4 as the red contours. The borders are also excluded at each
level because they may not overlap with the reference image. Note that there is a moving vehi-
cle approximately located at coordinates (100,50) at the highest level. This vehicle is excluded
at the top levels, allowing us to get a more accurate background registration. Some background
pixels are also excluded. However, with 90% of the pixels used for registration at each scale,
these false positive (FP) local motion pixels do not present a major concern. The advantage of
this method is that the pixels used for registration at each scale are well distributed spatially,
which we find is critical for accurate affine registration.
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Fig. 4. Robust multiscale registration. A Gaussian pyramid is formed and a Lucas-Kanade
based affine registration [3] is applied iteratively at successive scales starting at the low-
est resolution. Borders and pixels with the highest registration errors from the preceding
level are excluded from the least squares parameter estimation (red contours) to provide
robustness to moving objects and local motion.

4. Detecting local motion in the presence of aliasing

In this section, we focus on methods for detecting local motion for use with the robust AWF SR.
Note that simply registering the LR frames and computing the error image may not be sufficient
for accurate local motion detection. The reason is that aliasing and noise will give rise to errors,
even if the registration parameters are ideal. In fact, if the registered frame errors were zero,
that would imply that there is no unique information provided by the individual frames. In this
case, multiframe SR would be of no value. Given that we are expecting unique information in
each frame, the difference frames will be impacted by sampling differences (an expression of
aliasing), noise, moving objects, motion parallax, and background registration error. If we treat
all errors as local motion, and exclude non-reference frame samples in the vicinity of these
errors, we will be unable to successfully eliminate aliasing and optimally reduce noise using
multiple frames. On the other hand, if we do not exclude any samples as we populate the HR
grid, samples impacted by local motion will not be properly positioned and this leads to severe
artifacts as will be demonstrated in Section 5. Thus, a detection algorithm is needed that can
minimize the probability of local motion detection error or a specified overall cost. Consider
that there is a cost associated with an FP, which would be declaring aliasing or noise to be local
motion. There is also a cost associated with a false negative, which would be treating local
motion as if it were aliasing or noise.

4.1. Impact of aliasing

Before addressing the detection problem, let us first analyze how aliasing leads to error between
registered frames. Consider the theoretical MSE between a pixel in one frame and an estimate
of that pixel from a subpixelly shifted frame. We shall assume a simple WSS correlation model
and a linear filter for estimation. In particular, let the estimate of i’th pixel of the reference frame
be expressed as ŷi =wT xi, where xi is a corresponding observation vector from the shifted input
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frame. The theoretical MSE is given by

J(w) = E
{(

yi −wT xi
)2
}
= E{yi

2}−2wT p+wT Rw (4)

where R = E
{

xixT
i

}
and p = E {yixi}. The correlation statistics can be modeled in a fashion

similar to that of the AWF SR using the same observation model. The main difference is that
here yi is an LR sample. The minimum MSE Wiener filter weights are given by w = R−1p. If
bilinear interpolation is used, w is a simple function of the subpixel shifts with weights for the
4 surrounding samples.

Using Eq. (4), registered pixel MSE values as a function of the subpixel displacement in
LR pixel spacings are computed and shown in Fig. 5 for E{y2

i } = 1, ρ = 0.7, and σ2
η = 0.

We consider both a highly aliased scenario, with Q = 0.21, and a Nyquist sampled case where
Q = 2.0. We show results for both bilinear interpolation and Wiener filter estimation using a
7×7 window. Note that since the zero noise case of shown, the MSE is zero for an integer shift
in Fig. 5. However, the error generally goes up as the shift approaches (0.5,0.5). When there is
no aliasing, as is the case for Figs. 5(b) and 5(d), the MSE is relatively small. Since the Wiener
filter is informed by the correlation model, it gives a lower MSE in Fig. 5(d) than bilinear in
Fig. 5(b). With high levels of aliasing, as is the case for Figs. 5(a) and 5(c), we see higher MSE.
The main lesson of these results is that aliasing provides an additional confuser for detecting
true scene motion.

4.2. Local motion detection methods

We consider two scenarios, one is where we seek to detect the presence of local motion any-
where within the K frame temporal window at each spatial location. This is appropriate for
the fast translational AWF method where we use either all of the frames or just the reference
frame at a given spatial location. In this case, multiframe local motion detection methods can be
employed. The other scenario, appropriate for the fast affine AWF with quantized HR grid, is
where we attempt to detect motion in each individual frame relative to the reference. This way,
the number of frames contributing to the HR grid can vary from 1 to K, based on which indi-
vidual frames within the temporal window contain local motion. This allows one to potentially
exploit more of the available frames and minimize the use of single frame processing.

Motion detection is an important problem for many types of video processing applica-
tions [29]. However, examining the impact of aliasing on such detection has received more
limited attention. We propose and compare a number of methods for detecting local motion for
use with robust AWF SR. All of the detection statistics considered are summarized in Table 1.
These scalar statistics are computed and thresholded independently, on a pixel-by-pixel basis,
to form the appropriate detection mask that governs the population of the HR grid. For indi-
vidual frame detection, we consider the straightforward frame error (FE) [29]. In an attempt to
mitigate error due to aliasing, we also consider frame error with prefiltering (FEP) [15]. The
prefilter we use is a Gaussian low pass filter (LPF) and we apply it to the reference and test
image prior to interpolation and error computation. The idea is that aliasing and noise are more
dominant at high spatial frequencies. However, the prefiltering can attenuate very small moving
objects, making them harder to detect. Thus, an appropriate balance between detail preservation
and aliasing/noise reduction must be sought. The remaining methods in Table 1 employ multi-
frame statistics. These include the range (R) of the K aligned frames at each pixel location, and
the range with prefiltering (RP). Again, we use a Gaussian prefilter for aliaisng/noise reduction.
Range is a powerful detection statistic for this application because it represents the maximum
error between all pairs of frames.

Another method for mitigating the effects of aliasing is through multiframe AWF processing.
The multiframe estimation error (MEE) statistic is the error between the test frame and an AWF
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Fig. 5. Theoretical MSE between between two registered frames as a function of sub-
pixel shift. (a) Highly aliasing imagery (Q=0.21) with bilinear interpolation, (b) no aliasing
(Q=2.0) with bilinear interpolation, (c) highly aliasing (Q=0.21) with Wiener filter, (d) no
aliasing (Q=2.0) with Wiener filter.

prediction of that frame based on the K−1 other frames. The sampling diversity offered by the
K − 1 frames allows us to make a better prediction in the presence of aliasing and noise than
with a single frame comparison. The final detection statistic considered is the forward model
error (FME). Here we use all K frames, as if there were no local motion, to form a preliminary
AWF SR image. This SR image is then projected through the forward model in Fig. 1 (with no
noise). The predicted data are compared to the observed data to produce the FME statistic. This
method has the computational advantage that in areas with no local motion, the preliminary SR
image can be used as the final output. Only areas determined to be impacted by local motion
need to be reprocessed using the reference frame.

Let us now briefly consider the computational complexity of some of the local motion detec-
tion methods. One of the main tasks in computing the FE, FEP, R and RP statistics is aligning
the K−1 LR frames to the reference frame. This requires O((K−1)M/K) flops (multiply and
add) for simple interpolation, where M/K is the number of LR pixels in a single frame. We
must also perform up to O((K − 1)M/K) compares for thresholding. The prefiltering, for the
FEP and RP methods, can be done with a separable Gaussian filter applied to each new LR
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Table 1. Description of the local motion detection methods considered here.

Name Detection statistic description
Frame Error (FE) Error between the reference frame and other individual frame that has been aligned using

robust global registration. Can detect pixels in specific frames within the K observed
exhibiting local motion relative to the reference.

Frame Error with
Prefilter (FEP)

Same as FE, but the reference and test frame are prefiltered with a Gaussian LPF. The
prefilter is designed to reduce aliasing and noise to reduce FPs due to these factors.

Range (R) Range of pixel values at each spatial location using all K frames aligned using robust
global registration. Can only distinguish if motion is present within the K input frames.

Range with
Prefilter (RP)

Same as R statitsic, but all frames are prefiltered with a Gaussian LPF.

Multiframe
Estimation Error
(MEE)

Error between a given frame and a multiframe low-resolution AWF estimate of that frame.
Can only distinguish if motion is present within the K input frames at a given spatial
location. Mitigates aliasing to some extent due to the sampling diversity provided by the
use of multiple frames.

Forward Model
Error (FME)

Error between each observed frame and the full K frame AWF SR estimate projected
through the forward observation model. Mitigates aliasing by matching the aliasing in the
test frame by projecting the SR image through the forward model.

frame and stored. This adds O(PM/K) flops, where P is the linear dimension of the 2-D filter
window. The R detection statistic has the additional burden of the range computation involving
K values for each of the M/K LR reference pixel locations, which requires O(M) compares
and exchanges. The complexity of the AWF itself is addressed in [7, 11].

To compare the performance of the local motion detection methods, we use a simulated im-
age sequence with a chirp background pattern and a ruler moving horizontally left to right
along the bottom relative to the background. The chirp patterns allows us to highlight any alias-
ing. Global translational motion is simulated in addition to the ruler motion. We simulate the
sequence using Q = .47 to match the airborne imaging sensor described in Section 5. The se-
quence has a peak intensity of 200 digital units (DUs) and the noise has a variance of σ2

η = 1.
Robust multiframe AWF SR is done using K = 12 frames with L = 4. The detection perfor-
mance is evaluated using a receiver operating characteristic (ROC) curve. The local motion
detection results are shown in Figs. 6 and 7. A single LR reference frame from this study is
shown in Fig. 6(a) along with the truth mask contour (Green line) showing the boundary of the
local motion over the K = 12 frame temporal window. The R, RP, and absolute FME statistic
images are shown in Figs. 6(b) - 6(d), respectively. For the RP statistic, the Gaussian prefilter
has a standard deviation of 1.5 LR pixels. The red contours represent the detection masks for a
probability of detection of pd = 0.85 and the images are scaled so that at the detection thresh-
old they have a grayscale value of 128. We compare methods using a constant pd in order to
illustrate how aliasing impacts FPs. The green contours represent the true local motion mask.
Moiré patterns from aliasing can be seen on the input frame in Fig. 6(a). The range statistic in
Fig. 6(b) clearly shows high error from the aliasing, and this leads to numerous FPs. As shown
in Fig. 6(c), the use of the prefilter dramatically reduces error due to aliasing. The FME in Fig.
6(d) also shows reduction in aliasing error.

The ROC curve analysis for these data, using pixel-level scoring, is shown in Fig. 7. The
benefit of the Gaussian prefilter is made clear here for both the FEP and RP detection statistics.
Note that FME and MEE are more sensitive at very low FP rates, but the prefilter methods
outperform at higher FP rates. It is also interesting to note that the range statistics outperform
the frame error statistics. This may be because the frame error methods only consider errors
between each frame individually and the reference. On the other hand, the range methods out-
puts the maximum difference between all pairs of frames. Finally, note that the performance of
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Fig. 6. Simulated local motion detection study. (a) Simulated LR frame of static chirp
pattern showing and a moving ruler. (b) R statistic with K = 12 registered frames, (c) RP
statistic (standard deviation of 1.5 LR pixels), (d) absolute FME statistic. The red contours
are the detection masks for pd = 0.85 and the green mask is the motion truth.

MEE is very similar to that of FME. As mentioned above, the FME method is more attractive
computationally than MEE.

5. Robust SR results

A number of SR results are provided here to illustrate the efficacy of the proposed method. We
begin with results for simulated data that include a quantitative error analysis. Next, real video
from a visible camera is used. Finally, we test the algorithm using an airborne midwave infrared
(MWIR) camera. All of the datasets include some kind of background resolution pattern and a
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Fig. 7. ROC curve for the local motion detection algorithms using the simulated moving
ruler data. The benefit of the Gaussian prefilter is made clear here for both the frame error
and range methods. Note that FME and MEE are more sensitive at very low FP rates, but
the prefilter methods outperform at higher FP rates.

moving object.

5.1. Simulated data

The SR images for the simulated moving-ruler data from Fig. 6 are shown in Fig. 8. A region
of interest (ROI) from the true HR image is shown in Fig. 8(a) and bicubic interpolation of a
single LR frame with L = 4 is shown in Fig. 8(b). Notice that the single interpolated image has
significant Moiré patterns from aliasing. The translational multiframe AWF SR output with no
local motion detection [11] is shown in Fig. 8(c). Here the rings on the chirp pattern are fully
restored, but the moving ruler is heavily distorted. The distortion occurs because the background
motion model is not adequate to describe the positions of the samples from the moving object.
The high boost effect of the AWF filter tends to amplify the artifacts. The robust AWF SR
results using the R, RP, and FME detection statistics are shown in Figs. 8(d)-8(f), respectively.
Thresholds for all of the methods are set for pd = 0.85, based on the ROC analysis shown in
Fig. 7. All of the AWF SR methods use L = 4 upsampling, a window size of 12×12 HR pixels,
ρ = 0.75, and σ2

d /σ2
η = 100. Multiframe AWF SR results use K = 12 input frames and the

prefilter used is a Gaussian LPF with spatial standard deviation of 1.5 LR pixels. With the R
statistic, the FPs seen in Fig. 6(b) lead to areas of aliasing in the chirp pattern in Fig. 8(d). Both
the RP and FME local motion detection appear to perform well, as can be seen in Figs. 8(e)
and 8(f). An aliased “shadow” behind the ruler can be seen because these methods do not use
multiple frames to populate the HR grid until no motion is detected anywhere within the K
frame temporal window.

Quantitative error results along with processing times are shown in Table 2. The error metrics
are MSE, mean absolute error (MAE), and peak signal-to-noise ratio (PSNR). The processing
times for the multiframe AWF methods include one-frame incremental registration, local mo-
tion detection, populating the HR grid, and the final weighted sum operation. Processing is done
using MATLAB on an Intel Core i7 64 bit CPU with a clock speed of 3.07 GHz. The multiscale
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Table 2. Quantitative error analysis for the simulated moving ruler data.

Method MSE (DU) MAE (DU) PSNR (dB) Time (s)
Bicubic 439.74 12.39 19.59 0.005
Single Frame AWF 362.14 10.69 20.43 0.045
Multiframe AWF 70.86 3.81 27.52 0.120
Robust AWF (FE) 321.10 9.58 20.95 0.194
Robust AWF (FEP) 55.56 3.49 28.57 0.205
Robust AWF (R) 197.24 6.70 23.07 0.191
Robust AWF (RP) 55.19 3.48 28.60 0.202
Robust AWF (FME) 56.06 3.50 28.53 0.327

affine registration uses 2 levels with 10 iterations at each level and employs bilinear interpo-
lation. The Robust AWF SR with the RP detection statistic provides the best results, followed
closely by FEP and FME. For very small moving objects, the FME may have an advantage,
since no smoothing prefilter is required.

5.2. Visible camera video

Here we present results for a real video sequence acquired with an Imaging Source DMK
21BU04 visible camera. This is a 640 × 480 8-bit grayscale camera employing a Sony
ICX098BL CCD sensor with 5.6 μm detectors. The camera is fitted with a Computar F/4
lens with a focal length of 5mm. Considering a central wavelength of λ = 0.55 μm, the visi-
ble system is theoretically 5.09× undersampled with Q = 0.39. The sequence captures a static
background of a chirp pattern. Local motion is provided by a tire pressure gauge stick being
moved in front of the chirp. The camera is mounted on a tripod with random translational
motion applied.

The results are shown in Fig. 9 (Media 1, Media 2). Bicubic interpolation of a single LR
frame with L = 4 is shown in Fig. 9(a). As with the simulated data, significant Moiré patterns
from aliasing are visible. The translational multiframe AWF output with no local motion detec-
tion is shown in Fig. 9(b). The robust AWF SR results using the R and RP detection statistics are
shown in Figs. 9(c) and 9(d), respectively. The detection methods are set for a common prob-
ability of false alarm of p f a = 10−4. Thresholds have been determined using a non-parametric
kernel-smoothing probability density function (pdf) estimate for manually selected background
regions. The AWF parameters are the same as those used for the simulated data. The R and RP
detection statistics are shown in Figs. 9(e) and 9(f), respectively. The statistics images are both
scaled to have a value of 128 at the detection threshold, to facilitate comparison. Note that with
the low false alarm rate, both the R and RP detectors operate successfully on the background
chirp pattern. However, the moving stick is only partially detected with the R statistic and ap-
pears fully detected with the RP statistic. These results appear consistent with those from the
simulated data. Videos are provided to better illustrate the results. Media 1 shows video corre-
sponding to Figs. 9(a) and 9(d) on the left and right, respectively, while Media 2 shows video
of ROIs corresponding to Figs. 9(a) - 9(d).

5.3. Infrared flight data

The flight data used here is acquired with a MWIR imager with a spectral bandwidth of λ =
3−5 μm (with the exception of the CO2 absorption band). As in [7], we use λ = 4 μm for our
PSF model. The system uses F/2.3 optics and has a pixel pitch of p = 19.5 μm and we assume
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Fig. 8. Robust AWF SR results for the simulated moving ruler image sequence (L = 4). (a)
True HR image, (b) bicubic interpolation of the single LR reference frame, (c) AWF SR
with no local motion detection, (d) robust AWF SR (R), (e) robust AWF SR (RP), (f) robust
AWF SR (FME). All of the detection methods are set for pd = 0.85.
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Fig. 9. Robust AWF SR results (L = 4) using visible camera sequence using a translational
background motion model (Media 1, Media 2). (a) Bicubic interpolation of the reference
frame, (b) AWF SR with no local motion detection, (c) robust AWF SR (R), (d) robust
AWF SR (RP), (e) R statistic with detection mask, (f) RP statistic with detection mask.
Thresholds are set for p f a = 10−4.
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100% fill factor rectangular detectors. This system is theoretically 4.24× undersampled with a
Q = 0.47. The details of the airborne data collection can be found in [25]. On the ground we
have a thermal resolution pattern with 13 pairs of 4-bar groups. The bar spacing, which matches
the bar width, ranges from 0.25 m to 1.0 m. The scaling factor between bar groups is designed
to be 2(1/6) [25]. The image sequences considered here show both the bar pattern and a moving
car. This allows us the opportunity to evaluate SR objectively using the bar pattern, as well as
evaluate robustness to a moving object.

To observe the impact of frame rate on the proposed processing, we include one sequence
acquired at a frame rate of 16 Hz, and another at 50 Hz. Both use an integration time of 4
ms to minimize motion blur. All of the AWF parameters are the same as used in the previous
results, except that we use L= 3, K = 10, and pf a = 10−5. This temporal window size is chosen
because the 50 Hz data includes a step-stare mirror that repositions the field of view every 10
frames. The lower FP rate is chosen because the data have fewer strong aliasing artifacts and
we can get a high sensitivity with this level of specificity. As with the visible data, thresholds
have been determined using a non-parametric kernel-smoothing probability density estimate
for manually selected background regions.

The results with the 16 Hz flight data are shown in Fig. 10 (Media 3, Media 4). Bicubic
interpolation of a single LR frame with L = 3 is shown in Fig. 10(a). A vehicle that is moving
from left to right can be seen at coordinates (300,175). The bar pattern can be seen below
the vehicle, and above is a parking lot with a light post at coordinates (380,50). The affine
multiframe AWF SR output with no local motion detection [7] is shown in Fig. 10(b). Here the
moving vehicle is heavily distorted due to its motion, and some distortion can also be seen on
the light due to motion parallax. The robust AWF SR results using the RP and FEP detection
statistics are shown in Figs. 10(c) and 10(d), respectively.

Images showing the number of frames allowed to populate the HR grid from the RP and
FEP local motion detection are shown in Figs. 10(e) and 10(f), respectively. Black indicates
that only the reference frame is used, white indicates that all K = 10 frames are used (no local
motion detected), and gray reveals values in between. Both the RP and FEP methods yield
good aliasing reduction performance on the bar pattern, but processing around the moving
vehicle differs. For the RP detector, we allow only 1 or all K frames at a given area on the
HR grid, as can be seen in Fig. 10(e), while FEP allows for 1 to K. Note in Fig. 10(f) that the
FEP method starts repopulating the HR grid immediately after the vehicle passes. For RP, we
have a much bigger single frame processing “shadow” in the wake of moving objects. Using
the robust AWF SR with quantized HR grid, FEP adds no additional filtering complexity and
allows us to minimize single frame processing areas. To illustrate the temporal characteristics of
the processing, Media 3 shows video of Figs. 10(a) and 10(d) on the left and right, respectively,
while Media 4 shows video of ROIs corresponding to Figs. 10(a) - 10(d).

It is interesting to observe the estimated probability density functions (pdfs) of the RP and
FEP detection statistics on the manually selected background for the data in Fig. 10. These are
shown in Fig. 11. As can be seen in Fig. 11(a), the RP statistic appears to be well modeled
with the three parameter generalized extreme value (GEV) pdf [30]. The FEP is approximately
Gaussian, as illustrated in Fig. 11(b). These parametric models could aid in setting an operating
point in practical applications. When no prefilter is used (i.e., R, FE statistics), we find that
these parametric models do not provide heavy enough tails to accurately fit the data.

Results for the 50Hz airborne data are shown in Fig. 12. Single frame bicubic interpolation
is shown in Fig. 12(a) and the robust AWF SR (FEP) output is shown in Fig. 12(b). These
images show the same ground resolution pattern and include a vehicle at coordinates (140,220)
that is moving from left to right in the sequence. The bar pattern is well resolved in Fig. 12(b),
compared with that in Fig. 12(a), and the moving vehicle is free from misregistration artifacts.

#172517 - $15.00 USD Received 12 Jul 2012; revised 16 Aug 2012; accepted 19 Aug 2012; published 29 Aug 2012
(C) 2012 OSA 10 September 2012 / Vol. 20,  No. 19 / OPTICS EXPRESS  21070

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-20-19-21053-3
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-20-19-21053-3
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-20-19-21053-4
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-20-19-21053-4


50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(a)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(b)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(c)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(d)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(e)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(f)

Fig. 10. Robust AWF SR results for airborne data with 16 Hz frame rate using an affine
background motion model (L = 3) (Media 3, Media 4). (a) Bicubic interpolation of the
reference frame, (b) AWF SR with no local motion detection, (c) robust AWF SR (RP), (d)
robust AWF SR (FEP), (e) number of input frames contributing in (c), (f) number of input
frames contributing in (d). Both detection methods are set for p f a = 10−5.
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Fig. 11. Probability density function estimation for the (a) RP statistic and (b) FEP statistic
for the background in the 16Hz flight data sequence from Fig. 10.

An ROI around the moving vehicle for the AWF SR output with no motion detection is shown
in Fig. 12(c). The same ROI for the robust AWF SR (FEP) output is shown in Fig. 12(d). Motion
artifacts are visible in Fig. 12(c), but are greatly reduced compared with that seen in Fig. 10(b).
This illustrates that another way to help mitigate the problem of local motion is with increased
frame rate relative to the moving objects in the scene. A higher frame rate also reduces the
camera platform displacement between frames for this airborne application. This has the added
benefit of reducing motion parallax.

6. Conclusions

Complex scene motion creates challenges for SR, which generally relies on some form of sub-
pixel registration. As we have shown, a parametric background motion model can be used to
provide accurate results, provided that large enough image block sizes are used. However, local
motion from moving objects and motion parallax will generally not follow the background.
Furthermore, commutation of the motion and PSF may not be valid with local motion. This
commutation is a key assumption in most fast nonuniform interpolation SR algorithms. Our
proposed approach uses local motion detection and only uses samples from the observed frames
determined to be consistent with the background motion model. This eliminates the need for
accurate subpixel registration for local motion and bypasses the issue of motion/PSF commu-
tation in those areas. To detect local motion in the presence of aliasing, we have proposed and
compared several methods. We see that a simple low-pass prefilter can be used to mitigate the
effects of aliasing to a great extent with the FEP and RP statistics. However, this may come at
the cost of contrast for small moving objects. Multiframe methods can exploit sampling diver-
sity among multiple frames to mitigate aliasing when detection local motion. We have presented
two such methods, the MEE and FME detectors.

We have demonstrated that many of the proposed robust methods can work effectively with
both ground and airborne video. Also, the airborne results illustrate that the local motion prob-
lem is reduced at higher frame rates. This is because the motion differential throughout the
scene is reduced, as is the potential for motion parallax. However, fast moving objects, relative
to the frame rate, must still be addressed. We have observed that the RP method does appear
to provide the best results for larger moving objects and higher FP rates. The FEP method is
nearly as good as the RP method and allows one to use a variable number of frames when pop-
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Fig. 12. Robust AWF SR results for airborne data with 50 Hz frame rate using an affine
background motion model (L = 3). (a) Bicubic interpolation of the reference frame, (b)
robust AWF SR (FEP) for p f a = 10−5, (c) moving vehicle ROI processed with AWF SR
with no local motion detection, (d) moving vehicle ROI processed with robust AWF SR
(FEP).

ulating the HR grid, not just 1 or K as with the multiframe methods (i.e., RP, MEE, FME). For
small objects and low FP rates, the FME method may be preferred, because it does not rely on
a smoothing prefilter, which can attenuate small moving objects.
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