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Abstract—Human-computer dialogs are an important vehicle
through which to produce a rich and compelling form of human-
computer interaction. We view the specification of a human-
computer dialog as a set of sequences of progressive interactions
between a user and a computer system, and mine partially
ordered sets, which correspond to mixing dialog initiative, embed-
ded in these sets of sequences—a process we refer to as dialog
mining—because partially ordered sets can be advantageously
exploited to reduce the control complexity of a dialog implemen-
tation. Our mining losslessly compresses the specification of a
dialog. We describe our mining algorithm and report the results
of a simulation-oriented evaluation. Our algorithm is sound,
and our results indicate that it can compress nearly all dialog
specifications, and some to a high degree. This work is part
of broader research on the specification and implementation of
mixed-initiative dialogs.

I. INTRODUCTION

From application software to the web, interactive computing
systems involve progressive interactions between the user and
the system in support of the completion of a particular task or
satisfaction of a specific goal. These progressive interactions
are considered dialogs between a human and a computer
system. Viewed from this perspective, posting an item for
sale on eBay, completing a transaction at an ATM, purchasing
a product from Amazon, and plotting a chart or graph in
Microsoft Excel are task scenarios involving human-computer
dialog. Dialogs are deemed an important vehicle through
which to produce a rich and compelling form of human-
computer interaction.

Dialogs vary widely from those that keep the user in lock-
step with the initiative of the system to those which impart
some to equal control to the user over the direction in which
to steer the dialog, called mixed-initiative dialogs [1], [2], [3].
In this article, we view the specification of a human-computer
dialog as a set of sequences of interaction steps from the start
of a dialog through completion. We are concerned with mining
(i.e., identifying) partially ordered sets, which correspond to
mixing dialog initiative, embedded in these sets of sequences
because partially ordered sets can be advantageously exploited
to reduce the control complexity of the implementation of a
dialog. The left side of Fig. 1 provides a conceptual overview
of our approach. We start with a high-level specification
of a human-computer dialog and mine it for a compressed

representation which captures the requirements of the dialog—
a process we refer to as dialog mining—in preparation for
implementation of the dialog (see right side of Fig. 1).

II. HUMAN-COMPUTER DIALOGS

A. Fixed- and Mixed-initiative Dialogs

Consider a dialog in a wizard for installing application
software [4]. Typically the user must first accept the license
agreement, then select an installation location (i.e., disk and
directory), and finally choose options (e.g., which components
of the software to install). Such a dialog is a fixed dialog due
to the fixed order of the questions from which the user is
not permitted to deviate in his responses [5]. An enumerated
specification is a set of episodes, and an episode is an ordered
list of questions to be posed and answered from the start of the
dialog to completion. Intuitively, an enumerated specification
is a set of all possible ways to complete a dialog. An
enumerated specification of this installation wizard dialog is
{≺accept-agreement installation-location options�}. Intuitively, an enumer-
ated specification constitutes a plan for a dialog. Formally, a
dialog specification is a set of totally ordered sets. We use a
Hasse diagram, a graphical depiction of a partially ordered
set, to represent a dialog specification. A relation R with
the set S over whose Cartesian product R is defined is a
strict partially ordered set (or poset) if R is an irreflexive,
asymmetric, and transitive relation. This means that some of
the elements of S may be unordered based on R. For instance,
the set {(a, c), (b, d)} is a strict partially ordered set. On the other
hand, a relation R with the set S over whose Cartesian product
R is defined is a strict totally ordered set if and only if for
every two elements (x, y) ∈ S, xRy or yRx. For instance,
the set {(a, b), (b, c), (a, c)} is a strict totally ordered set. Every
totally ordered set is also a partially ordered set, but the reverse
is not necessarily true. Column (a) of Table Ia illustrates the
Hasse diagram that specifies this software installation dialog.
A Hasse diagram is read bottom-up. Here, the set S of the
poset is the set of the questions posed in the dialog and R is
the ‘must be answered before’ relation denoted with an upward
arrow between the source and target of the arrow.

Flexible dialogs typically support multiple completion
paths. For example, consider a dialog for ordering at the
sandwich shop Subway. The customer must select a bread
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(operationalized dialog)dialog specification)
(an enumerated

  toasted for−here/to−go)

((bread cheese

(bread toasted

  cheese for−here/to−go))

What type of bread would you like?
> Wheat.

Okay. Wheat bread.

What type of cheese would you like?

> Toasted please.

Okay, the sub is toased.

What type of cheese would you like?

> Swiss.

For here or to go?

> For here.

Thank you.

Dialog Modeling and Implementation Toolkit

for−here/to−go

bread

toastedcheese

for−here/to−go))
toasted)

((C bread
(SPE’ cheese

represented as a Hasse diagram

compressed/optimal dialog specification

Dialog Mining dialog management

as a set of posets R, where |R|<=|P|
implementation of dialoga set of posets P

Fig. 1: Concept of dialog mining (left) contextualized within
the broader scope of our approach to automatic dialog system
construction. Overview of dialog implementation from initial
enumerated specification through dialog mining to an output
expression to an interactive dialog system.

and size, and indicate the type of sub desired. Since possible
responses to these questions are independent of each other,
the dialog designer may wish to permit the customer to
communicate the answers in any order or combinations. For
instance, some customers may prefer to use a ≺size type bread�

episode:
SYSTEM: 6 inch or footlong?
USER: Footlong.
SYSTEM: What type of sub is it?
USER: Cold cut combo.
SYSTEM: What type of bread would you like?
USER: Italian herbs and cheese.

Others may prefer a ≺bread size type� episode. Still others might
prefer to use a ≺(bread size) type� episode, where answers to the
questions enclosed in parentheses must be communicated in a
single utterance (i.e., all at once):

SYSTEM: What type of bread would you like, and is it 6 inch or footlong?
USER: 9-Grain Honey Oat, 6 inch
SYSTEM: What type of sub is it?
USER: Veggie Delight.

To accommodate all dialog completion possibilities we specify
this dialog with the Hasse diagram shown in column (k)
of Table Ib. The absence of arrows between the bread, size,

type, (bread size), (bread type), (size type), and (bread size type) elements
indicates that the times at which each of those utterances
may be communicated are totally unordered. This specification
indicates that answers to the set of questions in the dialog may
be communicated in utterances corresponding to all possible
set partitions of the set of questions, and using all possible
permutations of those partitions. For instance, if the set of
questions is {a,b,c}, then the set of all possible partitions is:
{{{a},{b},{c}}, {{a,b},{c}}, {{a,c},{b}}, {{a},{b,c}}, {{a,b,c}}}. The set
of all permutations of these partitions is: {≺(a b c)�, ≺(a b) c�,

≺c (a b)�, ≺(b c) a�, ≺a (b c)�, ≺(a c) b�, ≺b (a c)�, ≺a b c�, ≺a c

b�, ≺b a c�, ≺b c a�, ≺c b a�, ≺c a b�}. In the Subway example,
that set is the set of all six permutations of {bread, size, type} and
all permutations of all set partitions of {bread, size, type} or, in
other words, all thirteen, possible episodes to complete the
dialog shown in shown in column (k) of Table Ib. Notice that
a specification of a dialog as a Hasse diagram is a compressed
representation capturing its requirements, and the compression
is lossless (i.e., the episodes in the enumerated specification
may be reconstructed from the diagram).

Granting the user influence over the flow of the dialog
increases the number of episodes in its enumerated specifi-
cation [6]. This Subway-ordering dialog is a mixed-initiative
dialog [3], [5], [7]. There are multiple degrees of mixed-
initiative interaction; the degree considered in this article is
called unsolicited reporting—an interaction strategy where, in
response to a question, at any point in the dialog, the user may
provide an unsolicited response to a forthcoming question.
When all possible permutations (i.e., orders) of all possible
partitions (i.e., combinations) of responses to questions are
supported in a dialog, we refer to the dialog as complete,
mixed-initiative dialog.

B. A Space of Dialogs

Table I depicts a space from fixed to complete, mixed-
initiative dialogs, encompassing a wide variety of unsolicited
reporting, mixed-initiative dialogs. Columns (b)–(j) in Table I
contain specifications of dialogs (e.g., for ordering at Subway)
that are situated in between the two ends of this space. For in-
stance, consider ordering at Subway where bread and a choice
of for-here or to-go must be entered first and last, respectively,
but the type of cheese and whether the customer wants the sub
toasted or not may be communicated in any order: {≺bread cheese

toasted for-here/to-go�, ≺bread toasted cheese for-here/to-go �} (see column
(f) of Table Ib). This dialog contains an embedded, mixed-
initiative sub-dialog [5]: {≺cheese toasted�, ≺toasted cheese�}. Alter-
natively, consider a dialog for reserving a hotel room where
providing a rewards program number and indicating the type
of room desired (e.g., king bed) can be communicated either
first or last, but the specification of check-in date and check-
out date must occur in that order: {≺rewards# check-in check-out room-

type�, ≺room-type check-in check-out rewards#�}. This dialog contains an
embedded, fixed sub-dialog—{≺check-in check-out�}—and, unlike
the prior examples, cannot be captured by a single poset (see
column (g) of Table Ib). Lastly, consider the dialog containing
two embedded, complete, mixed-initiative sub-dialogs shown
in column (h) of Table Ib. Here, the user can pursue the two
sub-dialogs in any order, and can specify the atomic elements
within each sub-dialog in any order (e.g., bread and size in
any order, and payment and for-here/to-go in any order), but
cannot mix the atomic responses between the two sub-dialogs
(e.g., the episode ≺size payment bread for-here/to-go� is not permitted).

An attractive consequence of specifying dialogs using posets
and Hasse diagrams is that the structure of the diagram can
be used to design the control structure of the implementation
of the dialog. The goal of this paper is to demonstrate how to
get from an enumerated specification of a dialog (row two of
Table I) to a set of partial orders (row three) and, ultimately, to
a compressed specification of the dialog (row four), discussed
below (i.e., dialog mining; see left side of Fig. 1). In other
words, we start with a high-level dialog specification (i.e., a
set of episodes) and mine it for a minimum set of posets (i.e.,
a compressed representation), which entails identifying em-
bedded mixed-initiative sub-dialogs, for purposes of improved
dialog implementation.



III. DIALOG MINING ALGORITHM

Extracting a minimal dialog specification from an enumer-
ated specification is a process we refer to as dialog mining
(see left side of Fig. 1). We generalize this problem to one of
finding a minimum set of posets capturing the requirements
of a dialog from an enumerated specification of the dialog.
Formally, we state the problem as:

INPUT: A set of posets1 P , all defined over the same set,
where the union of the linear extensions from each poset
in P is L.

OUTPUT: A minimum set of posets R such that |R| 6 |P |
and the union of the linear extensions from each poset of
R is L.

A linear extension of a partial order is a total order that is
consistent with the partial order. For instance, abcd is a linear
extension of the partial order {(a, c), (b, d)}. Intuitively, the goal
of the mining algorithm is to identify the solicitations in the
dialog specification whose responses are unordered (i.e., can
be communicated at any time) or, in other words, all the parts
of the dialog involving mixed initiative. Specifically, what we
are attempting to mine is the patterns shown in the first row of
Table II, which each consist of a set of episodes with particular
properties. For instance, if we find the set of episodes in the
cell at the sixth column, first row of Table II, we compress
that set of episodes by representing them with the expression
(PE ∗ a b c), shown in the second row of Table II. While
beyond the scope of this paper, which focuses on the mining
aspect, the first five patterns shown in the top row of Table II
correspond to five concepts from programming languages [8].
The main idea is that if we want to support a subset of
episodes in the dialog implementation that matches one of
these patterns, we can advantageously view the support for
those episodes through the lens of the language-based concept
to which we associate it. These concepts from programming
languages (and combinations of them) help specify dialogs
between the fixed and complete, mixed-initiative ends of the
space of dialogs depicted in Table I and, thus, help bring
structure to this space [9]. For purposes of this paper, it is
sufficient to understand that each of these patterns represents
a particular type of compression of the input.

We designed a recursive, heuristic-based algorithm to ad-
dress this problem. Table III gives thirteen tests cases that we
use to demonstrate the heuristic nature of our algorithm. We
use S-list notation [10] to describe the input and output of
our algorithm, because our implementation of the algorithm
is in a LISP-like language. However, the lists are only used to
represent sets (i.e., they never contain duplicate elements). The
input to the algorithm is an enumerated specification we refer
to as m-episodes. They are given as a list of LISP lists [11],
where each inner list corresponds to an m-episode, where m
is the number of atomic elements in the episode (e.g., ≺a b c�),
not necessarily the length of the episode (e.g., the episode ≺(a b

c)� is of length one, but has three atomic elements). Similarly,

1While each episode in the input set is a totally ordered set, we refer to
the input as a set of posets since any totally ordered set is also a partially
ordered set.

Input: ≺a b c� ≺(a b c)�

≺(a b c)�,
≺a (b c)�,
≺(a b) c�,
≺a b c�

≺a b c�,
≺a c b�,
≺b a c�,
≺b c a�,
≺c b a�,
≺c a b�

≺(a b c)�,
≺(a b) c�,
≺c (a b)�,
≺(b c) a�,
≺a (b c)�,
≺(a c) b�,
≺b (a c)�,
≺a b c�,
≺a c b�,
≺b a c�,
≺b c a�,
≺c b a�,
≺c a b�

≺a b c�,
≺a c b�

Output: (C a b c) (I a b c) (PFAN ∗ a b c) (SPE′ a b c) (PE ∗ a b c) (C a (SPE′ b c))

Hasse
Diagram(s):

a

c

b (a b c)
(b c)

(a b)

c

a

b

c

(a b c)

a

cba (a b)

c

b(a b c )

(a c)

(b c)a

a

cb

Concept: Currying Interpretation Partial Function
Application

Single argument
Partial Evaluation Partial Evaluation N/A

Semantics: a sequences of
(3) utterances

multiple (3) responses
per utterance

all combinations of
a b c in that order

all (6) permutations
of a b c

all (13) permutations
and combinations of a b c

sub-dialog

Compression
Ratio: 1:1 1:1 2q−1:1 (23−1=2 = 4:1) q!:1 (3! = 6 : 1)

∑q=3
p=1 p!× S(q, p) : 1 (13:1) N/A

TABLE II: Patterns for which we mine.

the output is a set of posets represented as a list of LISP lists,
where each inner list represents a poset. Each inner list in the
output list begins with one of the five mnemonics that are used
to compress the set of input episodes (i.e., C, I, PFAN∗, SPE′, PE∗;
see second row of Table II).

It is helpful to think of the algorithm as processing a set of
m-episodes in parallel from left to right as presented in Ta-
ble III. If all possible permutations (i.e., orders) of all possible
partitions (i.e., combinations) of atomic elements are given in
the m-episodes (i.e., a complete, mixed-initiative dialog), we
compress them into a poset set of one poset element (e.g., case
1 in Table III). If only all possible permutations of the atomic
elements are given, we also compress them into a set of one
poset element (e.g., case 2 in Table III). If neither of these
cases is satisfied, the algorithm checks if the first element of
each input m-episode is equal to each other. If so (e.g., case 3
in Table III), the algorithm partially constructs the output set
of posets, removes the first element of each input m-episode,
and recursively applies itself to the remaining input (m-1)-
episodes, while maintaining the partially-constructed set of
posets.

For purposes of overall algorithm explanation, it is non-
essential to distinguish between all possible permutations (i.e.,
orders) of all possible partitions (i.e., combinations) of atomic
elements and just all possible permutations of the atomic
elements. However, since the exposition of the latter is simpler,
we use the pattern of all possible permutations of the atomic
elements in the remainder of our illustrative examples.

If the first element of each input m-episode is not equal
to each other, the algorithm computes p, which is the inverse
factorial of s, the number of episodes input. For example, in
case 4 in Table III, because s = 2 and m = 3, p is computed
to be 2 because p!=2!=s=2. After computing p, the algorithm
checks for all possible p permutations of the atomic elements
at the beginning of each input m-episode. If found, (e.g., case 4
in Table III), the algorithm partially constructs the output set
of posets and removes all of the p-permutations from the
beginning of the input m-episodes. The algorithm is then
applied recursively to the remaining (m-p)-episodes, again,
maintaining the partially-constructed output set of posets. The
recursion in this algorithm terminates when the final element
in each input m-episode is processed.



# Input (m-episodes) Output Hasse Diagram(s) Compression Ratio

1
(( a b )
( b a )
( (a b) ))

(((PE* a b)))

ba

(a b)
(3:1)

2 (( a b )
( b a )) (((SPE’ a b))) ba (2:1)

3 (( a b c )
( a c b ))

((C a
(SPE’ b c)))

a

cb
(2:1)

4 (( a b c )
( b a c )) ((C (SPE’ a b) c))

a b

c
(2:1)

5 (( a b c d )
( a c b d ))

((C a
(SPE’ b c) d))

d

a

cb (1:1)

6 (( a b c d e )
( a c b d e ))

((C a
(SPE’ b c) d e))

e

a

cb

d
(2:1)

7 (( a b c d e )
( a c b e d ))

((C a b c d e)
(C a c b e d))

d

a

b

c

d

e

a

c

d

e

(2:2=1:1)

8

(( a b c )
( b a c )
( a c b ))

(( a b c )
( a c b )
( b a c ))

((C (SPE’ a b) c)
(C a c b)) c

b

a b

c

a

(3:2)

9
(( a b c d )
( d c b a ))

((C a b c d)
(C d c b a))

a

c

a

b

c

d

d

b
(2:2=1:1)

10
(( a b c )
( a c b )
( c b a ))

((C a (SPE’ b c))
(C c b a))

a

a

cb

c

b (3:2)

11

(( a b c d )
( d c b a )
( d b c a )
( a c b d ))

((C a (SPE’ b c) d)
(C d (SPE’ c b) a))

da

cb

d

cb

a

(4:2=2:1)

12
(( a b c )
( b a c )
( c a b ))

((C (SPE’ a b) c)
(C c a b))

c

b

c

a

a b

(3:2)

13
(( a b c d )
( a c d b )
( b a c d ))

((C (SPE’ a b) c d)
(C a c d b))

b

a b

c

a b

c

a

c

d
d

(3:2)

TABLE III: Test cases used in our explanation of our dialog
mining algorithm, and especially its heuristic nature. The
vertical rules in the cells of the second column serve to make
the instance of the pattern for which we mine salient. The
horizontal rules in the cells of the second column illustrate how
the algorithm groups episodes in the input using the heuristic.

Cases 1–6 in Table III yield compression in the output set
of posets (see column labeled ‘Compression Ratio’). In cases
7 and 9, after running the algorithm, each m-episode in the
input corresponds to a poset (or a totally order set in this
case) yielding no compression. Note that the cell at the input
column of case 8 contains two sets of the same m-episodes,

#expr Total w/ Com. %tage w/o Com. %tage
1 46 33 72 % 13 28 %
2 435 372 86 % 63 14 %
3 1,705 1,558 91 % 147 9 %
4 2,977 2,800 94 % 177 6 %
5 2,291 2,184 95 % 107 5 %
6 688 662 96 % 26 4 %
7 49 49 100 % 0 0 %
8 0 N/A N/A N/A N/A
9 0 N/A N/A N/A N/A

10 0 N/A N/A N/A N/A
11 0 N/A N/A N/A N/A
12 0 N/A N/A N/A N/A
13 0 N/A N/A N/A N/A

Totals: 8,191 7,658 93 % 533 7 %

TABLE IV: Frequencies of dialogs that can be represented
with 1–13 expressions, with and without compression.

Legend: #expr = ‘number of expressions’; w/ Com. = ‘with
compression’; w/o Com. = ‘without compression’; %tage =
‘percentage.’

just listed in different orders. Our algorithm computes the same
set of posets for each demonstrating that our algorithm is not
sensitive to the presentation order of each m-episode in the
input list.

If all p-permutations are not found at the beginning of the
m-episodes, the algorithm groups the episodes by first ele-
ment (e.g., cases 9–13 in Table III) and recursively processes
each group independently. The primary goal/theme of dialog
mining is to identify as many embedded complete, mixed-
initiative sub-dialogs in an enumerated specification since they
can be advantageously handled in the implementation by the
program transformation partial evaluation [12]. This algorithm
achieves the process that is referred to as layering [13].
We implemented this dialog mining algorithm in Racket, a
dialect of the LISP programming language. The miner runs in
DrRacket2 (version 6.1.1) with the language set to ‘Determine
language from source.’

IV. EVALUATION

Our algorithm is sound in that it always finds a set of posets
whose linear extensions constitute the input set (i.e., it never
returns a wrong answer), but not complete. If it cannot mine
a minimum set of posets, it returns the input set of linear
extensions as the output, which always describes the linear
extensions of the input. However, it is incomplete in that it
does not always mine the minimum number of posets (i.e.,
minimum specification).

Another way to evaluate our mining algorithm is to measure
the fraction of input episodes it compresses across a wide
range of dialogs. To do this we must first characterize the input
space of dialogs. Intuitively, since the enumerated specification
of a complete, mixed-initiative dialog, denoted as Dcmiq,
contains the maximum number of episodes possible, given q,

2http://racket-lang.org/



Com. Ratio % Com. Ind. Freq. Cum. Freq. Cum. %age
13 : 1 92 % 1 1 0 %
6 : 1 83 % 4 4 0 %
8 : 2
4 : 1 75 % 8

7 15 0 %

7 : 2 71 % 22 22 0 %
10 : 3 70 % 8 8 0 %
12 : 4
9 : 3
6 : 2
3 : 1

66 %

2
29
27
6

64 1 %

11 : 4 63 % 17 17 2 %
8 : 3 62 % 83 83 3 %

10 : 4
5 : 2 60 % 49

78 127 4 %

12 : 5 58 % 8 8 4 %
7 : 3 57 % 179 179 6 %
9 : 4 55 % 160 160 8 %

11 : 5 54 % 29 29 9 %
12 : 6
10 : 5
8 : 4
6 : 3
4 : 2
2 : 1

50 %

3
118
378
357
104
15

975 21 %

11 : 6 45 % 27 27 21 %
9 : 5 44 % 313 313 25 %
7 : 4 42 % 696 696 33 %

10 : 6
5 : 3 40 % 94

475 569 40 %

8 : 5 37 % 586 586 47 %
11 : 7 36 % 5 5 47 %
9 : 6
6 : 4
3 : 2

33 %
193
871
133

1,197 62 %

10 : 7 30 % 17 17 62 %
7 : 5 28 % 699 699 71 %
8 : 6
4 : 3 25 % 225

427 652 79 %

9 : 7 22 % 20 20 79 %
5 : 4 20 % 627 627 87 %
6 : 5 16 % 431 431 92 %
7 : 6 14 % 120 120 93 %
8 : 7 12 % 7 7 93 %
6 : 6
5 : 5
4 : 4
3 : 3
2 : 2
1 : 1

0 %

26
107
177
147
63
13

533 93 %

Total (= |U3|): 8,191 8,191

TABLE V: Frequency of dialogs in U3 compressed to discrete
compression percentages observed.

Legend: Com. Ratio = ‘compression ratio’; Ind. Freq. = ‘in-
dividual frequencies’; Cum. Freq. = ‘cumulative frequency’;
Cum. %tage = ‘cumulative percentage’.

the fixed number of questions posed in the dialog, the set
of all possible subsets, save for the empty set, of the set of
all episodes in Dcmiq represents a space of all dialogs possible
given q in our model. There is a combinatorial explosion in the
number of dialogs possible between the fixed and complete,
mixed-initiative ends of the space of dialogs discussed here.
Specifically, the number of dialogs possible in this space is
Uq = 2

|Dcmiq| − 1 =
∑|Dcmiq|

r=1

(|Dcmiq|
r

) (i.e., |Dcmiq| choose r, or

all possible subsets, except for the empty set, of all episodes
in a dialog Dcmiq). To enumerate the dialogs in this space, for
subsequently mining them, we must first capture the size of
the set Dcmiq.

Let s(m) be the set of all partitions of a set of size m into
non-empty subsets, where m is a positive integer (e.g., s(3)

= {{{a},{b},{c}}, {{a,b},{c}}, {{a,c},{b}}, {{a},{b,c}}, {{a,b,c}}}), and
s(m,n) be the set of all partitions of a set of size m into
exactly n non-empty subsets, where n is a positive integer and
n 6 m. The Bell number of a set of size m is B(m) = |s(m)|

(e.g., B(3) = 5). The Stirling number of a set of size m is
S(m,n) = |s(m,n)|. It follows that B(m) =

∑m
n=1 S(m,n). Since an

enumerated specification of a complete, mixed-initiative dialog
contains episodes corresponding to all possible permutations
of all possible partitions of the set of questions in the dialog,
we define its size, |Dcmiq|, as the total function, N → N,
equal to ∑q

p=1 p! × S(q, p), which given q, the number of
questions posed in a dialog, computes the total number of
episodes therein. Using this closed formula for |Dcmiq|, we
observe that |Dcmi1| = 1, |Dcmi2| = 3, |Dcmi3| = 13, |Dcmi4| = 75, and
|Dcmi5| = 541. Computing the number of all subsets (minus the
empty set) of these, we see that U1 = 1, U2 = 7, U3 = 8,191, U4 =

3.7×1021. Clearly, we cannot enumerate all of the dialogs in U4.
Therefore, we generated (i.e., enumerated) all of the dialogs
in U3 as a synthetic data set through which to run and evaluate
our algorithm as a dialog simulation. Thus, we compute and
analyze compression ratios of the dialogs in U3. The use of
simulation for evaluation of dialog systems is common [2],
[14], [15], [16].

The fifth and final row of Table I gives the compression
ratio for the cases shown there. The ratio given in parentheses
is the compression ratio for the particular (test) case shown
while the unparenthesized ratio gives the more general form,
if applicable. For instance, in column (k) thirteen episodes
are compressed into one output expression (in this case,
poset) and, thus, we see the compression ratio as (13:1).
Given q, the number of questions per episode in a dialog
specification, the general compression ratio is ∑q=3

p=1 p!×S(q, p)

: 1. In column (a) there is no compression and, thus, there is a
one-to-one correspondence between the number of episodes in
the enumerated specification and the number of compression
expressions (in this case, posets).

The dialogs in any set Uq whose episodes can be compressed
to one output expression include those that can be represented
only by the (PFAN ∗ a b c), (SPE′ a b c), (PE ∗ a b c) patterns in
Table II; see the last row for those compression ratios which
all end in :1. Patterns C and I do not qualify because they
exhibit no compression (i.e., 1:1 compression ratio; see last
row of Table II).

Of the total dialogs in Uq, 2
|Dcmiq| − 2q! − 3 dialogs cannot

be compressed to only a single output expression containing
only one concept mnemonic (e.g., dialogs c, d, f, h, and j
in Table I); we refer to the sub-space of Uq containing these
dialogs as ∆q. Each dialog in ∆q is represented in the output
of our algorithm with more than one poset (e.g., dialog g
in Table Ib) or with sub-dialogs through nesting [17] (e.g.,



dialogs f and h in Table Ib), or both (e.g., dialogs c, d, and j
in Table I). The sub-space ∆3 of U3 contains 8,176 dialogs.

We ran all of the dialogs in U3 through our dialog mining
system. Our results are given in Tables IV and V. Table IV
shows the distribution of the 8,191 dialogs in U3 mined across
the number of expressions in the output. For instance, a
dialog in U3 that contains exactly five episodes that our miner
compressed to three expressions is counted in the total 1,705
dialogs and among the 1,558 dialogs with compression in row
3 of Table IV. However, a dialog in U3 that contains exactly
three episodes and could not be compressed by our miner
is counted in the total 1,705 dialogs, but counted among the
147 dialogs without compression in row 3. Table IV ranges
from 1 to 13 expressions because given a dialog with three
questions, there are thirteen possible episodes. Even though
there are dialogs in U3 containing between eight and thirteen
episodes, our algorithm is able to compress all of them to a
number of episodes between one and seven. This, however,
does not mean that our algorithm is able to compress 100 %
of the dialogs in U3. The last row of Table IV indicates that
the algorithm is unable to compress 7 % of the dialogs in U3.
Those that it was unable to compress started with a number
of episodes between one and six, and the miner output the
same number of episodes input. However, our algorithm did
compress 93 % of the dialogs in U3. Table V drills down into
the dialogs that the algorithm did compress to examine the
magnitude of the compression in each dialog compressed.

Table V enumerates each discrete percent compression we
observed across all dialogs in U3. For instance, a 63 %
compression percentage is indicated by a 11:4 compression
ratio (i.e., 7 of the original 11 episodes were compressed; 7/11
= 63 %). Table V also provides the frequency of dialogs at
each compression ratio observed as well as the cumulative
frequency of dialogs revealed at each percent compression.
For instance, there were 975 dialogs compressed to 50 %
of the number of episodes input and those 975 dialogs were
distributed among six different compression ratios. Table V
reveals that a majority of the 533 uncompressed dialogs
noted in Table IV started (and ended) with between three,
four, or five episodes. The column labeled ‘Cum. %age’ (i.e.,
cumulative percentage) of Table V shows that 21 % of dialogs
in U3 are each compressed to a level of 50 % or more, and 79 %
of them are each compressed to a level of 25 % or more. We
expect an analysis of U4 to reveal even better results because
as the number of questions posed in a dialog increases (which
also yields a much larger number of episodes possible in the
space), the opportunities for compression increase. Due to the
combinatorial explosion in the number of dialogs in U4 we are
unable to enumerate them in preparation for mining them with
our algorithm.

V. RELATED RESEARCH

Data mining algorithms have been used for a variety of
purposes by the mixed-initiative dialog research community.
One approach entails mining data from the web, including
web search query logs [18], web content [15], [19], and

question-and-answer fora [20], to automatically acquire do-
main knowledge for use in dialog specification task structures
used in a knowledge-based dialog management component
of a (automatically created) dialog system [2]. An alternate
approach involves mining dialogs from observed conversions,
including doctor-patient dialogs [21], or spoken dialog cor-
pora [22], often for dialog modeling or analysis rather than
system development. Other approaches include using machine
learning (e.g., reinforcement learning) to mine dialog strategies
from observed human-computer dialogs [23]. We view our
work as complementary to these research efforts. For instance,
any of the data that Feng, Hakkani-Tür, Di Fabbrizio, Gilbert,
and Beutnagel [19] mine from the web that can be interpreted
as sequences of dialog steps can be run through our algorithm
to identifying opportunities to mix initiative in preparation for
(automatic) dialog system creation. More generally, Glass and
Seneff state that they “see several different ways in which
such flexible reconfiguration will become feasible in the near
future. Perhaps the most critical is the initial preparation of
a new domain, where available on-line databases will be the
catalyst for defining the vocabulary and language models of
the domain, as well as the nature of the dialogue interaction
needed to guide the user through the information space”3 [1].
Our miner identifies the nature of the dialogue interaction
needed to guide the user through the information space, in this
case partially ordered sets corresponding to mixing initiative,
and, thus, dovetails with these efforts, especially with respect
to initially and dynamically (re-)configuring dialog systems
based on the availability of (new) domain information [1],
[15], [19], [24].

VI. DISCUSSION

Dialog mining is one aspect of our approach to automate
the implementation of a human-computer dialog from a high-
level specification of it, in a similar vein as [15], [19], [25].
While the details of dialog system construction are beyond the
scope of this paper, we make some remarks to convey, in a
larger context, the motivation for and purpose of mining the
parts of dialog specification where initiative is mixed, as well
as what we do with the resulting mined expression(s), which
represent(s) a compressed specification of a dialog.

The overall idea is that a dialog implementation resulting
from an optimal output expression specifying the dialog is
more efficient than one generated from a sub-optimal ex-
pression. An optimal expression is one which captures the
maximum number of the patterns described above from the
enumerated specification or, in other words, one which exhibits
the highest level of compression.

A primary advantage to our approach to dialog implemen-
tation is that to support all of the episodes in the enumerated
specification of a dialog, we need not explicitly model all
of them in the control flow of the implementation; we only
need to model each output expression, which, as demonstrated
above, is less than the number of episodes in the enumerated

3Our emphasis.



specification 93 % of the time (for q=3). Thus, in addition to
its use in the evaluation of our mining algorithm, the number
of independent output expressions is also an implementation-
neutral method of quantifying control complexity of a dialog
implementation in this model. Intuitively, the column labeled
‘#expr’ in Table IV captures the number of independent control
flows that must be explicitly enumerated in the implementation
of each dialog counted in the column labeled ‘w/ Com.’

Composing the mining (Fig. 1, left) and management (right)
components results in a dialog modeling and implementation
toolkit. We start with an enumerated dialog specification (i.e.,
a set of episodes) and mine it for a compressed representation
of the dialog as a set of partially ordered sets that captures
the requirements of the dialog (see transition from the left to
the center of Fig. 1). From that intermediate representation we
automatically generate a dialog system capable of managing
(the progressive interaction of) the dialog (transition from the
center to the right side of Fig. 1). Fig. 1 situates dialog mining
within the scope of our broader research on the specification
and implementation of mixed-initiative dialogs.

In conclusion, there are three inter-related aspects of our
work relevant to this article: i) specifying dialogs by the
completion paths through the dialog, ii) identifying the mixing
of initiative between these paths, and iii) supporting that
mixing of initiative between those paths in the implementation
using partial evaluation.This article focuses on aspect (ii).
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