6-2017

Uncountable Discrete Sets and Forcing

Akira Iwasa

University of South Carolina - Beaufort, iwasa@uscb.edu

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf

Part of the Geometry and Topology Commons, and the Special Functions Commons

This Topology + Foundations is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
32nd Summer Conference on Topology and its Applications
University of Dayton
June, 2017

Uncountable discrete sets and forcing

Akira Iwasa
University of South Carolina Beaufort
Background

\[\textbf{V}: \text{ Ground Model} \]

\[\textbf{V}^\mathbb{P}: \text{ Extension of } \textbf{V} \text{ by forcing } \mathbb{P} \]

Consider a topological space \((X, \tau)\) in \(\textbf{V}\).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\textbf{V}^\mathbb{P}\) such that

\[\tau^\mathbb{P} = \text{ the topology generated by } \tau \]

Observation.

- \(\tau \subsetneq \tau^\mathbb{P}\) New open sets are added by forcing \(\mathbb{P}\).
- \(\tau\) is a base for \(\tau^\mathbb{P}\).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Consider a topological space \((X, \tau)\) in \(V\).

We define a topological space \((X, \tau^P)\) in \(V^P\) such that \(\tau^P = \text{the topology generated by } \tau\).

Observation.

- \(\tau \subset \tau^P\) New open sets are added by forcing \(P\).
- \(\tau\) is a base for \(\tau^P\).

I am interested in comparing \((X, \tau)\) and \((X, \tau^P)\).
Background

\(V\): Ground Model

\(V^P\): Extension of \(V\) by forcing \(P\)

Consider a topological space \((X, \tau)\) in \(V\).

We define a topological space \((X, \tau^P)\) in \(V^P\) such that

\[\tau^P = \text{the topology generated by } \tau\]

Observation.

- \(\tau \subsetneq \tau^P\) New open sets are added by forcing \(P\).
- \(\tau\) is a base for \(\tau^P\).

I am interested in comparing \((X, \tau)\) and \((X, \tau^P)\).
Background

\(\mathbf{V} \): Ground Model

\(\mathbf{V}^\mathbb{P} \): Extension of \(\mathbf{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbf{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbf{V}^\mathbb{P} \) such that

\[
\tau^\mathbb{P} = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \subsetneq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Background

\textbf{V}: Ground Model

\textbf{V}^\mathbb{P}: Extension of \textbf{V} by forcing \mathbb{P}

Consider a topological space \((X, \tau)\) in \textbf{V}.

We define a topological space \((X, \tau^\mathbb{P})\) in \textbf{V}^\mathbb{P} such that

\[\tau^\mathbb{P} = \text{the topology generated by } \tau \]

Observation.

- \(\tau \not\subseteq \tau^\mathbb{P}\) New open sets are added by forcing \(\mathbb{P}\).
- \(\tau\) is a base for \(\tau^\mathbb{P}\).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Background

\(\mathbf{V} \): Ground Model

\(\mathbf{V}^\mathbb{P} \): Extension of \(\mathbf{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbf{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbf{V}^\mathbb{P} \) such that

\[
\tau^\mathbb{P} = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \subsetneq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Background

\(\mathbb{V} \): Ground Model

\(\mathbb{V}^\mathbb{P} \): Extension of \(\mathbb{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbb{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbb{V}^\mathbb{P} \) such that

\[
\tau^\mathbb{P} = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \subsetneq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Background

\(\mathbf{V} \): Ground Model

\(\mathbf{V}^\mathbb{P} \): Extension of \(\mathbf{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbf{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbf{V}^\mathbb{P} \) such that

\[\tau^\mathbb{P} = \text{the topology generated by } \tau \]

Observation.

- \(\tau \subseteq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Background

V: Ground Model

V^P: Extension of V by forcing P

Consider a topological space \((X, \tau)\) in V.

We define a topological space \((X, \tau^P)\) in \(V^P\) such that

\[
\tau^P = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \subsetneq \tau^P\) New open sets are added by forcing P.
- \(\tau\) is a base for \(\tau^P\).

I am interested in comparing \((X, \tau)\) and \((X, \tau^P)\).
Background

\(\mathbf{V} \): Ground Model

\(\mathbf{V}^\mathbb{P} \): Extension of \(\mathbf{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbf{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbf{V}^\mathbb{P} \) such that

\[
\tau^\mathbb{P} = \text{ the topology generated by } \tau
\]

Observation.

- \(\tau \subsetneq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
\(V \): Ground Model

\(V^P \): Extension of \(V \) by forcing \(P \)

Consider a topological space \((X, \tau)\) in \(V \).

We define a topological space \((X, \tau^P)\) in \(V^P \) such that

\[
\tau^P = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \not\subseteq \tau^P \) New open sets are added by forcing \(P \).
- \(\tau \) is a base for \(\tau^P \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^P)\).
Background

\(\mathbf{V} \): Ground Model

\(\mathbf{V}^\mathbb{P} \): Extension of \(\mathbf{V} \) by forcing \(\mathbb{P} \)

Consider a topological space \((X, \tau)\) in \(\mathbf{V} \).

We define a topological space \((X, \tau^\mathbb{P})\) in \(\mathbf{V}^\mathbb{P} \) such that

\[
\tau^\mathbb{P} = \text{the topology generated by } \tau
\]

Observation.

- \(\tau \nsubseteq \tau^\mathbb{P} \) New open sets are added by forcing \(\mathbb{P} \).
- \(\tau \) is a base for \(\tau^\mathbb{P} \).

I am interested in comparing \((X, \tau)\) and \((X, \tau^\mathbb{P})\).
Facts

- (X, τ) is Hausdorff $\implies (X, \tau^P)$ is Hausdorff
 "Hausdorffness is preserved by any forcing"

- (X, τ) is regular $\implies (X, \tau^P)$ is regular

- (X, τ) is completely regular $\implies (X, \tau^P)$ is completely regular

- (X, τ) is normal $\nRightarrow (X, \tau^P)$ is normal
 "Normality can be destroyed by forcing"

- (X, τ) is monotonically normal $\implies (X, \tau^P)$ is monotonically normal
Facts

- (X, τ) is Hausdorff $\implies (X, \tau^P)$ is Hausdorff

 “Hausdorffness is preserved by any forcing”

- (X, τ) is regular $\implies (X, \tau^P)$ is regular

- (X, τ) is completely regular $\implies (X, \tau^P)$ is completely regular

- (X, τ) is normal $\not\implies (X, \tau^P)$ is normal

 “Normality can be destroyed by forcing”

- (X, τ) is monotonically normal $\implies (X, \tau^P)$ is monotonically normal
Facts

• (X, τ) is Hausdorff $\implies (X, \tau^P)$ is Hausdorff
 “Hausdorffness is preserved by any forcing”

• (X, τ) is regular $\implies (X, \tau^P)$ is regular

• (X, τ) is completely regular $\implies (X, \tau^P)$ is completely regular

• (X, τ) is normal $\nRightarrow (X, \tau^P)$ is normal
 “Normality can be destroyed by forcing”

• (X, τ) is monotonically normal $\implies (X, \tau^P)$ is monotonically normal
Facts

- (X, τ) is Hausdorff $\implies (X, \tau^P)$ is Hausdorff
 "Hausdorffness is preserved by any forcing"

- (X, τ) is regular $\implies (X, \tau^P)$ is regular

- (X, τ) is completely regular $\implies (X, \tau^P)$ is completely regular

- (X, τ) is normal $\nRightarrow (X, \tau^P)$ is normal
 "Normality can be destroyed by forcing"

- (X, τ) is monotonically normal $\implies (X, \tau^P)$ is monotonically normal
• \((X, \tau)\) is Hausdorff \(\implies\) \((X, \tau^P)\) is Hausdorff
 "Hausdorffness is preserved by any forcing"

• \((X, \tau)\) is regular \(\implies\) \((X, \tau^P)\) is regular

• \((X, \tau)\) is completely regular \(\implies\) \((X, \tau^P)\) is completely regular

• \((X, \tau)\) is normal \(\nRightarrow\) \((X, \tau^P)\) is normal
 "Normality can be destroyed by forcing"

• \((X, \tau)\) is monotonically normal \(\implies\) \((X, \tau^P)\) is monotonically normal
Facts

- \((X, \tau)\) is Hausdorff \(\implies (X, \tau^P)\) is Hausdorff
 “Hausdorffness is preserved by any forcing”

- \((X, \tau)\) is regular \(\implies (X, \tau^P)\) is regular

- \((X, \tau)\) is completely regular \(\implies (X, \tau^P)\) is completely regular

- \((X, \tau)\) is normal \(\not\implies (X, \tau^P)\) is normal
 “Normality can be destroyed by forcing”

- \((X, \tau)\) is monotonically normal \(\implies (X, \tau^P)\) is monotonically normal
Facts

- (X, τ) is Hausdorff $\implies (X, \tau^P)$ is Hausdorff
 “Hausdorffness is preserved by any forcing”

- (X, τ) is regular $\implies (X, \tau^P)$ is regular

- (X, τ) is completely regular $\implies (X, \tau^P)$ is completely regular

- (X, τ) is normal $\nRightarrow (X, \tau^P)$ is normal
 “Normality can be destroyed by forcing”

- (X, τ) is monotonically normal $\implies (X, \tau^P)$ is monotonically normal
Facts

- \((X, \tau)\) is Hausdorff \(\implies (X, \tau^P)\) is Hausdorff
 “Hausdorffness is preserved by any forcing”

- \((X, \tau)\) is regular \(\implies (X, \tau^P)\) is regular

- \((X, \tau)\) is completely regular \(\implies (X, \tau^P)\) is completely regular

- \((X, \tau)\) is normal \(\nRightarrow (X, \tau^P)\) is normal
 “Normality can be destroyed by forcing”

- \((X, \tau)\) is monotonically normal \(\implies (X, \tau^P)\) is monotonically normal
Question: Suppose that a space X has no uncountable discrete subspace.

Can forcing create an uncountable discrete subspace of X?

In other words:
Suppose that a space (X, τ) has no uncountable discrete subspace. For some forcing \mathbb{P}, can $(X, \tau^\mathbb{P})$ have an uncountable discrete subspace?

No ZFC example so far.
Question: Suppose that a space X has no uncountable discrete subspace.

Can forcing create an uncountable discrete subspace of X?

In other words:

Suppose that a space (X, τ) has no uncountable discrete subspace. For some forcing \mathbb{P}, can $(X, \tau^\mathbb{P})$ have an uncountable discrete subspace?

No ZFC example so far.
Question: Suppose that a space X has no uncountable discrete subspace.

Can forcing create an uncountable discrete subspace of X?

In other words:

Suppose that a space (X, τ) has no uncountable discrete subspace. For some forcing \mathbb{P}, can $(X, \tau^\mathbb{P})$ have an uncountable discrete subspace?

No ZFC example so far.
Question: Suppose that a space X has no uncountable discrete subspace.

Can forcing create an uncountable discrete subspace of X?

In other words:
Suppose that a space (X, τ) has no uncountable discrete subspace. For some forcing \mathbb{P}, can $(X, \tau^\mathbb{P})$ have an uncountable discrete subspace?

No ZFC example so far.
Question: Suppose that a space X has no uncountable discrete subspace.

Can forcing create an uncountable discrete subspace of X?

In other words:

Suppose that a space (X, τ) has no uncountable discrete subspace. For some forcing \mathbb{P}, can $(X, \tau^\mathbb{P})$ have an uncountable discrete subspace?

No ZFC example so far.
Definition. A space X has **countable chain condition** (CCC) if every pairwise disjoint family of open sets is countable.

Observation: A space has no uncountable discrete subspace if and only if X is **hereditarily CCC**.

So our question can be rephrased as:

Can forcing destroy hereditarily CCC?
Definition. A space X has **countable chain condition** (CCC) if every pairwise disjoint family of open sets is countable.

Observation: A space has no uncountable discrete subspace if and only if X is **hereditarily** CCC.

So our question can be rephrased as:

Can forcing destroy hereditarily CCC?
Definition. A space X has **countable chain condition** (CCC) if every pairwise disjoint family of open sets is countable.

Observation: A space has no uncountable discrete subspace if and only if X is **hereditarily CCC**.

So our question can be rephrased as:

> Can forcing destroy hereditarily CCC?
Definition. A space X has **countable chain condition** (CCC) if every pairwise disjoint family of open sets is countable.

Observation: A space has no uncountable discrete subspace if and only if X is **hereditarily CCC**.

So our question can be rephrased as:

Can forcing destroy hereditarily CCC?
Definition. A space X has **countable chain condition** (CCC) if every pairwise disjoint family of open sets is countable.

Observation: A space has no uncountable discrete subspace if and only if X is **hereditarily CCC**.

So our question can be rephrased as:

Can forcing destroy hereditarily CCC?
HC HL HS

Notation:
- Hereditarily CCC (HC) ⇐⇒ No uncountable discrete subspace
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

\[
\begin{align*}
\text{HL} & \quad \Rightarrow \quad \text{HC} \\
\text{HS} & \quad \Rightarrow
\end{align*}
\]

- HC, HL and HS are similar properties. In fact,

If forcing destroys HS or HL, then it destroys HC.
That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. **So try to destroy HL or HS.**
Notation:

- Hereditarily CCC (HC) \iff No uncountable discrete subspace
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

\[
\begin{align*}
\text{HL} & \iff \text{HC} \\
\text{HS} & \iff \text{HC}
\end{align*}
\]

- HC, HL and HS are similar properties. In fact,

If forcing destroys HS or HL, then it destroys HC.

That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. So try to destroy HL or HS.
Notation:

- Hereditarily CCC (**HC**) \iff No uncountable discrete subspace
- Hereditarily Lindelof (**HL**)
- Hereditarily separable (**HS**)

\[\text{HL} \iff \text{HC} \]
\[\text{HS} \iff \text{HC} \]

HC, **HL** and **HS** are similar properties. In fact, if forcing destroys **HS** or **HL**, then it destroys **HC**. That is, if forcing destroys **HS** or **HL**, then it would create an uncountable discrete subspace. So try to destroy **HL** or **HS**.
Notation:

• Hereditarily CCC (\textbf{HC}) \iff No uncountable discrete subspace
• Hereditarily Lindelof (\textbf{HL})
• Hereditarily separable (\textbf{HS})

\[
\begin{align*}
\text{HL} & \iff \text{HC} \\
\text{HS} & \iff
\end{align*}
\]

• \textbf{HC}, \textbf{HL} and \textbf{HS} are similar properties. In fact,

\textbf{If forcing destroys HS or HL, then it destroys HC.}

That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. \textbf{So try to destroy HL or HS.}
Notation:

- Hereditarily CCC (HC) \iff No uncountable discrete subspace
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

\[
\begin{align*}
\text{HL} & \iff \text{HC} \\
\text{HS} & \iff
\end{align*}
\]

- HC, HL and HS are similar properties. In fact, **If forcing destroys HS or HL, then it destroys HC.**

If forcing destroys HS or HL, then it destroys HC. That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. So try to destroy HL or HS.
Notation:

- Hereditarily CCC (HC) \iff \text{No uncountable discrete subspace}
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

\[
\begin{align*}
\text{HL} & \iff \text{HC} \\
\text{HS} & \iff
\end{align*}
\]

- **HC, HL and HS** are similar properties. In fact,

If forcing destroys HS or HL, then it destroys HC.
That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. **So try to destroy HL or HS.**
Notation:

- Hereditarily CCC (HC) ⇐⇒ No uncountable discrete subspace
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

\[
\begin{align*}
\text{HL} & \iff \\
\text{HC} & \\
\text{HS} & \iff \\
\end{align*}
\]

- HC, HL and HS are similar properties. In fact,

If forcing destroys HS or HL, then it destroys HC.

That is, if forcing destroys HS or HL, then it would create an uncountable discrete subspace. **So try to destroy HL or HS.**
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. *L-space* = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space. (Tsaban, Zdomskyy)

Definition. *S-space* = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. \(\text{L-space} = \text{HL but not HS} \)

There is an \(L \)-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. \(\text{S-space} = \text{HS but not HL} \).

CH implies there is an \(S \)-space.
PFA implies there is no \(S \)-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. **L-space** $= \text{HL but not HS}$

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. **S-space** $= \text{HS but not HL}$.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
L-space and S-space

- Hereditarily CCC (HC)
- Hereditarily Lindelof (HL)
- Hereditarily separable (HS)

Definition. L-space = HL but not HS

There is an L-space in ZFC. (Moore)
But forcing cannot destroy Moore’s L-space.
(Tsaban, Zdomskyy)

Definition. S-space = HS but not HL.

CH implies there is an S-space.
PFA implies there is no S-space. (Todorcevic)
Example. Souslin Line

- ♦ implies there is a Souslin line.
- Souslin line is an L-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree
- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. **Souslin Line**

- \Diamond implies there is a Souslin line.
- Souslin line is an L-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree
- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. **Souslin Line**

- ◊ implies there is a Souslin line.
- Souslin line is an \mathcal{L}-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree
- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. **Souslin Line**

- ♦ implies there is a Souslin line.
- Souslin line is an L-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree
- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. **Souslin Line**

- ♦ implies there is a Souslin line.
- Souslin line is an L-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree

- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. **Souslin Line**

- ◊ implies there is a Souslin line.
- Souslin line is an L-space (HL but not HS).
- \exists Souslin line $\iff \exists$ Souslin tree
- Forcing with a Souslin tree destroys Lindelofness of the Souslin line, and so it creates an uncountable discrete subspace of the Souslin line.
Example. (Juhasz) (CH) **Strong hereditarily finally dense (HFD) space.**

- Strong HFD space is an S-space (a subspace of 2^{ω_1}).
- There is a ccc forcing that destroys hereditarily separability of the strong HFD space, and so the space gets an uncountable discrete subspace in the forcing extension.
Example. (Juhasz) (CH) **Strong hereditarily finally dense (HFD) space.**

- Strong HFD space is an S-space (a subspace of 2^{ω_1}).
- There is a ccc forcing that destroys hereditarily separability of the strong HFD space, and so the space gets an uncountable discrete subspace in the forcing extension.
Example. (Juhasz) (CH) **Strong hereditarily finally dense (HFD) space.**

- Strong HFD space is an S-space (a subspace of 2^{ω_1}).
- There is a ccc forcing that destroys hereditarily separability of the strong HFD space, and so the space gets an uncountable discrete subspace in the forcing extension.
Destroying S-space

Example. (Juhasz) (CH) **Strong hereditarily finally dense (HFD) space.**

- Strong HFD space is an S-space (a subspace of 2^{ω_1}).
- There is a ccc forcing that destroys hereditarily separability of the strong HFD space, and so the space gets an uncountable discrete subspace in the forcing extension.
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

• $E \subseteq [0, 1] \times [0, 1]$ is **Luzin** if every nowhere dense subset is countable.
• CH implies there is a Luzin set.
• Filippov space is:

$$X_E = (E \times S) \cup ([0, 1]^2 \setminus E),$$

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

- $E \subseteq [0, 1] \times [0, 1]$ is Luzin if every nowhere dense subset is countable.
- CH implies there is a Luzin set.
- Filippov space is:

$$X_E = (E \times S) \cup ([0, 1]^2 \setminus E),$$

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

- $E \subseteq [0, 1] \times [0, 1]$ is Luzin if every nowhere dense subset is countable.
- CH implies there is a Luzin set.
- Filippov space is:

\[
X_E = (E \times S) \cup ([0, 1]^2 \setminus E),
\]

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

- $E \subseteq [0, 1] \times [0, 1]$ is **Luzin** if every nowhere dense subset is countable.
- CH implies there is a Luzin set.
- Filippov space is:

$$X_E = (E \times S) \cup ([0, 1]^2 \setminus E),$$

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

• \(E \subseteq [0, 1] \times [0, 1] \) is **Luzin** if every nowhere dense subset is countable.
• CH implies there is a Luzin set.
• Filippov space is:

\[
X_E = (E \times S) \cup ([0, 1]^2 \setminus E),
\]

where \(S \) is the unit circle.

An neighborhood of \((x_1, x_2) \in E \times S\) looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

• $E \subseteq [0, 1] \times [0, 1]$ is Luzin if every nowhere dense subset is countable.
• CH implies there is a Luzin set.
• Filippov space is:

$$X_E = (E \times S) \cup ([0, 1]^2 \setminus E),$$

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

- \(E \subseteq [0, 1] \times [0, 1] \) is **Luzin** if every nowhere dense subset is countable.
- CH implies there is a Luzin set.
- Filippov space is:

\[
X_E = (E \times S) \cup ([0, 1]^2 \setminus E),
\]

where \(S \) is the unit circle.

An neighborhood of \((x_1, x_2) \in E \times S\) looks like:
How about spaces which are both HL and HS?

Example. Filippov Space. (1969)

- $E \subseteq [0, 1] \times [0, 1]$ is **Luzin** if every nowhere dense subset is countable.
- CH implies there is a Luzin set.
- Filippov space is:

$$X_E = (E \times S) \cup ([0, 1]^2 \setminus E),$$

where S is the unit circle.

An neighborhood of $(x_1, x_2) \in E \times S$ looks like:
Definition. $E \subseteq [0, 1] \times [0, 1]$ is weakly Luzin if for $E' \subseteq E$, whenever
\[
\left\{ \frac{x - y}{\|x - y\|} \in S : x, y \in E' \right\}
\]
is not dense in the unit circle S, E' is countable. Luzin sets are weakly Luzin.

Theorem. (Kunen) The following are equivalent:

1. E is weakly Luzin.
2. Filippov space X_E is HC
3. Filippov space X_E is HL
4. Filippov space X_E is HS

PFA implies that there is no weakly Luzin sets.
Definition. \(E \subseteq [0, 1] \times [0, 1] \) is **weakly Luzin** if for \(E' \subseteq E \), whenever
\[
\left\{ \frac{x - y}{\|x - y\|} \in S : x, y \in E' \right\}
\]
is not dense in the unit circle \(S \), \(E' \) is countable. Luzin sets are weakly Luzin.

Theorem. (Kunen) The following are equivalent:

1. \(E \) is weakly Luzin.
2. Filippov space \(X_E \) is HC
3. Filippov space \(X_E \) is HL
4. Filippov space \(X_E \) is HS

PFA implies that there is no weakly Luzin sets.
Weakly Luzin

Definition. $E \subseteq [0, 1] \times [0, 1]$ is **weakly Luzin** if for $E' \subseteq E$, whenever
\[
\left\{ \frac{x - y}{\|x - y\|} \in S : x, y \in E' \right\}
\]
is not dense in the unit circle S, E' is countable. Luzin sets are weakly Luzin.

Theorem. (Kunen) The following are equivalent:

1. E is weakly Luzin.
2. Filippov space X_E is HC
3. Filippov space X_E is HL
4. Filippov space X_E is HS

PFA implies that there is no weakly Luzin sets.
Definition. $E \subseteq [0, 1] \times [0, 1]$ is **weakly Luzin** if for $E' \subseteq E$, whenever

$$\left\{ \frac{x-y}{\|x-y\|} \in S : x, y \in E' \right\}$$

is not dense in the unit circle S, E' is countable. Luzin sets are weakly Luzin.

Theorem. (Kunen) The following are equivalent:

1. E is weakly Luzin.
2. Filippov space X_E is HC
3. Filippov space X_E is HL
4. Filippov space X_E is HS

PFA implies that there is no weakly Luzin sets.
Example. (CH + ∃Super compact cardinal) There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^\mathbb{P}$, X has an uncountable discrete subspace.

Proof.

• CH implies there is a Luzin set E.

• Filippov space X_E is HL and HS.

• Supercompact cardinal implies that there is a proper forcing which forces PFA.

• In the forcing extension, E is not weakly Luzin.

• Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Example. (CH + ∃Super compact cardinal)
There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^\mathbb{P}$, X has an uncountable discrete subspace.

Proof.

• CH implies there is a Luzin set E.

• Filippov space X_E is HL and HS.

• Supercompact cardinal implies that there is a proper forcing which forces PFA.

• In the forcing extension, E is not weakly Luzin.

• Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Destroying Filippov space

Example. $(\text{CH} + \exists \text{Super compact cardinal})$

There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^\mathbb{P}$, X has an uncountable discrete subspace.

Proof.

- CH implies there is a Luzin set E.
- Filippov space X_E is HL and HS.
- Supercompact cardinal implies that there is a proper forcing which forces PFA.
- In the forcing extension, E is not weakly Luzin.
- Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Example. \((\text{CH} + \exists \text{Super compact cardinal})\)
There is a HL and HS space \(X\) and a proper forcing \(\mathbb{P}\) such that in \(V^\mathbb{P}\), \(X\) has an uncountable discrete subspace.

Proof.

- CH implies there is a Luzin set \(E\).
- Filippov space \(X_E\) is HL and HS.
 - Supercompact cardinal implies that there is a proper forcing which forces PFA.
- In the forcing extension, \(E\) is not weakly Luzin.
- Therefore, in the forcing extension, \(X_E\) has an uncountable discrete subspace by Kunen’s theorem. \(\square\)
Example. (CH + ∃Super compact cardinal)
There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^\mathbb{P}$, X has an uncountable discrete subspace.

Proof.

- CH implies there is a Luzin set E.
- Filippov space X_E is HL and HS.
- Supercompact cardinal implies that there is a proper forcing which forces PFA.
 - In the forcing extension, E is not weakly Luzin.
 - Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Example. (CH + ∃Super compact cardinal) There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^\mathbb{P}$, X has an uncountable discrete subspace.

Proof.

- CH implies there is a Luzin set E.
- Filippov space X_E is HL and HS.
- Supercompact cardinal implies that there is a proper forcing which forces PFA.
- In the forcing extension, E is not weakly Luzin.
- Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Example. (CH + ∃ Super compact cardinal) There is a HL and HS space X and a proper forcing \mathbb{P} such that in $V^{\mathbb{P}}$, X has an uncountable discrete subspace.

Proof.

- CH implies there is a Luzin set E.
- Filippov space X_E is HL and HS.
- Supercompact cardinal implies that there is a proper forcing which forces PFA.
- In the forcing extension, E is not weakly Luzin.
- Therefore, in the forcing extension, X_E has an uncountable discrete subspace by Kunen’s theorem. □
Spaces where it is impossible to shoot an uncountable discrete subspace

Spaces where it is **impossible** to shoot an uncountable discrete set by forcing.

- Metrizable.
- Developable.
- Stratifiable.

All the above spaces have a **countable network** if they have no uncountable discrete subspace, and forcing preserves countable network.

I don’t know about.....

- Semi-stratifiable ???
Spaces where it is impossible to shoot an uncountable discrete subspace

Spaces where it is **impossible** to shoot an uncountable discrete set by forcing.

- Metrizable.
- Developable.
- Stratifiable.

All the above spaces have a **countable network** if they have no uncountable discrete subspace, and forcing preserves countable network.

I don't know about.....

- Semi-stratifiable ???
Spaces where it is impossible to shoot an uncountable discrete set by forcing.

- Metrizable.
- Developable.
- Stratifiable.

All the above spaces have a countable network if they have no uncountable discrete subspace, and forcing preserves countable network.

I don’t know about.....

- Semi-stratifiable ???
Spaces where it is impossible to shoot an uncountable discrete subspace

Spaces where it is **impossible** to shoot an uncountable discrete set by forcing.

- Metrizable.
- Developable.
- Stratifiable.

All the above spaces have a **countable network** if they have no uncountable discrete subspace, and forcing preserves countable network.

I don’t know about.....

- Semi-stratifiable ??
Spaces where it is impossible to shoot an uncountable discrete subspace

Spaces where it is **impossible** to shoot an uncountable discrete set by forcing.

- Metrizable.
- Developable.
- Stratifiable.

All the above spaces have a **countable network** if they have no uncountable discrete subspace, and forcing preserves countable network.

I don’t know about.....

- Semi-stratifiable ???
Theorem. (Borges) \(\langle X, \tau \rangle \) is **monotonically normal** if and only if for a base \(B \) for \(X \), there is an operator \(H(x, B) \), where \(B \in B \) and \(x \in B \) such that

\[
H(x, B) \cap H(x', B') \neq \emptyset \implies x \in B' \text{ or } x' \in B.
\]

Forcing preserves a base of a topology, and so the operator \(H \) will have the same property in any forcing extension. Therefore,

Forcing preserves monotone normality.
Theorem. (Borges) \(\langle X, \tau \rangle \) is **monotonically normal** if and only if for a base \(B \) for \(X \), there is an operator \(H(x, B) \), where \(B \in \mathcal{B} \) and \(x \in B \) such that

\[
H(x, B) \cap H(x', B') \neq \emptyset \quad \Rightarrow \quad x \in B' \text{ or } x' \in B.
\]

Forcing preserves a base of a topology, and so the operator \(H \) will have the same property in any forcing extension. Therefore,

Forcing preserves monotone normality.
Theorem. (Borges) $\langle X, \tau \rangle$ is **monotonically normal** if and only if for a base \mathcal{B} for X, there is an operator $H(x, B)$, where $B \in \mathcal{B}$ and $x \in B$ such that

$$H(x, B) \cap H(x', B') \neq \emptyset \implies x \in B' \text{ or } x' \in B.$$

Forcing preserves a base of a topology, and so the operator H will have the same property in any forcing extension. Therefore,

Forcing preserves monotone normality.
Theorem. (Borges) \(\langle X, \tau \rangle \) is **monotonically normal** if and only if for a base \(\mathcal{B} \) for \(X \), there is an operator \(H(x, B) \), where \(B \in \mathcal{B} \) and \(x \in B \) such that

\[
H(x, B) \cap H(x', B') \neq \emptyset \implies x \in B' \text{ or } x' \in B.
\]

Forcing preserves a base of a topology, and so the operator \(H \) will have the same property in any forcing extension. Therefore,

Forcing preserves monotone normality.
Here are useful theorems.

Theorem. (Williams, Zhou) The following are equivalent:
1. There is no Souslin tree.
2. Every CCC monotonically normal space is separable.

Theorem. (Gartside) For a monotonically normal space X, $d(X) = hd(X)$. In particular, every separable monotonically normal space is hereditarily separable (HS).
Here are useful theorems.

Theorem. (Williams, Zhou) The following are equivalent:

1. There is no Souslin tree.
2. Every CCC monotonically normal space is separable.

Theorem. (Gartside) For a monotonically normal space X, $d(X) = hd(X)$. In particular, every separable monotonically normal space is hereditarily separable (HS).
Here are usefull theorems.

Theorem. (Williams, Zhou) The following are equivalent:

1. There is no Souslin tree.
2. Every CCC monotonically normal space is separable.

Theorem. (Gartside) For a monotonically normal space X, $d(X) = hd(X)$. In particular, every separable monotonically normal space is hereditarily separable (HS).
Here are useful theorems.

Theorem. (Williams, Zhou) The following are equivalent:
1. There is no Souslin tree.
2. Every CCC monotonically normal space is separable.

Theorem. (Gartside) For a monotonically normal space X, $d(X) = hd(X)$. In particular, every separable monotonically normal space is hereditarily separable (HS).
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.
- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

• Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.

• By Williams and Zhou’s theorem, X is separable.

• Forcing preserves separability and monotone normality.

• In the forcing extension, X remains separable and monotonically normal.

• By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.

• Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.
- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Theorem. (No Souslin tree) Let X be a monotonically normal space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof.

- Suppose that X is a monotonically normal space with no uncountable discrete subspace. In particular, X is CCC.
- By Williams and Zhou’s theorem, X is separable.
- Forcing preserves separability and monotone normality.
- In the forcing extension, X remains separable and monotonically normal.
- By Gartside’s theorem, separable monotonically normal spaces are hereditarily separable.
- Therefore, in the forcing extension, X is hereditarily separable, and so it has no uncountable discrete subspace.
Corollary. (No Souslin tree) Suppose that X is a linearly ordered topological space (LOTS) with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof. Linearly ordered topological spaces are monotonically normal. □
Corollary. (No Souslin tree) Suppose that X is a linearly ordered topological space (LOTS) with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof. Linearly ordered topological spaces are monotonically normal. □
Corollary. (No Souslin tree) Suppose that X is a **linearly ordered topological space** (LOTS) with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing.

Proof. Linearly ordered topological spaces are monotonically normal. □
Definition. A space X is scattered if every subspace contains an isolated point in the relative topology.

Lemma. Assume that there is no S-space. Then every scattered space with no uncountable discrete subspace is countable.

Theorem. Assume that there is no S-space. Let X be a scattered space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing (because X is countable).

Now we look at scattered S-spaces.
Definition. A space X is scattered if every subspace contains an isolated point in the relative topology.

Lemma. Assume that there is no S-space. Then every scattered space with no uncountable discrete subspace is countable.

Theorem. Assume that there is no S-space. Let X be a scattered space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing (because X is countable).

Now we look at scattered S-spaces.
Definition. A space X is scattered if every subspace contains an isolated point in the relative topology.

Lemma. Assume that there is no S-space. Then every scattered space with no uncountable discrete subspace is countable.

Theorem. Assume that there is no S-space. Let X be a scattered space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing (because X is countable).

Now we look at scattered S-spaces.
Definition. A space X is **scattered** if every subspace contains an isolated point in the relative topology.

Lemma. Assume that there is no S-space. Then every scattered space with no uncountable discrete subspace is countable.

Theorem. Assume that there is no S-space. Let X be a scattered space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing (because X is countable).

Now we look at scattered S-spaces.
Definition. A space X is scattered if every subspace contains an isolated point in the relative topology.

Lemma. Assume that there is no S-space. Then every scattered space with no uncountable discrete subspace is countable.

Theorem. Assume that there is no S-space. Let X be a scattered space with no uncountable discrete subspace. Then it is impossible to create an uncountable discrete subspace of X by forcing (because X is countable).

Now we look at scattered S-spaces.
Definition. A space $\langle X, \tau \rangle$ is **cometrizable** if there is a weaker metric topology $\mu \subseteq \tau$ such that each point of X has a neighborhood base consisting of sets which are closed with respect to μ. (Sorgenfrey line is cometrizable.)

(CH) **Kunen Line** is a scattered cometrizable S-space.

Theorem. (Todocevic) $MA(\aleph_1)$ implies that there is no cometrizable S-space.
Definition. A space \(\langle X, \tau \rangle \) is **cometrizable** if there is a weaker metric topology \(\mu \subseteq \tau \) such that each point of \(X \) has a neighborhood base consisting of sets which are closed with respect to \(\mu \). (Sorgenfrey line is cometrizable.)

(\textbf{CH}) **Kunen Line** is a scattered cometrizable \(S \)-space.

Theorem. (Todocevic) \(\text{MA}(\aleph_1) \) implies that there is no cometrizable \(S \)-space.
Definition. A space $\langle X, \tau \rangle$ is cometrizable if there is a weaker metric topology $\mu \subseteq \tau$ such that each point of X has a neighborhood base consisting of sets which are closed with respect to μ. (Sorgenfrey line is cometrizable.)

(CH) Kunen Line is a scattered cometrizable S-space.

Theorem. (Todocevic) $MA(\aleph_1)$ implies that there is no cometrizable S-space.
Definition. A space $\langle X, \tau \rangle$ is **cometrizable** if there is a weaker metric topology $\mu \subseteq \tau$ such that each point of X has a neighborhood base consisting of sets which are closed with respect to μ. (Sorgenfrey line is cometrizable.)

(CH) Kunen Line is a scattered cometrizable S-space.

Theorem. (Todocevic) $MA(\aleph_1)$ implies that there is no cometrizable S-space.
Example. (CH & $2^{\aleph_1} = \aleph_2$) There are a scattered S-space X with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, X contains an uncountable discrete subspace.

Proof.

• Let X be the Kunen line, which is a scattered cometrizable S-space.

• Let \mathbb{P} be a ccc forcing which forces MA and $2^{\aleph_0} = \aleph_2$. So $MA(\aleph_1)$ holds.

• Forcing preserves cometrizability so by the Todorcevic’s theorem, X is not an S-space in the forcing extension.

• Hence, X gets an uncountable discrete subspace in the forcing extension. \square
Example. (CH & \(2^{\aleph_1} = \aleph_2\)) There are a scattered \(S\)-space \(X\) with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, \(X\) contains an uncountable discrete subspace.

Proof.

- Let \(X\) be the Kunen line, which is a scattered cometrizable \(S\)-space.
- Let \(\mathbb{P}\) be a ccc forcing which forces \(MA\) and \(2^{\aleph_0} = \aleph_2\). So \(MA(\aleph_1)\) holds.
- Forcing preserves cometrizability so by the Todorcevic’s theorem, \(X\) is not an \(S\)-space in the forcing extension.
- Hence, \(X\) gets an uncountable discrete subspace in the forcing extension. \(\Box\)
Example. (CH & $2^{\aleph_1} = \aleph_2$) There are a scattered S-space X with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, X contains an uncountable discrete subspace.

Proof.

- Let X be the Kunen line, which is a scattered cometrizable S-space.
- Let \mathbb{P} be a ccc forcing which forces MA and $2^{\aleph_0} = \aleph_2$. So $MA(\aleph_1)$ holds.
- Forcing preserves cometrizability so by the Todorcevic’s theorem, X is not an S-space in the forcing extension.
- Hence, X gets an uncountable discrete subspace in the forcing extension. \square
Example. (CH & $2^\aleph_1 = \aleph_2$) There are a scattered S-space X with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, X contains an uncountable discrete subspace.

Proof.

- Let X be the Kunen line, which is a scattered cometrizable S-space.
- Let \mathbb{P} be a ccc forcing which forces MA and $2^{\aleph_0} = \aleph_2$. So $MA(\aleph_1)$ holds.
- Forcing preserves cometrizability so by the Todorcevic’s theorem, X is not an S-space in the forcing extension.
- Hence, X gets an uncountable discrete subspace in the forcing extension. □
Example. (CH & $2^{\aleph_1} = \aleph_2$) There are a scattered S-space X with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, X contains an uncountable discrete subspace.

Proof.

• Let X be the Kunen line, which is a scattered cometrizable S-space.

• Let \mathbb{P} be a ccc forcing which forces MA and $2^{\aleph_0} = \aleph_2$. So $MA(\aleph_1)$ holds.

• Forcing preserves cometrizability so by the Todorcevic’s theorem, X is not an S-space in the forcing extension.

• Hence, X gets an uncountable discrete subspace in the forcing extension. \square
Example. (CH & $2^{\aleph_1} = \aleph_2$) There are a scattered S-space X with no uncountable discrete subspace and a ccc forcing such that in the forcing extension, X contains an uncountable discrete subspace.

Proof.

- Let X be the Kunen line, which is a scattered cometrizable S-space.
- Let \mathbb{P} be a ccc forcing which forces MA and $2^{\aleph_0} = \aleph_2$. So $MA(\aleph_1)$ holds.
- Forcing preserves cometrizability so by the Todorcevic’s theorem, X is not an S-space in the forcing extension.
- Hence, X gets an uncountable discrete subspace in the forcing extension. \Box
Can forcing shoot an uncountable discrete set?

(1). NO.
 • Metrizable; developable; stratifiable

(2) Consistently, NO.
 • Monotonically normal; LOTS (if there is no Souslin tree)
 • Scattered (if there is no S-space)

(3) Consistently, YES.
 • Monotonically normal; LOTS; scattered
 • Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
 • Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Can forcing shoot an uncountable discrete set?

(1) NO.
 - Metrizable; developable; stratifiable

(2) Consistently, NO.
 - Monotonically normal; LOTS (if there is no Souslin tree)
 - Scattered (if there is no S-space)

(3) Consistently, YES.
 - Monotonically normal; LOTS; scattered
 - Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
 - Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Can forcing shoot an uncountable discrete set?

(1) NO.
 - Metrizable; developable; stratifiable

(2) Consistently, NO.
 - Monotonically normal; LOTS (if there is no Souslin tree)
 - Scattered (if there is no S-space)

(3) Consistently, YES.
 - Monotonically normal; LOTS; scattered
 - Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
 - Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Can forcing shoot an uncountable discrete set?

(1) NO.
- Metrizable; developable; stratifiable

(2) Consistently, NO.
- Monotonically normal; LOTS (if there is no Souslin tree)
- Scattered (if there is no S-space)

(3) Consistently, YES.
- Monotonically normal; LOTS; scattered
- Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
- Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Can forcing shoot an uncountable discrete set?

(1) NO.
- Metrizable; developable; stratifiable

(2) Consistently, NO.
- Monotonically normal; LOTS (if there is no Souslin tree)
- Scattered (if there is no \(S \)-space)

(3) Consistently, YES.
- Monotonically normal; LOTS; scattered
- Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
- Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Can forcing shoot an uncountable discrete set?

(1) NO.
• Metrizable; developable; stratifiable

(2) Consistently, NO.
• Monotonically normal; LOTS (if there is no Souslin tree)
• Scattered (if there is no S-space)

(3) Consistently, YES.
• Monotonically normal; LOTS; scattered
• Compact; quasi-metrizable; non-archimedean
 (Souslin line can have these properties.)
• Submetrizable (cometrizable)

(4) So far no ZFC example of a space where forcing create an uncountable discrete subspace.
Thank you for your attention.