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Abstract: 34 

Systemic hypoxia is a physiological and pathophysiological stress that activates the 35 

sympathoadrenal system and, in young adults, leads to peripheral vasodilation. We tested the 36 

hypothesis that peripheral vasodilation to graded systemic hypoxia is impaired in older healthy 37 

adults and that this age-associated impairment is due to attenuated β-adrenergic mediated 38 

vasodilation and elevated α-adrenergic vasoconstriction.  Forearm blood flow was measured 39 

(Doppler ultrasound) and vascular conductance (FVC) was calculated in 12 young (24±1 yrs) 40 

and 10 older (63±2 yrs) adults to determine the local dilatory responses to graded hypoxia (90, 41 

85, and 80% O2 saturations) in control conditions, following local intra-arterial blockade of β-42 

receptors (propranolol), and combined blockade of α+β receptors (phentolamine + propranolol).  43 

Under control conditions, older adults exhibited impaired vasodilation to hypoxia compared with 44 

young at all levels of hypoxia (peak ΔFVC at 80% SpO2 = 4±6 vs. 35±8%; P<0.01).  During β-45 

blockade, older adults actively constricted at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2= -46 

13±6%; P<0.05 vs. control) whereas the response in the young was not significantly impacted 47 

(peak ΔFVC = 28±8%). Combined α+β blockade increased the dilatory response to hypoxia in 48 

young adults, however older adults failed to significantly vasodilate (peak ΔFVC at 80% SpO2= 49 

12±11% vs. 58±11%; P<0.05).  Our findings indicate that peripheral vasodilation to graded 50 

systemic hypoxia is significantly impaired in older adults which cannot be fully explained by 51 

altered sympathoadrenal control of vascular tone.  Thus, the impairment in hypoxic vasodilation 52 

is likely due to attenuated local vasodilatory and/or augmented vasoconstrictor signaling with 53 

age.   54 

 55 

 56 
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New and Noteworthy:  57 

We found that the lack of peripheral vasodilation during graded systemic hypoxia with 58 

aging is not mediated by the sympathoadrenal system, strongly implicating local vascular 59 

control mechanisms in this impairment. Understanding these mechanisms may lead to 60 

therapeutic advances for improving tissue blood flow and oxygen delivery in aging and 61 

disease. 62 

 63 

 64 

 65 

 66 
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 80 

Introduction 81 

In humans and experimental animals, acute systemic hypoxia evokes autonomic reflex 82 

responses and alterations in the synthesis of a variety of vasoactive substances within the 83 

circulation, blood vessels, and local tissue, all of which contribute to the control of vascular tone 84 

(35, 36).  In many vascular beds including cerebral (3), coronary (37), and skeletal muscle (21, 85 

52), the net effect of these changes in response to systemic hypoxia is vasodilation.  In the 86 

skeletal muscle vasculature of humans, this vasodilatory response is graded with the degree of 87 

hypoxia (21, 25), despite concurrent sympathetic activation as evidenced by increases in muscle 88 

sympathetic nerve activity (MSNA) (14, 45) and norepinephrine spillover (32).  Although this 89 

elevation in sympathetic outflow does not translate to increases in circulating norepinephrine due 90 

to elevations in neurotransmitter clearance (32), skeletal muscle resistance vessel α-adrenergic 91 

receptors are stimulated and limit or restrain hypoxic vasodilation (52).  Studies also indicate that 92 

sympathetic activation elevates circulating epinephrine (11) leading to subsequent β-adrenergic 93 

stimulation of resistance vessels which may evoke peripheral vasodilation in humans (5, 52).  94 

Additionally, our laboratory has recently shown that local endothelium-derived nitric oxide (NO) 95 

and prostaglandins are involved in hypoxic vasodilation (34) and further, that erythrocyte (red 96 

blood cell) release of adenosine triphosphate (ATP) during progressive hemoglobin 97 

deoxygenation and may participate in the response  (27).  Taken together, there is a complex 98 

interaction between the sympathoadrenal system and locally-derived substances that ultimately 99 

determine the net peripheral vasodilatory response to systemic hypoxia in humans.  100 

Many changes in both autonomic circulatory control and peripheral vascular function 101 

occur with advancing age, predisposing older adult humans to both acute (e.g. myocardial 102 
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infarction, stroke) and chronic (e.g. hypertension, atherosclerosis, ischemic vascular disease) 103 

cardiovascular complications (51).  Systemic hypoxia is not only a physiological stressor, but 104 

may be a significant pathophysiological stressor observed in disease states such as obstructive 105 

sleep apnea and congestive heart failure, both of which increase in prevalence with advancing 106 

age (4, 7). One of the most pronounced and repeatable findings with human aging is the 107 

progressive increase in basal (resting) MSNA that is typically 2-3 fold higher in older compared 108 

with young healthy adults (15, 19, 20, 39).  We have previously demonstrated that this elevated 109 

sympathetic activity with age does not translate to greater basal forearm vasoconstriction due to 110 

reduced α-receptor responsiveness at rest (18, 42).  Regarding sympathetic responses to systemic 111 

hypoxia, the acute increase in MSNA is not different with age (14, 26), however, our 112 

understanding of how post-junctional α-receptor signaling interacts with circulating epinephrine 113 

or other local vasodilatory factors to regulate vascular tone in older adults during a hypoxic 114 

stimulus is currently unknown.  In this context, circulating epinephrine appears to increase to a 115 

similar extent in young and older adults (11), yet given potential changes in β-receptor 116 

responsiveness with age (16, 40, 49), the net effect of sympathoadrenal activation on the 117 

regulation of vascular tone during hypoxia is also unknown.   118 

Human aging is also characterized by vascular endothelial dysfunction, which results in 119 

reduced NO bioavailability (47, 48) , a potential shift from predominantly vasodilator (e.g. 120 

prostacyclin) to vasoconstrictor (e.g. thromboxane) prostanoid production (48), and increased 121 

endothelin-1 (ET-1) mediated vasoconstriction(53).  Additionally, we have recently reported 122 

impaired ATP release from erythrocytes of older healthy adults in response to hypoxia, and this 123 

was related to a lack of increase in plasma ATP and impaired forearm vasodilation during a 124 

single level of systemic hypoxia (80% SpO2) (27).  In theory, any change in autonomic 125 
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circulatory control or in the bioavailability of these local substances could alter the net vascular 126 

response to systemic hypoxia in older adults and contribute to the observed impairment in 127 

hypoxic vasodilation with age.    128 

To date, little is known regarding peripheral vasodilator responses during graded 129 

systemic hypoxia in aging humans, a stimulus that leads to progressive increases in both 130 

sympathoadrenal activity and local vasodilator signaling in young adults.  Further, there is no 131 

information regarding how the sympathoadrenal system modulates vascular tone under these 132 

conditions in older adults.  Accordingly, the purpose of the present study was to test the 133 

hypothesis that aging is associated with impaired hypoxic vasodilation during graded systemic 134 

hypoxia, and that this impairment is due to attenuated β-adrenergic vasodilation and increased α-135 

adrenergic vasoconstrictor signaling with age.   136 

 137 

Methods 138 

Subjects 139 

With Institutional Review Board approval and following written informed consent, a total 140 

of 12 young (4 female, 8 male) and 10 older (4 female, 6 male) healthy subjects participated in 141 

the present study.  All subjects were free from overt cardiovascular disease as assessed from a 142 

medical history, were sedentary to moderately active, non-smokers, non-obese, normotensive, 143 

and not taking any medications including over the counter supplements (Table 1).  Older subjects 144 

were further evaluated for clinical evidence of cardiopulmonary disease with a physical 145 

examination and resting and maximal exercise electrocardiograms.  Females were studied during 146 

the placebo phase of birth control or during the early follicular phase of their menstrual cycle to 147 

minimize any potential vascular effects of sex hormones and all older females were post-148 
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menopausal and not taking hormone replacement.  All studies were performed in the Human 149 

Cardiovascular Physiology Laboratory located at Colorado State University (~1500 m above sea 150 

level) following a 12-hour fast with the subjects in the supine position, and were performed 151 

according to the Declaration of Helsinki.   152 

 153 

Arterial Catheterization 154 

 The non-dominant arm was chosen to be the experimental arm and after local application 155 

of anesthesia (2% lidocaine), a 20-guage, 7.6 cm catheter was inserted into the brachial artery 156 

utilizing aseptic technique.  The catheter was connected to a pressure transducer for continuous 157 

monitoring of mean arterial pressure (MAP) as well as a 3-port connector to allow for drug 158 

infusions and blood sampling (18, 34).  Throughout the duration of the study, heparinized saline 159 

(2 U/mL) was continuously infused at a rate of 3 ml/minute.   Heart rate (HR) was monitored via 160 

3-lead ECG. 161 

 162 

 Body Composition and Forearm Volume 163 

 Dual-energy X-ray absorptiometry (DEXA: Hologic: Bedford, MA, USA) was used to 164 

determine body composition. A regional analysis of the experimental forearm area (proximal to 165 

distal radio-ulnar joint) from the whole body DEXA scan was performed to determine forearm 166 

volume for normalization of drug doses (18).  Body mass index was calculated as body weight 167 

(kg) divided by height (meters) squared. 168 

 169 

 170 

 171 
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Graded Systemic Isocapnic Hypoxia 172 

 To elicit graded systemic hypoxia, we utilized a self-regulating partial re-breathe system 173 

(2, 21, 34) which allows for constant alveolar fresh air ventilation independent of changes in 174 

minute ventilation and enables end-tidal CO2 (EtCO2) to be clamped (2).  Oxygen (O2) levels 175 

were titrated down by mixing nitrogen with air in a medical gas blender to attain steady arterial 176 

O2 saturations (SaO2) of 90, 85, and 80% as assessed by pulse oximetry (SpO2) of the earlobe.  177 

Nasal breathing was prevented through the use of a nose clip while subjects breathed through a 178 

scuba mouthpiece.  An anesthesia monitor was used to monitor gas concentrations at the level of 179 

the mouthpiece (Cardiocap, Datex-Ohmeda, Louisville, CO, USA) as well as to monitor heart 180 

rate (HR; 3 lead ECG).  Additionally, ventilation was measured with a pneumotachograph 181 

(model 17125 UVM,Vacu-Med, Ventura, CA, USA).  182 

  183 

Forearm Blood Flow (FBF) and Vascular Conductance (FVC) 184 

 Brachial artery mean blood velocity (MBV) and diameter was determined using a 12 185 

MHz linear-array ultrasound probe (Vivid 7, General Electric, Milwaukee, WI, USA).  The 186 

probe was securely fixed to the skin over the brachial artery proximal to the catheter insertion 187 

site as previously described (13).  During blood velocity measurements, the probe insonation 188 

angle was maintained at less than 60 deg and the frequency used was 5 MHz.  A multigon 500M 189 

TCD spectral analyzer (Multigon Industries, Mt. Vernon, NY, USA) was used to analyze the 190 

Doppler shift frequency and subsequently determine MBV from the weighted mean of the 191 

spectrum of Doppler shift frequencies.  Brachial artery diameter measurements were made in 192 

duplex mode at end-diastole in triplicate during steady state conditions (34).  Forearm blood flow 193 

(FBF) was calculated as FBF=MBV × π (brachial artery diameter/2)2 × 60, where the FBF is in  194 
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ml/min, the MBV is in cm/s, the brachial diameter is in centimeters, and 60 was used to convert 195 

from ml/s to ml/min. Forearm vascular conductance (FVC) was calculated as (FBF/MAP) ×100, 196 

and expressed as ml/min/100mmHg (6, 31). 197 

 198 

Regional α- and β- adrenergic Receptor Responsiveness 199 

 To determine the effect of age on α- and β-adrenergic receptor responsiveness at rest, 200 

norepinephrine and isoproterenol were locally infused via brachial artery catheter, respectively.  201 

Norepinephrine (Levophed, Hospira Inc., Lake Forest, IL, USA) was infused at 20, 40, 152 202 

ng/dL/forearm volume (FAV)/minute  (28), and isoproterenol (Isuprel, Hospira Inc., Lake Forest, 203 

IL, USA) was infused at 1, 3, 10 ng/dL/FAV/min (23).   Saline and these agonists were infused 204 

at a rate of 2 ml/min via Harvard infusion syringe pump.  205 

 206 

Regional Blockade of α- and β-adrenergic Receptors 207 

To eliminate α-adrenergic mediated vasoconstriction during graded systemic hypoxia, we 208 

locally infused phentolamine mesylate (Bedford Laboratories, Bedford, OH, USA), a non-209 

selective α-adrenergic receptor antagonist for 10 minutes prior to hypoxia (12 µg/dL/FAV/min) 210 

and maintained the infusion during graded systemic hypoxia (5 µg/dL/FAV/min).  To eliminate 211 

the contribution of β-adrenergic receptor-mediated vasodilation to graded systemic hypoxia, we 212 

locally infused propranolol hydrochloride (Baxter, Deerfield, IL,USA),  a non-selective β-213 

adrenergic receptor antagonist, for 5 minutes prior to hypoxia (10 µg/dL/FAV/ min) and 214 

continued the infusion at a maintenance rate (5 µg/dL/FAV/min) throughout the hypoxia trial.  215 

Loading doses of the drugs were given at 2 ml/min via Harvard infusion syringe pump, and 216 
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maintenance doses were given at 1 ml/min.   These doses were chosen based on previous studies 217 

in our laboratory demonstrating effective adrenergic blockade (18, 22, 34).  218 

 219 

Blood Gas Sampling and Catecholamine Analysis 220 

Arterial blood gases and catecholamine (epinephrine and norepinephrine) samples were 221 

collected at the end of baseline and each level of hypoxia (90, 85, 80% SpO2) in all conditions 222 

(control, β-blockade, and α+β-blockade).  Blood gas samples were analyzed with a clinical blood 223 

gas analyzer (Siemens Rapid Point 400 series, Los Angeles, CA USA).  Arterial catecholamine 224 

samples were analyzed via HPLC with electrochemical detection (Mayo Clinic, Rochester, MN, 225 

USA).   226 

 227 

Experimental Protocol 228 

 The overall study timeline is presented in Figure 1.  All participants arrived in the 229 

morning after an overnight fast.  All measurements were performed with the subjects in the 230 

supine position within a cool temperature controlled room (21o C).  A fan was directed toward 231 

the forearm to limit skin blood flow, and a wrist cuff was inflated to exclude the hand circulation 232 

from our forearm hemodynamic measures (12). 233 

Following placement of the brachial catheter, subjects rested quietly for a minimum 30 234 

minutes.  To begin, α- and β-adrenergic receptor responsiveness was randomly assessed using 235 

norepinephrine and isoproterenol, respectively.  To do so, following 2 minutes of baseline 236 

measures with saline, three incremental doses of each agonist were locally infused for 2 minutes 237 

at each dose. The last 30 seconds of rest and each dose was used to calculate FBF and FVC.  At a 238 

minimum, a 10 minute break was given between administrations of the α- or β- adrenergic 239 
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receptor agonist to allow drug washout and forearm hemodynamics to return to baseline, then the 240 

infusion of the second agonist was given in an identical fashion.  Following the determination of 241 

both α- and β-adrenergic receptor responsiveness, all subjects underwent three trials of graded 242 

systemic hypoxia.  Each hypoxia trial consisted of 4 minutes of baseline where subjects breathed 243 

room air through the mouthpiece, followed by 4 minutes of hypoxia at 90, 85, and 80% O2 244 

saturations (12 minutes total) and 20 minutes of rest occurred between hypoxia trials.   245 

During the first hypoxic trial, saline was infused and the normal hypoxic vasodilatory 246 

response was assessed.   Prior to and throughout the second hypoxic trial, propranolol was 247 

locally infused to eliminate β-adrenergic receptor mediated vasodilation, enabling us to observe 248 

the net peripheral vascular response under the influence of α-adrenergic vasoconstriction and 249 

local vasodilatory signaling.  In prior studies, the contribution of β-adrenergic receptors to the 250 

overall hypoxic vasodilatory response was assessed following local block of α-adrenergic 251 

receptors (8, 52).  However, administering a non-selective α-adrenergic antagonist can inhibit α2-252 

adrenergic receptors on sympathetic nerve endings and facilitate norepinephrine release, which is 253 

able to bind β-adrenergic receptors located on the endothelium and vascular smooth muscle and 254 

elicit vasodilation (46), potentially resulting in an overestimation of the contribution of β-255 

adrenergic mediated vasodilation (17, 46).  Therefore, we sought to isolate the contribution of β-256 

adrenergic mediated vasodilation prior to local inhibition of α-adrenergic receptors.  Prior to and 257 

throughout the third hypoxic trial, both phentolamine and propranolol were infused to eliminate 258 

both α-adrenergic vasoconstriction and β-adrenergic vasodilation, thus removing 259 

sympathoadrenal influences on vascular tone.  Our laboratory and others have shown that the 260 

local vascular response to systemic hypoxia is repeatable over time (34, 52), indicating that any 261 

changes we observed during pharmacological blockade were not attributed to any residual effects 262 
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from the previous bout of hypoxia.   Ten minutes following the last hypoxia trial, we challenged 263 

the efficacy of our local sympathoadrenal blockade with a single dose of each agonist for 2 264 

minutes each.   In anticipation that older adults would have attenuated adrenergic responsiveness 265 

(18), we elected to use the high dose of norepinephrine (152 ng/dL/FAV/minute) and 266 

isoproterenol (10 ng/dL/FAV/ minute) and the medium dose in young adults (40 and 3 ng 267 

dL/FAV/min, respectively) for this challenge.   268 

 269 

Data Acquisition and Analysis 270 

 Data were collected and stored on a computer at 250Hz and later analyzed off-line with 271 

signal-processing software (Windaq DATAQ Instruments, Akron, OH, USA).  MAP was 272 

determined from the brachial artery pressure waveform and HR from the ECG.  FBF, HR, MAP, 273 

and oxygen saturations represent an average of the last 30 seconds of each time period.  Minute 274 

ventilation and end-tidal CO2 were determined from an average of the data over a minute time 275 

period.  Arterial blood gas values and catecholamines were obtained during the last minute of 276 

rest and each level of hypoxia.  Our primary interest was in the peripheral vasodilator (or 277 

vasoconstrictor) responses to hypoxia, and thus to account for individual differences in resting 278 

vascular tone as well as alterations in vascular tone due to antagonist infusions, we quantified 279 

this as a percentage change in FVC from baseline within a given conditions (34, 52).  Similar 280 

quantification was made for vasoconstrictor and vasodilator responses to norepinephrine and 281 

isoproterenol, respectively.   282 

Utilizing SPSS statistical software (IBM, Armonk, New York) a 3-way repeated measure 283 

ANOVA was used to examine the impact of age, %SpO2, as well as any drug/condition 284 

interaction affects.  When appropriate, post-hoc comparisons were made using Tukeys HSD and 285 
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significance was set at P<0.05.  All values are presented as means ± standard error of the mean 286 

(SEM).   287 

 288 

Results 289 

Subject Characteristics  290 

The mean age difference between young and older subjects was 39 years.  There were no 291 

significant age-group differences in any measure of whole-body anthropometrics or regional 292 

tissue composition.  Triglycerides and HDL-cholesterol were also not different between groups.  293 

Although within a normal range, older adults had significantly greater total and LDL-cholesterol 294 

(Table 1).    295 

 296 

FBF and FVC Responses to Graded Systemic Hypoxia 297 

 There were no significant differences in resting FBF or FVC between young and older 298 

adults (Table 2).  During the control hypoxia trial, young individuals exhibited progressive 299 

vasodilation in response to graded hypoxia (peak ΔFVC at 80% SpO2 = 35±8%; P<0.05 vs. 300 

zero), whereas older adults failed to vasodilate significantly at any level of SpO2 (peak ΔFVC = 301 

4±6%; P<0.05 vs. young; Figure 2A) and the response was blunted compared to young adults at 302 

all levels of hypoxia (P<0.05).  303 

β-adrenergic receptor blockade did not impact FBF or FVC at rest in either group (Table 304 

2).  Following local β-adrenergic receptor blockade, young adults continued to exhibit net 305 

vasodilation during hypoxia, the magnitude of which was only slightly less than that observed in 306 

control conditions (peak ΔFVC at 80% SpO2 = 28±8 vs. 35±8%; P = 0.29; Figure 2B). 307 

Conversely, older adults actively constricted in response to graded systemic hypoxia during β-308 
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adrenergic blockade which was significant at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2 = -309 

13±6%; P<0.05 vs. zero; Figure 2B), and again, demonstrated impaired responses compared to 310 

young adults at all levels of hypoxia (P<0.05).    311 

As expected, α-adrenergic receptor blockade significantly increased FBF and FVC at rest 312 

in both young and older adults (Table 2).  During the third hypoxia trial, when both α-adrenergic 313 

vasoconstriction and β-adrenergic mediated vasodilation were inhibited, young adults still 314 

exhibited significant forearm vasodilation, the magnitude of which was augmented compared 315 

with control and β-blockade conditions at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2 = 316 

57±11%; P <0.05 vs. control).  In contrast, the older adults failed to significantly vasodilate from 317 

rest at any level of hypoxia (peak ΔFVC = 12±11%; P = 0.32 vs. zero) and the age-associated 318 

impairment in peripheral vasodilation persisted across all levels of hypoxia (Figure 2C).     319 

 320 

Effects of Graded Systemic Hypoxia on Ventilation, Blood Gases, and Arterial Catecholamine 321 

Concentrations 322 

 At rest, there were no significant differences between young and older adults with respect 323 

to ventilation (Table 3) and resting blood gases (Table 4).  Further, there was no effect of time 324 

(hypoxic bout) or age on ventilatory or blood gas responses to hypoxia.  There were no 325 

significant differences in resting arterial catecholamine concentrations between young and older 326 

adults in any condition (control, β-blockade, and α+β-blockade; Table 4).  Arterial epinephrine 327 

concentrations increased with the level of hypoxia in both young and older adults in the control 328 

trial, and the increase was less in older adults at 80% SpO2 (P<0.05).  Similar patterns of 329 

response were observed in the subsequent hypoxia trials, with epinephrine concentrations being 330 

elevated at rest and during hypoxia in the third trial in both groups (α+β-blockade trial; P<0.05).  331 
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Arterial norepinephrine was not different in young and older adults at rest in the control trial, and 332 

did not significantly increase during graded systemic hypoxia in either group.  Similar data was 333 

obtained in the second hypoxia trial (β-block trial).  In the third trial (combined α+β-blockade), 334 

both age groups demonstrated significant increases in norepinephrine during hypoxia, and this 335 

was greater in older compared with young adults (P<0.05). 336 

 337 

FBF and FVC Responses to α- and β- adrenergic Receptor Agonists 338 

 Resting FBF and FVC were not different between young and older adults prior to 339 

infusion of the adrenergic agonists (Table 5).  Compared to young, older individuals exhibited 340 

lower α-mediated vasoconstrictor responses at the medium and high doses of norepinephrine 341 

(Figure 3A).  Similarly, older adults demonstrated impaired β-mediated vasodilation at the 342 

medium and high doses of isoproterenol compared with young (Figure 3B). 343 

 344 

Propranolol and Phentolamine Efficacy 345 

After the third hypoxia trial, the efficacy of the combined local α+β-adrenergic blockade 346 

was challenged with a single dose of either norepinephrine or isoproterenol (see methods for 347 

doses used).  There was no significant change in FBF or FVC in response to the agonist 348 

challenge in either group, indicating effective local α- and β-adrenergic receptor blockade in 349 

young and older adults (Figure 3A and 3B).  350 

 351 

 352 

 353 

 354 
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Discussion 355 

 The primary novel findings of the present study are as follows.  First, compared to young, 356 

healthy older adults demonstrate impaired forearm vasodilator responses to graded systemic 357 

hypoxia.  Second, local inhibition of β-adrenergic receptors slightly reduces hypoxic vasodilation 358 

in young adults ~10%, however a robust vasodilation is still observed.  In stark contrast, local β-359 

blockade results in active forearm vasoconstriction in older adults.  Third, local inhibition of α-360 

adrenergic mediated vasoconstriction augments forearm vasodilation during hypoxia in young 361 

subjects, however older adults continued to fail to vasodilate and thus the age-associated 362 

impairment in hypoxic vasodilation persists at all levels of hypoxia.  As such, the collective data 363 

indicate that the age-related impairments in forearm vasodilation during graded systemic hypoxia 364 

are primarily independent of the sympathoadrenal system in humans.  365 

 366 

Age and Peripheral Vasodilation During Systemic Hypoxia 367 

To our knowledge, this is the first study to determine the peripheral vascular response to 368 

graded systemic hypoxia in older adults, and further, to determine what role the age-associated 369 

changes in the sympathoadrenal system may play in the net response.  In the control hypoxia 370 

trial, at the onset of hypoxia (90% SpO2) young individuals vasodilated ~17% (ΔFVC) and 371 

progressively dilated as the level of saturation declined (ΔFVC ~35% at 80% SpO2).  372 

Conversely, older adults failed to vasodilate at any level of hypoxia during control conditions 373 

(Figure 2A).  Previous studies on this topic in older adults have utilized only a single level of 374 

systemic hypoxia, however the majority of data support our findings of an age-associated 375 

impairment in hypoxic vasodilation (11, 27, 29).  Although the net vascular response during 376 

systemic hypoxia can be influenced by several factors, we next determined the role of the 377 
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sympathoadrenal system in regulating vascular tone given that this system is engaged during 378 

systemic hypoxia and that aging is associated with chronic elevations in sympathetic nervous 379 

system activity and alterations in adrenergic receptor responsiveness.   380 

 381 

Effects of local β-adrenergic Receptor Blockade on Hypoxic Vascular Control 382 

Systemic hypoxia elicits a significant increase in sympathoadrenal activity as evidenced 383 

by elevations in muscle sympathetic nerve activity (14) and circulating epinephrine (52).  In the 384 

second hypoxia trial, we locally infused propranolol to inhibit β-adrenergic mediated 385 

vasodilation to determine the contribution of this pathway to the overall net hypoxic vasodilatory 386 

response.  Previous studies in young healthy adults determining the role of β-receptor stimulation 387 

in peripheral hypoxic vascular control have yielded equivocal results.  Original studies on this 388 

topic in the 1960’s indicate that local blockade of β-receptors had a very modest (<10%) effect 389 

on hypoxic vasodilation (43).  In contrast, more recent studies have suggested that ~50% of 390 

hypoxic vasodilation is mediated via β-receptors (52), however some caution is warranted when 391 

interpreting these latter findings.  Specifically, the role of β-mediated vasodilation was assessed 392 

when α-adrenergic receptors were inhibited.  Although this approach is useful for evaluating 393 

vasodilating mechanisms independent of sympathetic vasoconstriction, local non-selective α-394 

blockade can increase norepinephrine release from sympathetic nerve endings via inhibition of 395 

pre-junctional α2-adrenergic receptors leading to stimulation of β-receptors independent of 396 

circulating epinephrine (46).  Importantly, this effect could be enhanced during systemic hypoxia 397 

when sympathetic nerve discharge is elevated, leading to a potential overestimation of the 398 

contribution of β-adrenergic receptors to the net dilatory responses (17, 46).  Findings from the 399 

present investigation indicate that despite a significant increase in plasma epinephrine (Table 4), 400 
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hypoxic vasodilation is only modestly blunted (~10%) during blockade of β-receptors in young 401 

adults (without concomitant α-receptor blockade).  Taken together, the collective data indicate 402 

that while some evidence suggests that β-receptor activation can participate in hypoxic 403 

vasodilation in young adults, this may not be obligatory to observe the normal dilatory response. 404 

To date, no studies have determined the contribution of peripheral β-receptors to vascular 405 

control during graded hypoxia in aging humans.  Given evidence that β-adrenergic receptor 406 

responsiveness may be reduced with age (40), we hypothesized that inhibition of this pathway 407 

would have a minimal impact on the hypoxic vasodilator response in older adults.  Interestingly, 408 

we observed that local β-blockade resulted in a net vasoconstriction in older adults during graded 409 

hypoxia, a response that reached statistical significance at 85 and 80% SpO2 levels of systemic 410 

hypoxia (Figure 2B).  These findings suggest that despite a lack of vasodilation in the control 411 

hypoxia trial, β-mediated vasodilatory signaling may play an important role in buffering 412 

vasoconstrictor signaling in older adults.  This active vasoconstriction observed in older adults 413 

during the second hypoxia trial appears to be due to augmented sympathetic vasoconstrictor 414 

signaling, as inhibiting α-adrenergic receptors in trial 3 reversed this response (see below).    415 

 416 

Effects of Local α-adrenergic Receptor Blockade on Hypoxic Vascular Control 417 

In young adults, local inhibition of α-adrenergic mediated vasoconstriction augments 418 

peripheral vasodilation during systemic hypoxia (9, 52).  As such, the elevated sympathetic 419 

outflow (14) and norepinephrine release (32) act to restrain or limit the amount of vasodilation.  420 

The data from the present investigation support these previous observations.  Specifically, we 421 

observed that local α-adrenergic receptor blockade resulted in augmented forearm vasodilation in 422 
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young subjects at 85 and 80% SpO2 levels of systemic hypoxia, and is consistent with the 423 

observed graded increase in MSNA with progressive hypoxia in humans (44).      424 

To date, no studies have determined whether augmented α-adrenergic vasoconstrictor 425 

tone is mechanistically-linked with age-associated impairments in hypoxic vasodilation.  Human 426 

aging is associated with an increase in basal muscle sympathetic nerve activity (14) as well as 427 

reductions in α-adrenergic responsiveness at rest (18).  Previous studies indicate that the 428 

sympathetic response to hypoxia is similar in young and older adults (14), and although α-429 

responsiveness appears blunted with age, we hypothesized that any age-associated impairment in 430 

hypoxic vasodilation would be partly attributed to elevated α-adrenergic vasoconstriction due, 431 

potentially, to less “opposition” from β-receptor or NO  signaling (11, 34, 40, 49).  Following 432 

local sympathoadrenal blockade, basal forearm hemodynamics were elevated similarly in young 433 

and older adults (Table 2), consistent with the removal of basal α-adrenergic vasoconstrictor tone 434 

at rest (42).  However, in contrast to the augmented vasodilation observed in young adults, the 435 

older adults still failed to vasodilate to graded systemic hypoxia (Figure 2C).  It should be noted 436 

here that the net vasoconstriction observed in Trial 2 was no longer present when α-receptors 437 

were inhibited, yet older adults still did not significantly vasodilate.  Thus, the collective data 438 

from the present set of experiments indicate that alterations in sympathoadrenal regulation of 439 

vascular tone do not explain the impaired peripheral vasodilation during graded systemic 440 

hypoxia in older adults.   441 

 442 

Adrenergic Receptor Responsiveness and Blockade Efficacy 443 

In the present study, we determined α- and β-adrenergic receptor responsiveness in both 444 

young and older adults via graded intra-arterial doses of norepinephrine and isoproterenol, 445 
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respectively.  Compared to young, older adults demonstrated blunted α- and β-adrenergic 446 

receptor responsiveness at the medium and high doses of each agonist (Figure 3), a finding 447 

consistent with prior studies from our laboratory (18) and others (49).   Importantly, in the 448 

present study we challenged the efficacy of our adrenergic blocking drugs using the medium and 449 

high doses of each agonist in young and older adults, respectively.  We chose to use a higher 450 

dose for the older subjects based on our anticipated response of reduced adrenergic 451 

responsiveness with age. Our data indicate that infusion of norepinephrine or isoproterenol after 452 

combined infusion of propranolol and phentolamine did not significantly change forearm 453 

vascular tone (Figure 3).  However, in young adults, compared to control conditions (~40% 454 

constriction) a small amount of vasoconstriction (~9%) persisted during the α-adrenergic 455 

receptor challenge with norepinephrine, suggesting that there may have been incomplete α-456 

adrenergic blockade in some subjects.  If this were the case, we may have underestimated the 457 

role of the sympathetic nervous system in restraining vasodilation during hypoxia in young 458 

adults.  Importantly, this does not impact the primary conclusions from the present investigation 459 

that the age-related impairments in forearm vasodilation during graded systemic hypoxia are 460 

primarily independent of the sympathoadrenal system in humans.    461 

 462 

Potential Mechanisms 463 

The major key finding from the present study is that the age-associated impairment in 464 

peripheral hypoxic vasodilation persists after local inhibition of sympathoadrenal control of 465 

vascular tone.  Although we found some age-related differences in circulating epinephrine in 466 

response to hypoxia (see Table 4) and β-adrenergic receptor responsiveness (Figure 3B), these 467 

observations most likely do not explain our findings related to hypoxic vascular control as β-468 
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blockade in the young did not significantly attenuate hypoxic vasodilation.  Thus, any age-469 

related changes in β-receptor stimulation or receptor responsiveness appear to have a minimal 470 

impact on the net vascular response under control conditions.  Similarly, despite some age-group 471 

differences in plasma norepinephrine across the hypoxia trials, we did not find that inhibition of 472 

α-adrenergic receptors (Trial 3) “normalized” hypoxic vasodilation in older adults.  In fact, older 473 

adults still failed to vasodilate significantly at any level of hypoxia (Figure 3C).  This may be 474 

related, in part, to reductions in α-adrenergic responsiveness with age; however our collective 475 

observations clearly indicate that mechanisms beyond sympathoadrenal influences on vascular 476 

tone underlie the impairment in hypoxic vasodilation in older adults. 477 

The lack of a robust increase in hypoxic vasodilation in the older group during local 478 

sympathoadrenal blockade suggests that the age-associated impairment is primarily due to local 479 

vascular control mechanisms.  In this context, our laboratory has previously determined that 480 

during α- and β-adrenergic blockade (as in Trial 3 of the present study), the peripheral hypoxic 481 

vasodilatory response is abolished in young individuals following combined inhibition of NO 482 

and vasodilating prostaglandins (34).  It is well known that aging is associated with a reduction 483 

in endothelial-derived NO bioavailability (48) and potentially a reduction in vasodilating 484 

prostaglandins (47), and thus it is plausible to speculate that endothelial dysfunction and less 485 

vascular relaxation via these pathways may explain the impaired hypoxic vasodilation in older 486 

adults.   487 

Additionally, the erythrocyte has been proposed to be a sensor of hypoxic conditions, 488 

whereby reductions in hemoglobin oxygenation stimulates release of ATP, which then binds to 489 

purinergic receptors on the vascular endothelium eliciting vasodilation (24).  We have recently 490 

demonstrated that, in contrast to young adults, venous plasma ATP does not increase during 491 
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systemic hypoxia in older adults, and that isolated erythrocytes from older adults fail to release 492 

ATP when deoxygenated (27).  Interestingly, we and others have shown that ATP-mediated 493 

dilation is dependent, in part, on endothelial-derived NO and prostaglandins (12), and therefore 494 

we speculate that impaired red blood cell ATP release during hypoxia coupled with endothelial 495 

dysfunction could underlie the lack of hypoxic vasodilation with age.  Finally, it is also possible 496 

that local vasoconstrictor signaling via ET-1, which is elevated with advancing age (50), could 497 

act to restrain hypoxic dilation in older adults.  Future studies will be needed to determine these 498 

exact mechanisms in humans. 499 

 500 

Experimental Considerations 501 

There are a few experimental considerations worthy of discussion.  First, despite waiting 502 

20 minutes between hypoxia trials, there was a general trend for an increase in plasma 503 

catecholamine concentrations with repeated hypoxia bouts (Table 4).  For example, compared to 504 

the control trial, both young and older adults demonstrated a significant increase in arterial 505 

epinephrine concentrations at rest and during hypoxia in the third hypoxia trial (α+β blockade).  506 

Additionally, norepinephrine was also significantly elevated in both age groups during the third 507 

hypoxic bout.  However, it is important to note that any significant increase in epinephrine or 508 

norepinephrine with repeated hypoxia exposure in either age group does not impact the 509 

interpretation of the peripheral vascular response data, as both α+β-adrenergic receptors (Trial 3) 510 

were effectively inhibited in the trial where increases were observed.  Further, our arterial 511 

catecholamine concentrations are similar to previously reported date in young and older adults at 512 

rest and during hypoxia (11, 52).  513 
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Second, older adults failed to increase heart rate to the same extent as young adults and 514 

this was significant across all hypoxia bouts.  This is consistent with previous studies on this 515 

topic (33) and most likely reflects age-related reductions in cardiac β-adrenergic responsiveness 516 

(30, 43).  Despite older adults having a significantly smaller increase in heart rate to hypoxia, it 517 

is unlikely that this is contributing to the overall age-associated impairment in hypoxic 518 

vasodilation, as there is ample heart rate reserve to elevate cardiac output in both age groups at 519 

all levels of systemic hypoxia.    520 

Finally, although we were not statistically powered to do so, we did examine whether 521 

there was any trend for sex differences in the degree of vasodilation to hypoxia within the young 522 

and older adult groups (10).  In the present study, we did not observe any sex differences in the 523 

vasodilatory response to hypoxia nor the impact of the adrenergic blockers on the response, 524 

however, given our small sample size, it is unlikely we would be able to detect a significant sex 525 

difference.      526 

 527 

Potential Significance  528 

In the present study we determined the effects of healthy aging on the peripheral 529 

vasomotor responses to graded systemic hypoxia within the forearm vasculature.  The forearm 530 

was chosen not only to isolate the local effects of our pharmacological agents, but also due to the 531 

significant correlation between endothelial function assessed in the forearm and coronary 532 

vasculature (1).   Thus, impairments in vasodilation observed in the forearm vasculature could 533 

have implications for other regions such as the coronary and possibly cerebral circulations.  534 

Further, accumulating evidence indicates that hypoxic vasodilation is impaired in patients with 535 

heart failure (38) and obstructive sleep apnea (41), populations clearly at risk for ischemic 536 
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coronary and cerebrovascular disease.  Thus, improving vascular control during hypoxic stress 537 

may be a potential therapeutic target for improving tissue blood flow and oxygen delivery in 538 

aging and disease.  539 

 540 

Conclusions 541 

 Human aging is associated with a significant impairment in the peripheral vasodilatory 542 

response to graded systemic hypoxia.  This impairment is independent of age-associated 543 

alterations in sympathoadrenal control of vascular tone, and thus it is likely that reductions in the 544 

stimulus for local vasodilation (e.g. red blood cell derived ATP) and/or alterations in the local 545 

production or bioavailability of endothelium-derived substances (e.g. NO, ET-1), underlie the 546 

lack of hypoxic vasodilation in older healthy adults.  Peripheral hypoxic vasodilation is also 547 

impaired in patient populations that increase in prevalence with advancing age (e.g. heart failure, 548 

obstructive sleep apnea), and as such, identifying mechanisms to improve hypoxic vascular 549 

control could prove clinically beneficial for older healthy and diseased humans. 550 
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Figure Legends 778 

Figure 1.  Study Timeline.  Following brachial artery catheter insertion and rest, α+β adrenergic 779 

receptor responsiveness was determined.  Each agonist (norepinephrine and isoproterenol) was 780 

administered in three incremental doses for 2 minutes each.   Hypoxia trials consisted of 4 781 

minutes of baseline followed by 4 minutes of isocapnic systemic hypoxia at 3 different levels 782 

(90, 85, 80% SpO2). The vascular response to graded hypoxia was assessed in control conditions, 783 

during local β-adrenergic receptor blockade, and during combined α- and β-adrenergic receptor 784 

blockade.  In each condition, prior to the start of hypoxia and during the last minute of each level 785 

of hypoxia, an arterial catecholamine and blood gas sample and was collected.  Following the 786 

third bout of hypoxia and local administration of both propranolol and phentolamine (adrenergic 787 

blockade), a single dose (medium or high; see methods) of each agonist (Norepinephrine (NE) 788 

and Isoproterenol (ISO) was administered for 2 minutes to confirm effective α+β receptor 789 

blockade.   790 

 791 

Figure 2.  Hypoxic Vasodilation in Young and Older Adults.  A) Control trial hypoxic 792 

vasodilation (ΔFVC(%)) from baseline in young and old.  B) Hypoxic vasodilation during local 793 

β-adrenergic blockade via intra-arterial propranolol (ΔFVC %) from baseline in young and old.   794 

C) Hypoxic vasodilation during local α + β-adrenergic blockade (phentolamine and propranolol) 795 

(ΔFVC %) from baseline in young and old. * P<0.05 vs. Young.  † P<0.05 vs. zero within each 796 

age group. # P<0.05 vs. control condition. ˄ P<0.05 vs. β-adrenergic blockade.  + P<0.05 vs. α + 797 

β-adrenergic blockade.  798 

 799 
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Figure 3. Adrenergic Responsiveness in Young and Older Adults.  A) α-adrenergic 800 

(norepinephrine: NE) and B) β-adrenergic (isoproterenol: ISO) receptor responsiveness.  Each 801 

agonist (NE and ISO) was administered in three incremental doses for 2 minutes each. There was 802 

a significant interaction between age and ΔFVC during infusion of both α- and β-adrenergic 803 

agonists.  * P<0.05 vs. Young.  Note: in both young and old, all vascular responses to each 804 

agonist were significantly different from zero.     805 
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 824 

 825 

Table 1.  Subject Characteristics. *P<0.05 vs. Young.  Although total and LDL cholesterol were 826 
significantly greater in older adults, they were still within a normal range.   827 

 828 

 829 

Variable Younger Older 

Male:Female 8:4              6:4 

Age (years) 24±1 63±2* 

Body mass index (kg/m2) 24±1 25±1 

Body fat (%) 25±3 30±2 

Forearm volume (mL) 883±35 879±81 

Total cholesterol (mg/dl) 141±7 184±13* 

LDL cholesterol (mg/dl) 81±4 108±9* 

HDL cholesterol (mg/dl) 46±4 53±6 

Triglycerides (mg/dl) 76±9 115±22 

Glucose (mg/dl) 82±5 86±9 

 830 

831 
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Table 2.  Systemic and Forearm Hemodynamics during all hypoxia trials. *P<0.05 vs. Young, 832 
† P<0.05 vs. Baseline in respective condition.  833 

 834 

 835 

 836 

 837 

 838 

839 

 Baseline 90% SaO2 85% SaO2 80% SaO2 
 Young Old Young Old Young Old Young Old 

Control 
HR 

(beats/min) 
64  
±4 

57  
±2 

76  
±4† 

62  
±2*† 

82  
±5† 

67 
±2*† 

89  
±5† 

70  
±2*† 

MAP 
(mmHg) 

94.6  
±2.5 

100.9 
±3.5 

96.7  
±2.9 

102.0 
±4.0 

97.3  
±3.3 

101.9 
±3.4 

93.4  
±2.6 

102.3 
 ±3.8 

FBF  
(ml/min) 

29.4  
±2.6 

28.8 
 ±3.2 

34.2  
±2.8† 

27.1  
±2.9 

35.8  
±4.0† 

28.0  
±3.4 

37.4  
±2.9† 

29.6  
±3.8 

FVC  
(ml/min/mmHg) 

30.9  
±2.3 

28.3  
±3.2 

35.2  
±2.4† 

26.6 
 ±2.9*

36.5  
±3.4† 

27.3  
±3.2*

40.1  
±2.9† 

29.2 
 ±4.0*

β-adrenergic blockade 
HR 

(beats/min) 
62 
±4 

58  
±2 

74  
±4† 

62  
±2*† 

80  
±4† 

65  
±3*† 

83  
±4† 

68  
±2*† 

MAP 
(mmHg) 

95.6  
±2.3 

101.0 
±3.8 

96.9  
±2.5 

102.8 
±3.3 

97.1  
±2.7 

104.0 
±4.2 

95.9  
±2.7 

105.0 
±3.2 

FBF  
(ml/min) 

27.8  
±2.2 

26.0  
±2.7 

30.3  
±1.9 

24.5  
±2.3 

35.4  
±3.2† 

24.1  
±3.0*

34.2  
±2.6† 

23.6  
±3.0* 

FVC  
(ml/min/mmHg) 

29.3  
±2.4 

25.6 
±2.5 

31.4  
±2.1 

23.8  
±2.0* 

36.4  
±2.9† 

23.1 
±2.9*

36.1  
±3.0† 

22.6  
±2.8* 

α+β-adrenergic blockade 
HR 

(beats/min) 
62  
±4 

57  
±2 

75  
±4† 

64  
±2† 

80  
±4† 

66  
±2*† 

80  
±4† 

68  
±3*† 

MAP 
(mmHg) 

95.7  
±2.5 

101.3 
±3.8 

96.2 
±2.9 

103.0 
±3.9 

95.8  
±2.8 

103.0 
±4.0 

93.7  
±3.5 

100.0 
±4.9 

FBF  
(ml/min) 

42.0 
±2.7 

43.7  
±5.4 

48.9  
±4.7† 

45.7  
±5.9 

55.1  
±5.4† 

45.6  
±6.6 

62.3 
 ±6.2† 

47.8  
±7.1 

FVC  
(ml/min/mmHg) 

44.2 
±3.0 

42.8  
±4.9 

51.0 
±4.7† 

43.9  
±5.4 

57.7  
±5.4† 

44.3  
±6.3 

67.5 
 ±6.9† 

47.7  
±6.8* 
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Table 3. Ventilation during hypoxia trials. *P<0.05 vs. Young, † P<0.05 vs. Baseline in respective 840 
condition.  841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

849 

 Baseline 90% SaO2 85% SaO2 80% SaO2 
 Young Older Young Older Young Older Young Older 

Control 
Minute Vent. 
(l/min BTPS) 

7.6 
±0.5 

7.5 
±0.8 

14.8 
±1.5† 

10.5 
±1.2*† 

16.4 
±1.7† 

11.5 
±1.3*† 

19.8 
±2.8† 

13.3 
±1.8*† 

End Tidal CO2 
(mmHg) 

39.0 
±0.9 

36.9 
±1.0 

38.7 
±0.9 

37.6 
±1.1 

38.1 
±0.9 

36.9 
±0.9 

38.2 
±0.9 

36.4 
±0.7 

SpO2 
(%) 

98.3 
±0.4 

97.2 
±0.6 

90.0 
±0.5† 

90.5 
±0.5† 

84.4 
±0.4† 

85.3 
±0.4† 

78.7 
±0.5† 

80.4 
±0.4† 

β-adrenergic blockade 
Minute Vent. 
(l/min BTPS) 

7.6 
±0.5 

7.3 
±0.5 

13.7 
±1.9† 

9.6 
±1.4† 

16.9 
±2.6† 

11.3 
±2.1† 

18.8 
±2.9† 

13.5 
±2.7† 

End Tidal CO2 
(mmHg) 

37.3 
±0.9 

36.3 
±1.2 

38.4 
±0.9 

36.8 
±0.9 

38.3 
±0.9 

37.0 
±0.9 

37.9 
±0.9 

36.0 
±0.9 

SpO2 
(%) 

98.7 
±0.3 

97.4 
±0.4 

90.3 
±0.4† 

90.2 
±0.6† 

84.3 
±0.4† 

84.2 
±0.7† 

78.9 
±0.6† 

79.4 
±0.6† 

α+β-adrenergic blockade 
Minute Vent. 
(l/min BTPS) 

8.5 
±0.7 

6.9 
±0.5 

15.3 
±2.0† 

10.8 
±1.6† 

18.9 
±3.0† 

13.0 
±2.3† 

21.3 
±3.9† 

14.5 
±2.9† 

End Tidal CO2 
(mmHg) 

36.9 
±1.0 

34.9 
±1.2 

37.9 
±0.9 

36.6 
±0.8 

37.8 
±0.9 

36.2 
±0.7 

37.6 
±0.9 

36.5 
±0.6 

SpO2 
(%) 

98.3 
±0.4 

97.6 
±0.6 

89.2 
±0.6† 

89.2 
±0.5† 

83.8 
±0.7† 

84.4 
±0.7† 

79.0 
±0.7† 

80.1 
±0.8† 
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Table 4. Blood gases and arterial catecholamine concentrations (young n=11, older n=10) 850 
during all hypoxia trials. FHHb (fractional deoxyhemoglobin (%)) *P<0.05 vs. Young, † P<0.05 851 
vs. Baseline in respective condition, ‡ P<0.05 vs. Control Condition.  852 

 853 

  854 

 855 

 Baseline 90% SaO2 85% SaO2 80% SaO2 
 Young Old Young Old Young Old Young Old 

 Control 
pHa 7.41±0.01 7.43±0.01 7.42±0.01 7.43±0.01 7.43±0.01 7.44±0.01 7.42±0.01 7.45±0.01 

PaCO2 (mmHg) 38.5±1.2 36.8±1.5 36.6±1.0 36.4±1.3 36.9±1.2 36.2±1.2 37.3±1.2 35.1±1.0 

SaO2 (%) 95.5±0.3 94.2±0.4* 88.1±0.6† 88.2±0.5† 82.5±0.7† 83.5±0.4† 78.9±0.7† 80.3±1.0† 

PaO2 (mmHg) 82.3±1.8 73.3±2.0 54.4±1.3† 54.3±1.0† 46.1±0.9† 46.4±0.8† 42.1±1.0† 43.1±1.3† 

FHHb (%) 4.2±1.1 5.1±1.5 11.9±1.6 12.6±2.4 17.5±2.1 16.5±1.2 20.6±2.2 20.5±4 

Epinephrine  
(pg/ml) 

55±8 56±10 61±9 59±10 80±10† 74±9† 134±19† 74±12*† 

Norepinephrine 
(pg/ml) 

244±20 295±27 233±14 268±25† 221±16 270±20 225±28 265±22† 

 β-adrenergic blockade 
pHa 7.43±0.01 7.44±0.01 7.42±0.01 7.43±0.01 7.43±0.01 7.44±0.01 7.43±0.01 7.44±0.01 

PaCO2 (mmHg) 35.5±1.4 35.5±1.3 36.6±1.3 35.6±1.5 35.7±1.5 35.4±1.4 37.1±1.2 33.9±1.3 

SaO2 (%) 95.7±0.3 94.5±0.4* 87.8±0.4† 88.4±0.5† 83.5±0.5† 83.6±0.5† 80.0±0.4† 79.5±0.3† 

PaO2 (mmHg) 83.2±1.8 74.5±2.3* 54.1±1.0† 54.9±1.5† 47.5±0.9† 47.0±0.8† 43.6±0.5† 42.4±0.5† 

FHHb (%) 5.3±1.3 4.2±1.1 11.6±1.5 12.2±1.3 16.3±1.4 16.3±1.6 20.6±1.3 19.7±1.1 

Epinephrine 
 (pg/ml) 

63±8 55±9 69±7 69±11† 110±22† 74±15† 142±35† 89±19† 

Norepinephrine 
(pg/ml) 

261±18 243±26 220±23 237±25 194±15† 257±20* 185±19† 283±28*† 

 α+β-blockade 
pHa 7.43±0.01 7.44±0.02 7.43±0.01 7.43±0.01 7.43±0.01 7.44±0.01 7.43±0.01 7.44±0.01 

PaCO2 (mmHg) 34.9±1.1 34.0±1.6 35.5±1.3 34.9±0.9 35.1±1.3 34.4±1.0 34.5±1.2 33.8±1.1 

SaO2 (%) 95.7±0.4 94.6±0.5* 87.2±0.6† 87.6±0.7† 82.6±0.7† 83.1±0.7† 80.6±0.7† 79.2±0.9† 

PaO2 (mmHg) 84.6±2.0 75.8±2.1* 54±1.5† 53.7±1.5† 46.9±1.0† 46.5±0.9† 44.7±1.1† 42.7±1.2† 

FHHb (%) 5.1±1.3 4.3±1.2 11.9±2.1 12.4±2.1 17.1±2.2 16.5±1.9 20.8±2.5 19.5±2.3 

Epinephrine  
(pg/ml) 

88±16‡ 79±12‡ 121±25†‡ 67±13†‡ 209±55† 87±20* 240±53†‡ 128±40*†‡ 

Norepinephrine 
(pg/ml) 

279±36 324±35 225±23† 365±37*†‡ 221±19† 392±32*‡ 206±21† 461±44*†‡ 
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 856 

 857 

Table 5. Hemodynamic variables during α+β adrenergic responsiveness. *P<0.05 vs. Young, † 858 
P<0.05 vs. Baseline in respective condition. Post-Baseline reflects resting values following local α+β 859 
adrenergic blockade.   860 

 861 

 862 

 863 

 864 

α-adrenergic 
receptor 

responsiveness 
Baseline 

NE 
 (20ng/100ml 

FAV/min) 

NE 
(40ng/100ml 
FAV/min) 

NE 
(152ng/100ml 

FAV/min) 
Post-Baseline Challenge 

 Young Older Young Older Young Older Young Older Young Older Young Older 

HR 
(beats/min) 

61    
±3 

56 
±2 

60 
±3 

56 
±2 

60 
±3 

56 
±2 

32 
±3 

57 
±2 

61 
± 3 

56 
±2 

60 
±3 

56 
±2 

MAP 
(mmHg) 

94.1 
±3.2 

101.6 
±3.5 

95.3 
±3.2 

101.1 
±3.6 

94.1 
±3.0 

102.8 
±3.6 

95.2 
±2.6 

103.2 
±3.9 

97.2 
±2.8 

101.9 
±4.5 

98.0 
±2.8 

104.3 
±4.8 

FBF 
(ml/min) 

30.3 
±3.0 

28.5 
±4.0 

24.3 
±2.8† 

24.2 
±3.4† 

22.5 
±2.9† 

25.3 
±3.1 

18.9 
±2.6† 

20.8 
±2.4† 

46.5 
±5.2 

40.6 
±5.3 

42.8 
±5.7 

39.2 
±5.3 

FVC           
(ml/min/ 

mmHg) 

32.0 
±2.5 

27.3 
±3.2 

25.3 
±2.4† 

23.4 
±2.7† 

23.6 
±2.6† 

24.1 
±2.4 

19.5 
±2.3† 

19.9 
±1.9† 

48.1 
±5.2 

38.6 
±3.9 

43.8 
±5.6 

39.8 
±3.6 

β-adrenergic 
receptor 

responsiveness 
Baseline 

ISO     
(5ng/100ml 
FAV/min) 

ISO 
(15ng/100ml 
FAV/min) 

ISO    
(50ng/100ml 
FAV/min) 

Post-Baseline Challenge 

Young Older Young Older Young Older Young Older Young Older Young Older 
HR 

(beats/min) 
60 
± 3 

57 
±2 

62 
±4 

56 
±2 

61 
±1 

56 
±2 

63 
±3 

58 
±2 

61 
±3 

54 
±2 

60 
±3 

54 
±2 

MAP 
(mmHg) 

95.8  
±2.7 

101.1 
±3.7 

94.4  
±2.9 

102.2 
±3.6 

94.3 
±2.9 

101.6 
±3.6 

94.4  
±2.6 

100.6 
±3.3 

95.9 
±2.9 

101.0 
±4.0 

97.3 
±3.0 

105.1 
±4.5 

FBF 
(ml/min) 

31.1  
±4.0 

26.9 
±3.3 

68.7  
±10.9† 

56.4 
±13.5† 

76.7 
±1.0† 

45.8 
±8.7† 

125.9 
±20.6† 

74.3  
±15.2† 

47.1 
±6.6 

39.9 
±5.5 

48.3 
±7.6 

42.8 
±5.6 

FVC           
(ml/min/ 

mmHg) 

32.2 
±3.6 

26.1 
±2.6 

74.3 
±13.0† 

54.1 
±12.7† 

76.7 
±0.1† 

44.1 
±7.9*† 

131.4 
±19.7† 

71.5 
±3.8*† 

49.2 
±6.4 

38.5 
±3.9 

49.8 
±7.5 

39.8 
±3.6 
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Figure 1. 865 
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