
Mark F. Kocoloski
University of Dayton, stander@udayton.edu

Joseph D. Nitting
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/102

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

By: Mark Kocoloski and Joe Nitting

Advisors: Dr. Robert Dean and Dr. John Rapp

Purpose:
The purpose of this study is to evaluate the impact of sector idiosyncratic risk and beta market risk on sector performance in the following four time periods:

1. Overall period 2007-2010
2. Downswing Period 12/31/07 to 3/31/09
3. Upswing Period 3/31-09 to 12/31/10
4. The year 2011

Model Specifications:

Beta

\[R_i = a + bR_m + e_i \]

- \(a = \) intercept
- \(b = \) regression coefficient
- \(R_m = \) return to market
- \(E_i = \) error term

Idiosyncratic Risk

\[IR_i = \frac{\sum_{k=1}^{n} (e_k - \bar{e}_k)^2}{n} \]

- \(IR_i = \) Idiosyncratic Risk
- \(E_k = \) error term “k” observations
- \(E-bar = \) mean error term

Estimating Equations

\[R_i = a + b(IR_i) \]

\[R_i = a + b(\text{Beta}) \]

\[R_i = a + b(\text{Beta}) + b_2(\text{IR}) \]

Results:

IR Model

The \(b \) coefficient is significant for the long term period (2007-2010) and the upswing period, from 3/31/09 to 12/31/10. The \(R \)-squares are relatively low but coefficients have the right sign.

Beta Model

The \(b \) coefficient is significant during the downswing period, from 12/31/07 to 3/31/09, as well as for the 2011 period at a 95% confidence level. The \(b \) coefficient for the 3/31/09 to 12/31/10 period was significant at the 90% confidence level, but indicated the wrong sign.

IR and Beta Model

The \(b \) coefficient was significant in 3 out of 4 periods. The \(b_2 \) coefficient for IR was significant for 2 out of 4 periods. This \(b_2 \) coefficient for IR has the right sign, but we question the sign on the \(b \) coefficient for beta in both the upswing and downswing periods. There is multicollinearity between beta and IR in this equation, which has caused the sign change for beta.