2010

Positive solutions for a system of singular second order nonlocal boundary value problems

Naseer Ahmad Asif
National University of Sciences and Technology, Rawalpindi, Pakistan

Paul W. Eloe
University of Dayton, peloe1@udayton.edu

Rahmat Ali Khan
University of Malakand, Pakistan

Follow this and additional works at: https://ecommons.udayton.edu/mth_fac_pub

Part of the Mathematics Commons

eCommons Citation
Asif, Naseer Ahmad; Eloe, Paul W.; and Khan, Rahmat Ali, "Positive solutions for a system of singular second order nonlocal boundary value problems" (2010). Mathematics Faculty Publications. 115.
https://ecommons.udayton.edu/mth_fac_pub/115

This Article is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
POSITIVE SOLUTIONS FOR A SYSTEM OF SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS

NASEER AHMAD ASIF, PAUL W. ELOE, AND RAHMAT ALI KHAN

Abstract. Sufficient conditions for the existence of positive solutions for a coupled system of nonlinear nonlocal boundary value problems of the type

\[-x''(t) = f(t, y(t)), \quad t \in (0, 1),
\]

\[-y''(t) = g(t, x(t)), \quad t \in (0, 1),
\]

\[x(0) = y(0) = 0, \quad x(1) = \alpha x(\eta), \quad y(1) = \alpha y(\eta),
\]

are obtained. The nonlinearities \(f, g : (0, 1) \times (0, \infty) \to (0, \infty)\) are continuous and may be singular at \(t = 0, t = 1, x = 0,\) or \(y = 0.\) The parameters \(\eta, \alpha\) satisfy \(\eta \in (0, 1), 0 < \alpha < 1/\eta.\) An example is provided to illustrate the results.

1. Introduction

Nonlocal boundary value problems (BVPs) arise in different areas of applied mathematics and physics. For example, the vibration of a guy wire composed of \(N\) parts with a uniform cross section and different densities in different parts can be modeled as a nonlocal boundary value problem [18]; problems in the theory of elastic stability can also be modeled as nonlocal boundary value problems [19].

The study of nonlocal BVPs for linear second order ordinary differential equations was initiated by Il’in and Moiseev in [10, 11] and extended to nonlocal linear elliptic boundary value problems by Bitsadze and Samarskií, [2, 3, 4]. Existence theory for nonlinear three-point boundary value problems was initiated by Gupta [9]. Since then the study of nonlinear regular multi-point BVPs has attracted the attention of many researchers; see for example, [5, 9, 13, 14, 15, 17, 18, 20] for scalar equations, and for systems of ordinary differential equations, see [6, 7, 12].

Received January 1, 2009; Revised June 2, 2009.

2000 Mathematics Subject Classification. 34B16, 34B18.

Key words and phrases. positive solutions, singular system of ordinary differential equations, three-point nonlocal boundary value problem.

©2010 The Korean Mathematical Society
Recently, the study of singular BVPs has also attracted some attention. An excellent resource with an extensive bibliography was produced by Agarwal and O’Regan [1]. Recently, S. Xie and J. Zhu [21] applied topological degree theory in a cone to study the following two point BVP for a coupled system of nonlinear fourth-order ordinary differential equations

\[-x^{(4)} = f_1(t, y), \quad t \in (0, 1),\]
\[-y'' = f_2(t, x), \quad t \in (0, 1),\]
\[x(0) = x(1) = x''(0) = x''(1) = 0,\]
\[y(0) = y(1) = 0.\]

(1.1)

In [21], the nonlinearities $f_i \in C((0, 1) \times \mathbb{R}^+, \mathbb{R}^+)$ satisfy $f_i(t, 0) \equiv 0$ ($i = 1, 2$) and may be singular at $t = 0$ or $t = 1$ only.

More recently, Y. Zhou and Y. Xu [23] studied the following nonlocal BVP for a system of second order regular ordinary differential equations

\[-x''(t) = f(t, y), \quad t \in (0, 1),\]
\[-y''(t) = g(t, x), \quad t \in (0, 1),\]
\[x(0) = 0, \quad x(1) = \alpha x(\eta),\]
\[y(0) = 0, \quad y(1) = \alpha y(\eta),\]

(1.2)

where $\eta \in (0, 1), 0 < \alpha < 1/\eta$, $f, g \in C([0, 1] \times [0, \infty), [0, \infty))$, $f(t, 0) \equiv 0$, $g(t, 0) \equiv 0$. The above system was extended to the singular case by B. Liu, L. Liu, and Y. Wu [16], where the nonlinearities f, g were assumed to be singular at $t = 0$ or $t = 1$ together with the assumption that $f(t, 0) \equiv 0$, $g(t, 0) \equiv 0$, $t \in (0, 1)$.

In this paper, we generalize the system (1.2) by allowing f, g to be singular at $t = 0$, $t = 1$, $x = 0$, or $y = 0$ and obtain sufficient conditions for the existence of a positive solution of the BVP for the system of singular equations, (1.2). By singularity we mean that the functions $f(t, u)$ or $g(t, u)$ are allowed to be unbounded at $t = 0$, $t = 1$, or $u = 0$. In general, the assumption that there exist singularities with respect to the dependent variable is not new; see [1, 6], for example. However, in the case of nonlocal boundary conditions and coupled systems of ordinary differential equations, we believe this assumption is new.

Throughout this paper, we shall assume that

\[f, g : (0, 1) \times (0, \infty) \rightarrow (0, \infty)\]

are continuous and may be singular at $t = 0$, $t = 1$, or $u = 0$. We also assume that $f(t, 0), g(t, 0)$ are not identically 0. Let $N > \max\{\frac{1}{\eta}, \frac{1}{1-\eta}, \frac{2-\alpha}{1-\alpha\eta}\}$ denote a fixed positive integer. Assume that the following conditions hold:

\[(A_1) \text{ there exist } K, L \in C((0, 1), (0, \infty)) \text{ and } F, G \in C((0, \infty), (0, \infty)) \text{ such that}\]
\[f(t, u) \leq K(t)F(u), \quad g(t, u) \leq L(t)G(u), \quad t \in (0, 1), \quad u \in (0, \infty).\]
and
\[\int_0^1 t(1-t)K(t)dt < +\infty, \quad b := \int_0^1 t(1-t)L(t)dt < +\infty; \]

(A2) there exist \(\alpha_1, \alpha_2 \in (0, +\infty) \) with \(\alpha_1 \alpha_2 \leq 1 \) such that
\[\lim_{u \to \infty} \frac{F(u)}{u^{\alpha_1}} \to 0, \quad \lim_{u \to \infty} \frac{G(u)}{u^{\alpha_2}} \to 0; \]

(A3) there exist \(\beta_1, \beta_2 \in (0, +\infty) \) with \(\beta_1 \beta_2 \geq 1 \) such that
\[\lim \inf_{u \to 0^+} \min_{t \in [\eta, 1]} \frac{f(t, u)}{u^{\beta_1}} > 0, \quad \lim \inf_{u \to 0^+} \min_{t \in [\eta, 1]} \frac{g(t, u)}{u^{\beta_2}} > 0; \]

(A4) \(f(t, u), G(u) \) are non-increasing with respect to \(u \) and for each fixed \(n \in \{N, N+1, N+2, \ldots\} \), there exists a constant \(M_1 > 0 \) such that
\[f \left(t, \frac{1}{n} + b \mu_n G \left(\frac{1}{n} \right) \right) \geq M_1 \left(\nu_n \int_\eta^{1-1/n} (s-\frac{1}{n})(1-\frac{1}{n}-s)ds \right)^{-1}; \]

(A5) \(F(u), g(t, u) \) are non-increasing with respect to \(u \) and for each fixed \(n \in \{N, N+1, N+2, \ldots\} \), there exists a constant \(M_2 > 0 \) such that
\[F \left(\nu_n \int_\eta^{1-1/n} (s-\frac{1}{n})(1-\frac{1}{n}-s)g(s, M_2)ds \right) \leq \frac{M_2 - \frac{1}{n}}{\mu_n}. \]

The parameters \(\mu_n \) and \(\nu_n \) in (A4) and (A5) are given by
\[\mu_n = \frac{\max\{1, \alpha\}}{1 - \frac{2}{n} + \frac{\alpha}{n} - \alpha \eta}, \quad \nu_n = \min\{1, \alpha\} \min\{\eta - \frac{1}{n}, 1 - \frac{1}{n} - \eta\} \cdot \frac{1 - \frac{2}{n} + \frac{\alpha}{n} - \alpha \eta}{1 - \frac{2}{n} + \frac{\alpha}{n} - \alpha \eta}. \]

Since \(N > \max\{\frac{1}{n}, \frac{1}{n}, \frac{2-n}{1-\alpha n}\} \), \(\mu_n, \nu_n > 0 \).

We state the main results of this paper here.

Theorem 1.1. Assume that (A1) – (A3) hold. Then the system (1.1) has at least one positive solution.

Theorem 1.2. Assume that (A1), (A2) and (A4) hold. Then the system (1.1) has at least one positive solution.

Theorem 1.3. Assume that (A1), (A3) and (A5) hold. Then the system (1.1) has at least one positive solution.

Theorem 1.4. Assume that (A1), (A4) and (A5) hold. Then the system (1.1) has at least one positive solution.
For each $x \in C[0, 1]$ we write $\|x\| = \max \{|x(t)| : t \in [0, 1]\}$. Clearly, $C[0, 1]$ with the norm $\|\cdot\|$ is a Banach space. For $n \geq N$, define a cone P, and a cone K_n of $C[\frac{1}{n}, 1 - \frac{1}{n}]$ as follows:

\[P = \{ x \in C[0, 1] : x(t) \geq 0, t \in [0, 1] \}, \]
\[P_n = \{ x \in P : x \text{ is concave on } [0, 1], \min_{t \in [\frac{1}{n}, 1 - \frac{1}{n}]} x(t) \geq \frac{1}{n} \}, \]
\[K_n = \{ x \in C[\frac{1}{n}, 1 - \frac{1}{n}] : x \text{ is concave on } [0, 1] \}. \]

For any real constant $r > 0$, define

\[\Omega_r = \{ x \in C[0, 1] : \|x\| < r \} \]
as an open neighborhood of $0 \in C[0, 1]$ of radius r. $(x(t), y(t))$ is called a positive solution of (1.1) if

\[(x, y) \in (C[0, 1] \cap C^2(0, 1)) \times (C[0, 1] \cap C^2(0, 1)), \]
\[x(t) > 0, y(t) > 0 \text{ on } (0, 1) \text{ and } (x, y) \text{ satisfies (1.1)}. \]

The proofs of our main results (Theorems 1.1-1.4) are based on the Guo-Krasnosel’skii fixed-point theorem.

Lemma 2.1 ([8, Guo Krasnosel’skii Fixed-Point Theorem]). Let K be a cone of a real Banach space E, and let Ω_1, Ω_2 be bounded open neighborhoods of $0 \in E$, and assume $\Omega_1 \subset \Omega_2$. Suppose that $T : K \cap (\Omega_2 \setminus \Omega_1) \to K$ is completely continuous such that one of the following conditions holds:

(i) $\|Tx\| \leq \|x\|$ for $x \in \partial \Omega_1 \cap K$; $\|Tx\| \geq \|x\|$ for $x \in \partial \Omega_2 \cap K$;

(ii) $\|Tx\| \leq \|x\|$ for $x \in \partial \Omega_2 \cap K$; $\|Tx\| \geq \|x\|$ for $x \in \partial \Omega_1 \cap K$.

Then, T has a fixed point in $K \cap (\Omega_2 \setminus \Omega_1)$.

For fixed $n \geq N$ and $z \in C[0, 1]$, the linear boundary value problem

\[-u''(t) = z(t), \quad t \in [\frac{1}{n}, 1 - \frac{1}{n}], \]
\[u(\frac{1}{n}) = \frac{1}{n}, \quad u(1 - \frac{1}{n}) = au(\eta) + \frac{1-a}{n}, \]

has a unique solution

\[u(t) = \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)z(s)ds, \]
where \(H_n : \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \times \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \rightarrow [0, \infty) \) is an associated Green’s function and is defined by

\[
H_n(t, s) = \begin{cases}
(t - \frac{1}{n})(1 - \frac{1}{n} - \alpha (q - s)) - (t - s), & \frac{1}{n} \leq s \leq t \leq 1 - \frac{1}{n}, s \leq \eta, \\
(t - \frac{1}{n})(1 - \frac{1}{n} - \alpha (q - s)) - \alpha \eta \left(\eta - (t - \frac{1}{n}) \right), & \frac{1}{n} \leq s \leq t \leq 1 - \frac{1}{n}, s \leq \eta, \\
(t - \frac{1}{n})(1 - \frac{1}{n} - \alpha (q - s)) - \alpha \eta \left((1 - \frac{1}{n} - (t - \frac{1}{n})) \right), & 0 \leq s \leq t \leq 1 - \frac{1}{n}, s \geq \eta, \\
(t - \frac{1}{n})(1 - \frac{1}{n} - \alpha (q - s)) - (t - s), & 0 \leq s \leq t \leq 1 - \frac{1}{n}, s \geq \eta.
\end{cases}
\]

We note that \(H_n(t, s) \rightarrow H(t, s) \) as \(n \rightarrow \infty \), where

\[
H(t, s) = \begin{cases}
\frac{(1 - s)}{1 - \alpha \eta} - \frac{\alpha(t - s)}{1 - \alpha \eta} - (t - s), & 0 \leq s \leq t \leq 1, s \leq \eta, \\
\frac{(1 - s)}{1 - \alpha \eta} - \frac{\alpha(t - s)}{1 - \alpha \eta}, & 0 \leq t \leq s \leq 1, s \leq \eta, \\
\frac{(1 - s)}{1 - \alpha \eta}, & 0 \leq t \leq s \leq 1, s \geq \eta, \\
\frac{(1 - t)}{1 - \alpha \eta} - (t - s), & 0 \leq s \leq t \leq 1 - \frac{1}{n}, s \geq \eta.
\end{cases}
\]

is the Green’s function corresponding the boundary value problem

\[-u''(t) = z(t), \quad t \in [0, 1],
\]

\[u(0) = 0, \quad u(1) = \alpha u(\eta)\]

with

\[u(t) = \int_0^1 H(t, s)z(s)ds,\]

as its integral representation. We need the following properties of the Green’s function \(H_n \) in the sequel. For the proof, see [22].

Lemma 2.2. The function \(H_n \) can be written as

\[
H_n(t, s) = G_n(t, s) + \frac{\alpha \left(t - \frac{1}{n} \right)}{1 - \frac{2}{n} + \frac{n}{n - \alpha \eta}} G_n(\eta, s),
\]

where

\[
G_n(t, s) = \frac{n}{n - 2} \begin{cases}
(s - \frac{1}{n}) \left(1 - \frac{1}{n} - t \right), & \frac{1}{n} \leq s \leq t \leq 1 - \frac{1}{n}, \\
(t - \frac{1}{n}) \left(1 - \frac{1}{n} - s \right), & \frac{1}{n} \leq t \leq s \leq 1 - \frac{1}{n}.
\end{cases}
\]
Lemma 2.3. Let

\[\mu_n = \frac{\max\{1, \alpha\}}{1 - \frac{2}{n} + \frac{2}{n} - \alpha n}, \quad \nu_n = \frac{\min\{1, \alpha\} \min\{\eta - \frac{1}{n}, 1 - \frac{1}{n} - \eta\}}{1 - \frac{2}{n} + \frac{2}{n} - \alpha n}. \]

Then

(i) \(H_n(t, s) \leq \mu_n (s - \frac{1}{n}) (1 - \frac{1}{n} - s), \quad (t, s) \in \left[\frac{1}{n}, 1 - \frac{1}{n}\right] \times \left[\frac{1}{n}, 1 - \frac{1}{n}\right], \)

(ii) \(H_n(t, s) \geq \nu_n (s - \frac{1}{n}) (1 - \frac{1}{n} - s), \quad (t, s) \in \left[\frac{1}{n}, 1 - \frac{1}{n}\right] \times \left[\frac{1}{n}, 1 - \frac{1}{n}\right]. \)

Now consider the system of nonlinear non-singular BVPs

\[\begin{aligned}
&-x''(t) = f(t, \max\{\frac{1}{n}, y(t)\}), \quad t \in \left[\frac{1}{n}, 1 - \frac{1}{n}\right], \\
&-y''(t) = g(t, \max\{\frac{1}{n}, x(t)\}), \quad t \in \left[\frac{1}{n}, 1 - \frac{1}{n}\right], \\
x(\frac{1}{n}) = \frac{1}{n}, \quad x(1 - \frac{1}{n}) = \alpha x(\eta) + \frac{1 - \alpha}{\eta}, \\
y(\frac{1}{n}) = \frac{1}{n}, \quad y(1 - \frac{1}{n}) = \alpha y(\eta) + \frac{1 - \alpha}{\eta},
\end{aligned} \tag{2.6} \]

where \(n > N \). Write (2.6) as an equivalent system of integral equations

\[\begin{aligned}
x(t) &= \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)f(s, \max\{\frac{1}{n}, y(s)\})ds, \\
y(t) &= \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)g(s, \max\{\frac{1}{n}, x(s)\})ds.
\end{aligned} \tag{2.7} \]

Thus, \((x, y)\) is a solution of (2.6) if and only if

\[(x, y) \in C\left[\frac{1}{n}, 1 - \frac{1}{n}\right] \times C\left[\frac{1}{n}, 1 - \frac{1}{n}\right] \]

and \((x, y)\) is a solution of (2.7).

Define operators \(A_n, B_n, T_n : K_n \to K_n \) by

\[\begin{aligned}
(A_n y)(t) &= \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)f(s, \max\{\frac{1}{n}, y(s)\})ds, \\
(B_n x)(t) &= \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)g(s, \max\{\frac{1}{n}, x(s)\})ds, \\
(T_n x)(t) &= (A_n(B_n x))(t).
\end{aligned} \tag{2.8} \]

If \(u_n \in K_n \) is a fixed point of \(T_n \), then the system of BVPs (2.6) has a solution \((x_n, y_n)\) given by

\[
\begin{cases}
x_n(t) = u_n(t), \\
y_n(t) = (B_n u_n)(t).
\end{cases}
\]

By construction, the system of BVPs (2.6) is regular and so the following lemma is standard.

Lemma 2.4. Assume \(f, g : (0, 1) \times (0, \infty) \to [0, \infty) \) are continuous. Then \(T_n : K_n \to K_n \) is completely continuous.
3. Main results

Proof of Theorem 1.1. By (A2), there exist constants $C_1, C_2, N_1, N_2 > 0$ such that

\[
4^{\alpha_1}ab^{\alpha_1}\mu_n^{\alpha_1+1} C_1 C_2^{\alpha_1} < 1,
\]

and

\[
F(x) \leq C_1 x^{\alpha_1} + N_1, \quad G(x) \leq C_2 x^{\alpha_2} + N_2 \text{ for } x \geq \frac{1}{n}.
\]

Choose a constant $R > 0$ such that

\[
R \geq \frac{\frac{1}{n} + \frac{2^{\alpha_1} a\mu_n C_1}{n^{\alpha_1}} + a\mu_n N_1 + 4^{\alpha_1} ab^{\alpha_1} B_n^{\alpha_1+1} C_1 N_2^{\alpha_1}}{1 - 4^{\alpha_1} ab^{\alpha_1} \mu_n^{\alpha_1+1} C_1 C_2^{\alpha_1}}.
\]

For any $u \in \partial \Omega_R \cap K_n$, using (2.8) and (A1), we have

\[
(T_n u)(t) = (A_n(B_n u))(t) = \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t,s) f(s, (B_n u)(s))ds
\]

\[
= \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t,s) f(s, \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) g(\tau, u(\tau))d\tau)ds
\]

\[
\leq \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t,s) K(s) f(\frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) g(\tau, u(\tau))d\tau)ds.
\]

In view of (3.2) and (A2), it follows that

\[
(T_n u)(t) \leq \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t,s) K(s)(\frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) g(\tau, u(\tau))d\tau)^{\alpha_1} + N_1)ds
\]

\[
= \frac{1}{n} + C_1 \int_{1/n}^{1-1/n} H_n(t,s) K(s)(\frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) g(\tau, u(\tau))d\tau)^{\alpha_1} ds
\]

\[
+ N_1 \int_{1/n}^{1-1/n} H_n(t,s) K(s)ds
\]

\[
\leq \frac{1}{n} + C_1 \int_{1/n}^{1-1/n} H_n(t,s) K(s)(\frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) L(\tau) G(u(\tau))d\tau)^{\alpha_1} ds
\]

\[
+ N_1 \int_{1/n}^{1-1/n} H_n(t,s) K(s)ds
\]

\[
\leq \frac{1}{n} + C_1 \int_{1/n}^{1-1/n} H_n(t,s) K(s)
\]

\[
\cdot \left(\frac{1}{n} + \int_{1/n}^{1-1/n} H_n(s, \tau) L(\tau)(C_2(u(\tau))^\alpha_2 + N_2) d\tau \right)^{\alpha_1} ds
\]
+ \frac{N_1}{n} \int_{1/n}^{1} H_n(t, s) K(s) ds.

Employing (i) of Lemma 2.3, we obtain

\[(T_n u)(t) \leq \frac{1}{n} + C_1 \mu_n \int_{1/n}^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s) K(s) ds \]
\[\cdot \left(\frac{1}{n} + \mu_n \int_{1/n}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau) L(\tau)(C_2(u(\tau)))^{\alpha_2} + N_2) d\tau \right)^{\alpha_1} \]
\[+ N_1 \mu_n \int_{1/n}^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s) K(s) ds \]
\[\leq \frac{1}{n} + C_1 \mu_n \int_{1/n}^{1-1/n} s(1 - s) K(s) ds \]
\[\cdot \left(\frac{1}{n} + \mu_n \int_{1/n}^{1-1/n} \tau(1 - \tau) L(\tau)(C_2(u(\tau)))^{\alpha_2} + N_2) d\tau \right)^{\alpha_1} \]
\[+ N_1 \mu_n \int_{1/n}^{1-1/n} s(1 - s) K(s) ds. \]

Hence,

\[(T_n u)(t) \leq \frac{1}{n} + C_1 \mu_n \int_{1/n}^{1} s(1 - s) K(s) ds \]
\[\cdot \left(\frac{1}{n} + \mu_n \int_{1/n}^{1} \tau(1 - \tau) L(\tau)(C_2(u))^{\alpha_2} + N_2) d\tau \right)^{\alpha_1} \]
\[+ N_1 \mu_n \int_{1/n}^{1} s(1 - s) K(s) ds \]
\[\leq \frac{1}{n} + \mu_n C_1 \int_{0}^{1} s(1 - s) K(s) ds \]
\[\cdot \left(\frac{1}{n} + \mu_n \int_{0}^{1} \tau(1 - \tau) L(\tau) d\tau(C_2(u))^{\alpha_2} + N_2 \right)^{\alpha_1} \]
\[+ \mu_n N_1 \int_{0}^{1} s(1 - s) K(s) ds \]
\[\leq \frac{1}{n} + a \mu_n N_1 + 2^{\alpha_1} a \mu_n C_1 \left(\frac{1}{n} \right)^{\alpha_1} + b^{\alpha_1} \mu_n^{\alpha_1} (C_2(u))^{\alpha_2} + N_2)^{\alpha_1} \]
\[\leq \frac{1}{n} + \frac{2^{\alpha_1} a \mu_n C_1}{n^{\alpha_1}} + a \mu_n N_1 + 2^{2\alpha_1} a b^{\alpha_1} \mu_n^{\alpha_1 + 1} C_1 (C_2^{\alpha_2}(u)^{\alpha_1} + N_2^{\alpha_1}). \]
Using (3.3), we obtain
\[(3.4) \quad \|T_n u\| \leq \|u\| \text{ for all } u \in \partial \Omega_R \cap K_n.\]

Now, by \((A_3)\), there exist constants \(C_3, C_4 > 0\) and \(\rho \in (0, R)\) such that
\[(3.5) \quad f(t, x) \geq C_3 x^{\beta_3}, g(t, x) \geq C_4 x^{\beta_2} \quad \text{for } x \in [0, \rho] \text{ and } t \in [\eta, 1].\]

Choose
\[(3.6) \quad r_n = \min \left\{ \rho, \frac{C_3 C_4^{\beta_3} \nu_n^{\beta_2 + 1}}{n^{\beta_3 \beta_2}} \left(\int_\eta^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s)ds \right)^{\beta_2 + 1} \right\}.\]

For any \(u \in \partial \Omega_{r_n} \cap K_n\), using (2.8), (3.5) and (ii) of Lemma 2.3, we have
\[\langle T_n u \rangle(t) = (A_n(B_n u))(t) \]
\[\geq \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)f(s, \frac{1}{n}) + \int_{1/n}^{1-1/n} H_n(s, \tau)g(\tau, u(\tau))d\tau)ds \]
\[\geq \int_{1/n}^{1-1/n} H_n(t, s)f(s, \frac{1}{n}) + \int_{1/n}^{1-1/n} H_n(s, \tau)g(\tau, u(\tau))d\tau)ds \]
\[\geq \int_{\eta}^{1-1/n} H_n(t, s)f(s, \frac{1}{n}) + \int_{1/n}^{1-1/n} H_n(s, \tau)g(\tau, u(\tau))d\tau)ds \]
\[\geq C_3 \int_{\eta}^{1-1/n} H_n(t, s) \left(\int_{\eta}^{1-1/n} H_n(s, \tau)g(\tau, u(\tau))d\tau \right)^{\beta_2} ds \]
\[\geq C_3 \nu_n^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s)ds \]
\[\cdot \left(\nu_n \int_{\eta}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau)g(\tau, u(\tau))d\tau \right)^{\beta_2} \]
\[\geq C_3 \nu_n^{\beta_2 + 1} \int_{\eta}^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s)ds \]
\[\cdot \left(C_4 \int_{\eta}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau)(u(\tau))^{\beta_2}d\tau \right)^{\beta_2} \]
\[\geq C_3 C_4^{\beta_3} \nu_n^{\beta_2 + 1} \left(\int_{\eta}^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s)ds \right)^{\beta_2 + 1}.\]

Thus, in view of (3.6), it follows that
\[(3.7) \quad \|T_n u\| \geq \|u\| \text{ for } u \in \partial \Omega_{r_n} \cap K_n.\]

By Lemma 2.1, \(T_n\) has a fixed point \(u_n \in K_n \cap (\overline{\Omega_R \setminus \Omega_{r_n}}).\)

Note that
\[(3.8) \quad r_n \leq u_n(t) \leq R \quad \text{for all } t \in [\frac{1}{n}, 1 - \frac{1}{n}]\]
Hence, for which implies that for

\[u_n \in \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \] and for \(m \geq n \), \(\{u_m\} \) is uniformly bounded on \(\left[\frac{1}{n}, 1 - \frac{1}{n} \right] \).

To show that \(\{u_m\} \) for \(m \geq n \), is equicontinuous on \(\left[\frac{1}{n}, 1 - \frac{1}{n} \right] \), consider for \(t \in \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \), the integral equation

\[u_m(t) = u_m(\frac{1}{m}) + \int_{1/m}^{1-1/m} H_m(t, s)f(s, (B_m u_m)(s))ds. \]

Employ Lemma 2.2 to obtain

\[u_m(t) = u_m(\frac{1}{m}) + \int_{1/m}^{1-1/m} \left[G_m(t, s) + \frac{\alpha(t - \frac{1}{m})}{1 - \frac{2}{m} + \frac{2}{m} - \alpha \eta} G_m(\eta, s) \right] f(s, (B_m u_m)(s))ds \]

\[= u_m(\frac{1}{m}) + \frac{m}{m - 2} \int_{1/m}^{1-1/m} (s - \frac{1}{m})(1 - \frac{m}{m - 1} - t)f(s, (B_m u_m)(s))ds \]

\[+ \frac{m}{m - 2} \int_{1/m}^{1-1/m} (t - \frac{1}{m})(1 - \frac{m}{m - 1} - s)f(s, (B_m u_m)(s))ds \]

\[+ \frac{\alpha(t - \frac{1}{m})}{1 - \frac{2}{m} + \frac{2}{m} - \alpha \eta} \int_{1/m}^{1-1/m} G_m(\eta, s)f(s, (B_m u_m)(s))ds. \]

Differentiate with respect to \(t \) to obtain

\[u_m'(t) = -\frac{m}{m - 2} \int_{1/m}^{t} (s - \frac{1}{m})f(s, (B_m u_m)(s))ds \]

\[+ \frac{m}{m - 2} \int_{1/m}^{t} (1 - \frac{m}{m - 1} - s)f(s, (B_m u_m)(s))ds \]

\[+ \frac{\alpha(t - \frac{1}{m})}{1 - \frac{2}{m} + \frac{2}{m} - \alpha \eta} \int_{1/m}^{1-1/m} G_m(\eta, s)f(s, (B_m u_m)(s))ds, \]

which implies that for \(t \in \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \)

\[|u_m'(t)| \leq \int_{1/m}^{1-1/m} f(s, (B_m u_m)(s))ds \]

\[+ \frac{\alpha}{1 - \frac{2}{m} + \frac{2}{m} - \alpha \eta} \int_{1/m}^{1-1/m} G_m(\eta, s)f(s, (B_m u_m)(s))ds. \]

Hence, for \(m \geq n \), \(\{u_m\} \) is equicontinuous on \(\left[\frac{1}{n}, 1 - \frac{1}{n} \right] \).

For \(m \geq n \), define

\[v_m = \begin{cases}
 u_m(\frac{1}{m}), & \text{if } 0 \leq t \leq \frac{1}{m}, \\
 u_m(t), & \text{if } \frac{1}{m} \leq t \leq 1 - \frac{1}{m}, \\
 \alpha u_m(\eta), & \text{if } 1 - \frac{1}{m} \leq t \leq 1.
\end{cases} \]
Since \(v_m \) is a constant extension of \(u_m \) to \([0, 1]\), the sequence \(\{v_m\} \) is uniformly bounded and equicontinuous on \([0, 1]\). Thus, there exists a subsequence \(\{v_{n_k}\} \) of \(\{v_m\} \) converging uniformly on \([0, 1]\) to \(v \in P \cap (\overline{P_R}\setminus\Omega_r) \).

We introduce the notation
\[
x_{n_k}(t) = v_{n_k}(t), \quad y_{n_k}(t) = \frac{1}{n_k} + \int_{1/n_k}^{1-1/n_k} H_{n_k}(t, s)g(s, v_{n_k}(s))ds,
\]
\[
\overline{x}(t) = \lim_{n_k \to \infty} x_{n_k}(t), \quad \overline{y}(t) = \lim_{n_k \to \infty} y_{n_k}(t),
\]
and for \(t \in [0, 1] \) consider the integral equation
\[
x_{n_k}(t) = x_{n_k}(1/n_k) + \int_{1/n_k}^{1-1/n_k} H_{n_k}(t, s)f(t, y_{n_k}(s))ds.
\]
Letting \(n_k \to \infty \), we have
\[
\overline{x}(t) = \overline{x}(0) + \int_0^1 H(t, s)f(t, \overline{y}(s))ds,
\]
and
\[
\overline{y}(t) = \int_0^1 H(t, s)g(s, \overline{x}(s))ds, \quad t \in [0, 1].
\]
Moreover,
\[
\overline{x}(0) = 0, \quad x(1) = \alpha \overline{x}(\eta), \quad \overline{y}(0) = 0, \quad \overline{y}(1) = \alpha \overline{y}(\eta).
\]
Hence, \((\overline{x}(t), \overline{y}(t))\) is a solution of the system (1.2).

Since
\[
f, g : (0, 1) \times (0, \infty) \to (0, \infty), \quad f(t, 0), g(t, 0) \text{ are not identically } 0, \quad \text{and } H \text{ is of fixed sign on } (0, 1) \times (0, 1),
\]
it follows that \(\overline{x}, \overline{y} > 0 \) on \((0, 1)\).

Example 3.1. Let
\[
f(t, y) = \frac{1}{t(1-t)} \left(\frac{1}{y} + 3y^{1/3} \right), \quad g(t, x) = \frac{1}{t(1-t)} \left(\frac{1}{x} + 4x \right)
\]
and \(\alpha = 2, \eta = \frac{1}{7} \). Choose
\[
K(t) = L(t) = \frac{1}{t(1-t)}, \quad F(y) = \frac{1}{y} + 3y^{1/3}, \quad G(x) = \frac{1}{x} + 4x,
\]
and \(\alpha_1 = \frac{1}{2}, \alpha_2 = 2, \beta_1 = \beta_2 = 1 \). Then \((A_1) - (A_3)\) are satisfied. Hence, by Theorem 1.1, system (1.2) has a positive solution.
Proof of Theorem 1.2. For \(u \in \partial \Omega_{M_1} \cap K_n \), using (2.8), we obtain for \(t \in \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \)
\[
(T_n u)(t) = (A_n(B_n u))(t) = \frac{1}{n} + \int_{1/n}^{1-1/n} H_n(t, s)f(s, (B_n u)(s))ds
\]
\[
\geq \int_{1/n}^{1-1/n} H_n(t, s)f(s, \frac{1}{n} + \int_{1/n}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau)g(\tau, u(\tau))d\tau)ds
\]
\[
\geq \int_{1/n}^{1-1/n} H_n(t, s)f(s, \frac{1}{n} + \mu_n G(\frac{1}{n})\int_{1/n}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau)L(\tau)d\tau)ds
\]
\[
\geq \int_{1/n}^{1-1/n} H_n(t, s)f(s, \frac{1}{n} + b \mu_n G(\frac{1}{n}))ds
\]
\[
\geq M_1 \int_{1/n}^{1-1/n} H_n(t, s)ds(\nu_n \int_{1/n}^{1-1/n} (\tau - \frac{1}{n})(1 - \frac{1}{n} - \tau)d\tau)^{-1} \geq M_1,
\]
which implies that
\[
|T_n u| \geq |u|\] for all \(u \in \partial \Omega_{M_1} \cap K_n \).

In view of (A2), we can choose \(R > M_1 \) such that (3.4) holds. Hence, by Lemma 2.1, \(T_n \) has a fixed point \(u_n \in K_n \cap (\Omega_R \setminus \Omega_{M_1}) \). By the same process as done in Theorem 1.1, the system (1.2) has a positive solution. \[\Box\]

Example 3.2. Let
\[
f(t, y) = \frac{e^{\frac{1}{y}}}{t(1 - t)}, \quad g(t, x) = \frac{e^{\frac{1}{x}}}{t(1 - t)}
\]
and \(\alpha = 2, \eta = \frac{1}{4} \). Choose
\[
K(t) = L(t) = \frac{1}{t(1 - t)}, \quad F(y) = e^{\frac{1}{y}}, \quad G(x) = e^{\frac{1}{x}}.
\]
Choose constant \(M_1 \) such that
\[
M_1 \leq \frac{4(n-3)}{n}e^{\frac{2}{n}} \int_{1/3}^{1-1/n} (s - \frac{1}{n})(1 - \frac{1}{n} - s)ds.
\]
Then (A1), (A2) and (A4) are satisfied. Hence, by Theorem 1.2, system (1.2) has a positive solution.
Example 3.3. Let

\[f(t, y) = \begin{cases}
\frac{y^{1/2}}{\xi^{1/2}}, & y \leq 1, \\
\frac{x^{1/2}}{\xi^{1/2}}, & y > 1,
\end{cases} \quad g(t, x) = \begin{cases}
\frac{y^{1/2}}{\xi^{1/2}}, & x \leq 1, \\
\frac{x^{1/2}}{\xi^{1/2}}, & x > 1.
\end{cases} \]
and $\alpha = 2$, $\eta = \frac{1}{3}$. Choose

$$K(t) = L(t) = \frac{1}{t(1-t)}, \quad F(y) = \begin{cases} ye^{\frac{y}{2}}, & y \leq 1, \\ e, & y > 1, \end{cases}, \quad G(x) = \begin{cases} xe^{\frac{x}{2}}, & x \leq 1, \\ e, & x > 1, \end{cases}$$

and $\beta_1 = \beta_2 = 1$. Choose constant M_2 such that

$$M_2 \geq \max \left\{ \frac{1}{n} + 6F(e(1-3/n)) \int_{1/3}^{1-1/n} \frac{(s-1/n)(1-1/n-s)}{s(1-s)} ds \right\}.$$

Then $(A_1), (A_3)$ and (A_5) are satisfied. Hence, by Theorem 1.3, system (1.2) has a positive solution.

Proof of Theorem 1.4. By (A_1) and (A_4), we obtain (3.10). By (A_5) we can choose a constant $M_2 > M_1$ such that (3.11) holds. Then T_n has a fixed point $u_n \in K_n \cap (\Omega_{M_2} \setminus \Omega_{M_1})$. By the same process as done in Theorem 1.1, the system (1.2) has a positive solution.

Example 3.4. Let

$$f(t, y) = \frac{1}{t(1-t)} \frac{1}{\sqrt{y}}, \quad g(t, x) = \frac{1}{t(1-t)} \frac{1}{x^2}$$

and $\alpha = 2$, $\eta = \frac{1}{3}$. Choose

$$K(t) = L(t) = \frac{1}{t(1-t)}, \quad F(y) = \frac{1}{\sqrt{y}}, \quad G(x) = \frac{1}{x^2}.$$

Choose constants M_1 and M_2 such that $M_1 \leq \frac{n^{-3}}{\sqrt{\pi(n^2-1)}} \int_{1/3}^{1-1/n} \frac{(s-1/n)(1-1/n-s)}{s(1-s)} ds$ and $M_2 \geq \frac{1}{6n} \left(\frac{1}{3} - \sqrt{\frac{2}{n-3}} \int_{1/3}^{1-1/n} \frac{(s-1/n)(1-1/n-s)}{s(1-s)} ds \right)^{-1/2}$. Then $(A_1), (A_4)$ and (A_5) are satisfied. Hence, by Theorem 1.4, system (1.2) has a positive solution.

References

Naseer Ahmad Asif
Centre for Advanced Mathematics and Physics
National University of Sciences and Technology
Campus of College of Electrical and Mechanical Engineering
Peshawar Road, Rawalpindi, Pakistan
E-mail address: naseerasif@yahoo.com

Paul W. Eloe
Department of Mathematics
University of Dayton
Dayton, Ohio 454-2316, USA
E-mail address: Paul.Eloe@notes.udayton.edu

Rahmat Ali Khan
Centre for Advanced Mathematics and Physics
National University of Sciences and Technology
Campus of College of Electrical and Mechanical Engineering
Peshawar Road, Rawalpindi, Pakistan