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Abstract 
 
Lonicera maackii (Amur honeysuckle) invasion is extensive in forests across much of Ohio and the 
Midwest. Amur honeysuckle has been shown to influence headwater streams and its organisms, which 
depend on a certain water chemistry to survive. Little has been done to understand how honeysuckle affects 
water chemistry and nutrient cycling. As honeysuckle canopies prevent native organic matter from entering 
the streams below, while also adding its own organic matter that is high in nitrogen and phosphorus, and 
low in lignin, the amount and types of nutrients present in both forests and streams may be significantly 
altered. Over a one-year time period, five riparian stream sites were sampled and analyzed for a variety of 
chemical parameters. It was found that Amur honeysuckle does not have an effect on these chemical 
variables and does not follow a gradient of honeysuckle, as predicted. The effects from honeysuckle may 
be over shadowed by anthropogenic pollution and stream geology. 
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Introduction 
 Invasive species have harmful effects on ecosystems including outcompeting native 

species and altering ecosystem function (Webster et al. 2000; Zavaleta et al. 2001, Collier et 

al. 2002). Lonicera maackii, commonly known as Amur honeysuckle (hereafter  

“honeysuckle”), is a problematic invasive species in many forests across Ohio and the broader 

midwestern United States. Honeysuckle was introduced to North America ca. 1896 from Asia 

(Shewhart, McEwan, & Benbow 2014). Today, it has spread to 27 states in the central and 

eastern United States, colonizing in urban parks, riparian zones, and second-growth forests 

(Luken 1988, Luken and Thieret 1996, McNeish et al. 2012, Wilson et al. 2013). 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1. Observed unique seasonal changes of Amur honeysuckle in 

southwest Ohio, USA. 
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 The unique seasonal changes of honeysuckle can be readily observed throughout the 

year (Figure 1), as honeysuckle has a longer leaf duration than most Ohio native species 

(McEwan et al. 2009). Commonly in autumn, honeysuckle is the last plant to lose its leaves 

and appears green until the winter. In the spring, it is one of the first plants to bloom with 

bright green leaves and red berries. During the summer time, the invasive shrub creates dense 

canopies of leaves, preventing light and organic matter from reaching the environment 

underneath the canopy. These distinctive seasonal changes of honeysuckle may be adding 

organic matter to the surrounding environment at odd times of year. Additionally, 

honeysuckle organic matter may be different in chemical make-up. 

 Streams meander through many of the Ohio forests where honeysuckle has overtaken 

the native vegetation creating near-monocultures (Figure 1). Riparian forests and streams are 

interlinked as allochthonous inputs enter the stream from the terrestrial environment (Vannote 

et al. 1980; Gregory et al. 1991; Webster et al. 1995). Prior research has found that invaded 

riparian zones and streams experience a decrease in the amount of organic matter entering the 

stream, and a large portion of the organic matter is from honeysuckle (McNeish, Moore, 

Benbow, & McEwan 2014). Aquatic organisms and ecosystem processes are ultimately 

affected by these invasive allochthonous inputs from the riparian zone above (McNeish et al. 

2014). Furthermore, invasions may modify nutrient dynamics in streams, as their organic 

matter is high in nitrogen, phosphorus, and low in lignin; however, there have been relatively 

few scientific studies of this subject. More research is needed to understand how invaded 

riparian zones affect the water chemistry and nutrient cycling of neighboring streams. As 

honeysuckle canopies alter the organic matter that enters the streams below, while also adding 

its own organic matter that is high in nitrogen and phosphorus and low in lignin (McNeish et 
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al. 2014), the amount and types of nutrients present in both forests and streams may be 

significantly altered.  

 Over a one-year time period, five riparian stream sites were sampled and analyzed for 

a variety of chemical parameters. Two of the riparian stream sites had no honeysuckle, two 

sites had a moderate amount of honeysuckle, and one site had high amounts of honeysuckle 

with a riparian canopy that was all honeysuckle. It is hypothesized that across an invasion 

gradient there will be a measurable gradient in stream chemistry and nutrient concentration 

(H1). Specifically, it is predicted that areas of higher honeysuckle invasion will be associated 

with significantly increased concentrations of different forms of nitrogen and phosphorus 

(H2).  

  

Methods 

Field Sites 

Five different first and second order headwater streams located in southwest Ohio 

were sampled from August 2015 until November 2016. These sites spanned a gradient of 

honeysuckle invasion intensity. Two of the stream sites that were used as controls had no 

honeysuckle: Englewood and Aullwood Reference. Two of the stream sites had a moderate 

amount of honeysuckle: Englewood and Charleston Falls (CF) Moderate. One site included a 

riparian canopy that was completely honeysuckle, known as our high invasion site: Buckeye 

Trail (BT) High. The streams were larger first order and smaller second order streams that 

were similar in terms of basic parameters including sinuosity, gradient, bedrock, and 

discharge.  These streams were relatively uninfluenced by urban or agricultural inputs as they 

were surrounded by second growth forest.  Within each stream a set of five permanent 6 m 
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length in-stream plots were established along a 30 m reach following the thalweg at each 

stream site (Figure 2).   

 

 

 

Data Collection  

Streams were monitored at least monthly with an YSI Sonde Probe (Yellow Springs, 

OH) starting on August 4, 2015 until November 30, 2016 to record the water temperature 

(°C), dissolved oxygen (DO) (mg/L), pH, specific conductivity (µS/cm), and total dissolved 

solids (TDS) (mg/L). In addition to these in situ measurements, water samples were also 

collected and analyzed beginning October 20, 2015 and ending on September 16, 2016. These 

sampling events were performed monthly throughout the summer and winter, and weekly in 

the spring and fall, so that the influence of honeysuckle’s unique phenology could be 

discerned.  

Figure 2. Illustration of the plot design 
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During each sampling event, three clear plastic bottles per site, provided by Alloway 

Environmental Laboratory (Lima, OH), were used to collect approximately 500 mL of 

flowing stream water in each bottle. Two of the bottles were empty, while one held a small 

amount of preservative (H2SO4) for the appropriate analytical parameters. While in the field, 

one of the empty bottles was rinsed three times with the stream water and then filled 

completely. This water was then poured into the bottle containing the sulfuric acid 

preservative. Then the empty bottle was filled again. Half of the water from this bottle was 

then filtered in lab or in the field using a 0.45 μm glass filter into the second empty bottle.  

 

Sample Processing and Nutrient Analysis  

After each sampling event, water bottles were placed on ice, and delivered to Alloway 

Laboratory in Lima, OH within 48 hours.  Alloway was contracted to test for the amounts of 

Total Kjeldahl nitrogen (TKN) (mg/L), ratio of nitrate to nitrite (mg/L), soluble reactive 

phosphorus (SRP) (mg/L), and dissolved organic carbon (DOC) (mg/L) in each of the water 

samples. The remaining water samples from each site were used to test for total suspended 

solids (TSS) (mg/L), hardness (mg/L as CaCO3), and alkalinity (mg/L as CaCO3) in lab.  

To measure the amount of TSS in each sample, aluminum weigh pans were dried at 

105oC for 24 h to standardize each pan.  After 24 h, each pan was given a number, weighed 

(Mettler Toldeo (Toledo, OH) balance), and recorded. Each pan received a Whatman glass 

microfiber filter disc, 47 mm, and was re-weighed. A Buchner funnel, side arm flask, hose, 

and vacuum were set up for filtration. While the technician was wearing sterile gloves, the 

glass microfiber filter was placed with forceps onto the Buchner funnel.  The glass microfiber 

filter was rinsed three times with a total of 50-60 mL of DI water. Each water sample was 
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shaken thoroughly and then carefully measured to 50 mL with a graduated cylinder. Next, the 

sample was quickly poured directly on to the glass filter. The graduated cylinder was rinsed 

with DI water onto the filter. After filtration, each glass filer was placed back into its 

respective pan with forceps and all pans were placed into the 105 oC drying oven for one hour. 

After the first hour, each pan was re-weighed and then the pans went back into the drying 

oven for another hour to repeat the process. To calculate TSS, the average weight of the 

combined pans, filter, and dried suspended solids was calculated. The weight of the tin and 

the filter was then subtracted from this average and the resulting weight was converted to 

milligrams per liter.  

Water hardness was measured using titration. A 25 mL sample was poured into a 50 

mL Erlenmeyer flask with a small metallic stirring rod. While sitting on a stir plate, four drops 

of nitrate buffer and a pinch of Eriochrome Black-T reagent were added to the sample. The 

mixture was then titrated with Ethylenediaminetetraacetic acid (EDTA) until a color change.  

The amount of EDTA used was multiplied by its corresponding correction factor, divided by 

25 mL, and multiplied by 1,000 to calculate hardness. 

Similarly, the alkalinity of the water was found using a titration. A 25 mL sample was 

poured into a 50 mL Erlenmeyer flask with a small metallic stirring rod. Three drops of 

phenolphthalein and three drops of bromcresol green-methyl red indicator were added to the 

sample. The mix then sat on a stir plate and was titrated with 0.02 N H2SO4 until a color 

change. The amount of 0.02 N H2SO4 used was multiplied by its corresponding correction 

factor, divided by 25 mL and multiplied by 1,000 to calculate alkalinity. 
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Data Preparation and Analysis 

 If samples were found to be under their detection limits, then the data was adjusted 

using United States Geological Survey methodology (Helsel & Hirsch 2002). Corresponding 

blanks were subtracted from each sample, if greater than zero.   Point and line plots were 

created for each parameter across all sites and dates. 

 

Results 
 

Solids

 

Figure 3. Total suspended solids (left) and total dissolved solids (right) at each stream site 

over time. 

  

No distinction in the amounts of total suspended solids (TSS) was found along the 

gradient of honeysuckle over time. TSS consistently spiked at each of the stream sites at least 
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once a month. Each of the stream sites followed approximately the same changes in TSS no 

matter the amount of honeysuckle present (Figure 3).        

 Conversely, total dissolved solids (TDS) demonstrated a distinction among stream 

sites over time. The Aullwood Reference site had the highest amount of TDS throughout the 

study at all but two sampling dates. Interestingly, the Englewood Reference site usually 

exhibited the lowest amount of TDS throughout the study. The high honeysuckle site usually 

demonstrated the second highest amount of TDS followed by the moderate honeysuckle sites 

in the middle. When ignoring the Aullwood Reference site, the TDS does follow the gradient 

of honeysuckle from low to high (Figure 3).  

 

Nitrogen 

  

 

Figure 4. Total Kjeldahl Nitrogen (right) and the ratio of nitrate to nitrite (left) at each stream 

site over time. 
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The ratio of nitrate to nitrite was measured from the spring 2016 to fall 2016 of the 

study. The CF Moderate site consistently demonstrated the highest ratio of nitrate to nitrite 

over time. The highest ratio of nitrate to nitrite at the CF Moderate site was followed by the 

Aullwood Reference site, the BT High site, and finally an approximate tie between the 

Englewood Reference and Moderate sites (Figure 4).  

 TKN was measured at every stream site throughout the winter of 2015 to the fall of 

2016. TKN levels ranged from 0 to about 1.5 mg/L over time. Conversely of the previous 

nitrogen findings, all of the sites were found to have approximately the same amount of TKN 

over time. The Englewood Moderate site exhibited one spike in TKN of about 2.5 mg/L in the 

summer of 2016, but other than this, all sites exhibited about the same amount of TKN over 

time (Figure 4).  

 

Phosphorus 

 

Figure 5. Orthophosphate (left) and soluble reactive phosphorus (right) at each stream site 

over time. 



P a g e  | 10 
 

Orthophosphate levels did not demonstrate a consistent pattern across the honeysuckle 

gradient over time. Throughout the study, the stream sites exhibited five spikes in 

orthophosphate levels over time, but four of those spikes were seen across most of the stream 

sites. The Aullwood Reference site and the CF Moderate site demonstrated the largest spikes 

in orthophosphate with levels ranging from approximately 0.75 to 0.90 mg/L; however, the 

largest amount of orthophosphate was found at the Englewood Moderate site at about 1.0 

mg/L in July of 2016 (Figure 5). Overall, orthophosphate levels followed the same pattern 

across sites over time. 

 Similarly, SRP levels across each stream site followed the same pattern over time. In 

the spring of 2016, the CF Moderate site demonstrated the highest levels of SRP of 0.54 

mg/L. Additionally, the reference sites usually exhibited the lowest amounts of SRP over 

time; however, the BT High site frequently displayed middle amount of SRP or was also the 

lowest amounts of SRP with 0 mg/L (Figure 5). 
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Dissolved Oxygen and Organic Carbon 

 

Figure 6. Dissolved organic carbon (left) and dissolved oxygen (right) at each stream site 

over time. 

  

Dissolved oxygen (DO) was measured at all stream sites throughout the entire study. 

DO levels typically followed the same trends across all field sites throughout the study. BT 

High demonstrated downward spikes in DO throughout the year, decreasing to less than 6 

mg/L at some dates. Generally, the same amounts of DO were found at each stream site 

throughout the year, with the greatest amount of DO in the winter and decreasing in the 

warmer months (Figure 6).  

 Dissolved organic carbon (DOC) was measured from the winter of 2015 to the fall of 

2016. The moderate sites frequently displayed the largest amounts of DOC throughout the 

study, expect for a spike of 5.1 mg/L at the Aullwood Reference site. BT High also presented 

the largest amount of DOC from 28-Jul-16 to 16-Sept-16. Reference sites typically displayed 

the lowest levels of DOC (Figure 6).  
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Physiochemical Prosperities 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Over time, the stream sites were consistently found to have relatively the same 

temperature. Similarly, the pH at each stream site was found to be approximately the same 

throughout the year. Englewood Reference displayed a decrease in pH of 7.69 on 25-Nov-15 

and a sudden increase in pH of 9.53 on 15-Jul-16 (Figure 7).  

 The water hardness varied among each site. The Aullwood Reference site usually had 

the highest water hardness and Englewood Reference usually had the lowest. The BT High 

site varied from having the highest or second highest water hardness to having the second 

Figure 7. Stream temperature (top left), stream pH (top right), water hardness (middle 

left), alkalinity (middle right), and conductivity (bottom left) at each stream site over time. 
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lowest water hardness. The moderate sites generally revealed water hardness somewhere in 

the middle of the other sites. When the Aullwood Reference site is removed, the water 

hardness generally follows the gradient of honeysuckle (Figure 7).  

 The alkalinity of the water also varied among the sites throughout the study. The 

Aullwood Reference site typically exhibited the highest alkalinity and Englewood Reference 

site generally exhibited the second lowest to lowest in water alkalinity. Frequently, the 

Englewood Moderate site displayed the second highest alkalinity and the CF Moderate 

displayed the lowest. The alkalinity of the BT High site greatly varied over time (Figure 7).  

 The conductivity of the water displayed a more prominent pattern among the sites. The 

Aullwood Reference site frequently demonstrated the highest conductivity and Englewood 

Reference usually demonstrated the lowest. The moderated sites typically ranged between 600 

and 800 μS/cm, placing them towards the lower range among all of the sites. BT high varied 

the most among all of the sites, ranging from lowest to the second highest (Figure 7).   

 

Discussion 

Overall, there were no significant differences among the stream sites that followed the 

gradient of honeysuckle, refuting the hypothesis (H1). Stream sites either demonstrated the 

same pattern for the studied parameter, or a pattern was found that did not follow the gradient 

of honeysuckle. When starting this study, physiochemical properties were thought to be 

similar among each stream site, but this was not always true. Each of the five streams had 

approximately the same water temperature and pH, which would be expected among streams 

in the same region (Figure 7). However, the stream sites exhibited differences in hardness, 

conductivity, and alkalinity throughout the study that did not follow the gradient of 
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honeysuckle, suggesting that these differences are due to another source. The Aullwood 

Reference site demonstrated large amounts of alkalinity, hardness, and conductivity, possibly 

due to the limestone bedrock of the stream (Figure 7). Additionally, the gradient of 

honeysuckle demonstrates no effect on TDS. Reference sites exhibited both the highest and 

lowest levels of TDS, with the high and moderate sites varying between the two reference 

sites (Figure 3). When the Aullwood Reference data is removed from each of these 

aforementioned parameters, the parameter generally does follow the gradient of honeysuckle; 

however, further exploration into the geology of the Aullwood Reference site would need to 

be conducted to account for these measurements.  

Levels of nitrogen and phosphorus also did not follow the gradient of honeysuckle, 

refuting the original hypothesis (H2). Other allochthonous inputs like non-point source 

pollution may have overshadowed any affect that invasive honeysuckle may have had on the 

water chemistry. In particular, the ratio of nitrate to nitrite levels were always found to be 

considerably higher at the CF Moderate site than the other stream sites, suggesting that some 

other process besides honeysuckle invasion was driving nitrogen dynamics in this stream 

(Figure 4). CF Moderate site was downstream of a residential neighborhood, leading one to 

the possibility that there was nitrogen pollution from the residents living near the stream. 

Furthermore, for both measures of phosphorus, levels spiked on certain dates amongst all five 

sites no matter the amount of honeysuckle, suggesting other processes besides honeysuckle 

invasion was driving phosphorus dynamics in the study sites (Figure 5).  

 In summary, this study found (H1) no measurable gradient in stream chemistry and 

nutrient concentrations that could be linked to honeysuckle and (H2) no significantly 

increased concentrations of nitrogen and/ or phosphorus where honeysuckle invasions were 
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high in the riparian zone. To further assess how invasive honeysuckle may be affecting stream 

chemistry and nutrient cycling, steps would have to be taken to discern anthropogenic 

influences from the effects of honeysuckle. In this study, point and non-point source pollution, 

such as road salt or agriculture run-off, may have had too great of effects on streams, leaving 

the honeysuckle effects unrecognizable. Invasive plants are found to have negative effects on 

stream ecosystems and other biota (McNeish et al. 2014); however, anthropogenic influences 

may be too strong and more of a concern than invasive plants, such as Amur honeysuckle.   
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