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Abstract 
Phosphorus contained in agricultural runoff is a major anthropogenic contributor to harmful algal blooms 
(HABs). Biochars are carbon-based materials produced from the pyrolysis of waste biomass that have the 
potential to amend soils and remediate inorganic and organic contaminants from water.  Engineered 
biochars tailored to adsorb phosphorus from water could reduce the availability of the nutrient in 
agricultural runoff, reducing the size and frequency of HABs. This study observed the phosphorus 
adsorption properties of engineered biochars produced from two source materials, oak sawdust and 
cornstalk residue, and being unmodified, acid-rinsed, or loaded with magnesium prior to pyrolysis, creating 
acid-rinsed, unmodified, and magnesium oxide biochars. Results indicate that the unmodified biochars 
released phosphates into solution, hinting at a potential agricultural soil amendment similar to older slash 
and burn methods of burning and burying crop residue. Magnesium-loaded biochars removed ~99% of 30 
mg/L phosphate with 40 mL of solution and 0.1g of biochar. Further adsorption testing of the magnesium 
biochars showed a maximum adsorption capacity of 174 mg phosphate/g biochar for the sawdust-based 
biochar and 249.6 mg phosphate/g biochar for the cornstalk-based biochar. The sawdust biochar fit well 
with both the Freundlich and Langmuir isotherm models, slightly favoring the Langmuir isotherm, which 
suggests linear monolayer adsorption as the major adsorption mechanism. The cornstalk-based biochar did 
not fit either isotherm model particularly well, which suggests that the cornstalk biochar is influenced by 
other adsorption mechanisms.  
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1 INTRODUCTION 
Harmful algal blooms (HABs) are quickly becoming a major environmental concern for 
global surface waters. The size and intensity of HABs increase every year, causing 
drinking water or general water advisories and environmental damage. A major 
contributor to these algal blooms is phosphorus from agricultural runoff, providing a 
catalyst for accelerated algal growth. One potential method to reduce the amount of 
phosphorus entering surface waters is with biochars. Biochars are an up and coming 
environmental remediation tool that are generally inexpensive to produce and share many 
physical and chemical similarities to activated carbons, which are commonly used in 
water and wastewater treatment facilities. A more detailed description of harmful algal 
blooms and biochars can be found in the Literature Review (section 2) starting on pg. 2. 
The solution proposed in this thesis to remove phosphorus from an aqueous solution is to 
use engineered biochars. Details for the proposed solution can be found in section 3, pg. 
11. 
Engineered biochars were prepared using three different production methods with two 
different source materials: unmodified biochar, acid-rinsed biochar, and magnesium-
loaded biochar. Raw material was pyrolyzed after pretreatment. The engineered biochars 
produced in this thesis were evaluated for phosphate release into reverse osmosis (RO) 
water, phosphate removal from a phosphate concentration, and adsorption capacity for 
biochars that showed phosphate removal capabilities using batch reactors. The 
experimental setup, pretreatment methods, adsorption experiments, and analytical 
methods can be found in section 4, Materials and Methods, pg. 12. 
The engineered biochars produced were characterized using physical and chemical 
properties including solid mass yield from pyrolysis, apparent density, interactions in 
water, and visual characteristics. Data gathered during adsorption was used to determine 
the removal efficiencies of the engineered biochars with a 30 mg/L phosphate solution. 
Biochars that displayed high removal efficiencies were further tested and put in Langmuir 
and Freundlich isotherm models to characterize the adsorption characteristics of the 
materials. Results and a detailed discussion of the results, including possible applications 
and scaling of biochar production, are included in section 5, Results and Discussion, 
starting on pg. 20. Conclusions of this thesis and future research directions are in section 
6, pg. 35.  
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2 LITERATURE REVIEW 
 EUTROPHICATION AND HARMFUL ALGAL BLOOMS 

Over the last few years, algal blooms in Ohio have been documented with an increasing 
frequency and intensity (Ohio EPA 2015). In August 2014, the City of Toledo issued a 
“Do Not Drink or Boil” advisory to residents serviced by the Toledo Water Treatment 
Plant, leaving 500,000 people in three counties of Ohio and parts of Michigan without a 
reliable source of drinking water.  Dangerous levels of microcystin, cyanobacteria found 
naturally in water that proliferates through algal blooms, were found in the city’s finished 
drinking water.  A harmful algal bloom (HAB) located near Toledo’s source water on 
Lake Erie caused an unexpected influx of the algal toxin and quickly rose to levels 
outside of acceptable treatment standards.  Two days later, the advisory was lifted after 
adjustments were made to the treatment process that reduced the level of cyanobacteria to 
acceptable World Health Organization guidelines in all samples from the treatment plant 
and distribution system (US EPA 2015).   
In addition to affecting drinking water supplies in Lake Erie, this cyanobacteria has 
created problems more recently along the Ohio River.  In August of 2015, an algal bloom 
stretching over 600 miles along the Ohio River, reaching the states of Illinois, Indiana, 
Kentucky, Ohio, and West Virginia, developed (Figure 2.1).  This scale of algal bloom 
was unprecedented in this body of water, and precautionary statements and water 
advisories for recreational use and drinking water consumption were issued where 
necessary.  Environmental agencies lifted these advisories in November 2015, when 
water sample tests showed that the HABs had subsided to an acceptable level (West 
Virginia BPD 2015). 

 
Source: (ORSANCO, 2015) 

Figure 2.1: Ohio River HAB advisory summary map 
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While both of these cases happened in or around Ohio, they represent a much larger issue 
at hand. The Ohio River and over 3,225,000 km2 of the U.S. that drains into the 
Mississippi River and into the Gulf of Mexico can have a profound effect on the surface 
waters along the Gulf Coast. (Rabalais et al. 2009) Any influx of algal-bloom enhancing 
pollution into the Gulf adds to an algal bloom that is currently, as of August 2015, 
measured at 5,052 square miles—larger than the states of Connecticut and Rhode Island 
combined (NOAA 2015) (Figure 2.2).  These blooms are not just characterized by 
negatively affecting human health—many algal blooms are non-toxic to humans, but can 
still have negative environmental effects. Increased algal growth leads to an accelerated 
aging of a body of water, known as eutrophication, resulting in an eventual ‘dead zone’ 
where no aquatic life can live (Diaz and Rosenberg 2008; Rabalais et al. 2009).  An 
economic cost is also associated with these algal blooms, with a 2009 analysis of 
eutrophication of U.S. freshwaters estimating algal blooms causing approximately $2.2 
billion in economic damages, from increased water treatment costs to decreased lakefront 
property values (Dodds et al. 2009).    

(Source: NOAA) 
These HABs have both human and natural causes, with increased anthropocentric 
stressors being directly linked to an increased frequency and intensity of these algal 
blooms throughout the globe  (Rabalais et al. 2009).  A major contribution to human-
caused HABs is an increased nutrient content in surface waters.  In many areas, 
phosphorus (P) or nitrogen (N) are the limiting factors of algal blooms (Carpenter et al. 
1998; Daniel et al. 1998). A total P concentration of 0.02 mg/L causes increased algal 
growth, leading to accelerated eutrophication (Daniel et al. 1998)  While point-sources of 
P and N are easily regulated and controlled, non-point sources of these nutrients are 
difficult to monitor.  A major source of P non-point source pollution is agricultural 
runoff, stemming from excess fertilizer, animal wastes, and other agricultural runoff 
products (Carpenter et al. 1998).  If the amount of P contained in agricultural fertilizer 

Figure 2.2: HAB extent in the Gulf of Mexico 
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runoff was limited, HABs where P is a limiting growth factor could be significantly 
reduced.   
Various wastewater treatment techniques have been evaluated for their potential to 
remove P from agricultural runoff.  Precipitation from metal salts, utilizing 
microorganisms, constructing wetlands, creating advanced biological processes, and 
adsorption have all been tested (De-Bashan and Bashan 2004).  Adsorption is a 
particularly appealing process, as it can have a low initial cost if materials are gathered 
locally and inexpensively, can remove pollutants with very low concentrations, is simple 
to maintain, and most times environmentally friendly.  Currently, many wastewater and 
water treatment adsorption processes uses activated carbon, an extremely effective 
adsorbent for a variety of contaminants, to remove materials from both an aqueous and 
gaseous solution.  However, activated carbons can be prohibitively expensive to use in 
the large quantities needed for nonpoint source pollution, making them impractical for 
agricultural use. As such, Biochars, an inexpensive and environmentally friendly 
material, are a potential solution to controlling P discharge from agricultural runoff, 
limiting the amount of nutrients available for HABs.  

 BIOCHARS 
Biochars are an up-and coming environmental remediation tool currently undergoing 
testing in a variety of situations.  Biochars are a form of black carbon produced through 
heating organic, carbon-based materials to a high (200-900° C) temperature under limited 
oxygen conditions (Lehmann and Joseph 2009). Typical biochar production uses waste 
biomass products, such as agricultural waste products, algae used for water treatment, or 
wood byproducts such as sawdust, husks, and cherry stones. Historically, biochars have 
been observed in low-fertility or infertile areas to increase soil fertility and crop 
production.  (Glaser et al. 2002) Recent studies have successfully used biochars for soil 
amendments, soil and water contaminant remediation, increased crop fertility, and 
mitigating greenhouse gas emissions (Ahmad et al. 2014; Beesley et al. 2011; Glaser et 
al. 2002; Kookana et al. 2011; Qian et al. 2015; Sohi et al. 2010). Many of these studies 
have involved tailoring locally gathered biochars through  production temperature, pre-
treatment acid washes or material loading, or post-treatment amendments to increase 
intended effects of the biochar (Ahmad et al. 2014; Mubarik et al. 2014; Qian et al. 2015; 
Roberts et al. 2015; Sun et al. 2015; Trakal et al. 2016; Zhang et al. 2012).  Tailoring 
biochars from locally available bio-waste products to adsorb P from agricultural runoff is 
a potentially economical and material-efficient method to reduce nutrient content in 
surface waters, thereby reducing the amount of HABs limited by P. 
2.2.1 Biochar characteristics 
While the physical and chemical properties of biochars can be widely varied depending 
on source material and production methods, biochars have several key characteristics 
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making them suitable to tailor for specific purposes. Biochar composition consists of 
mainly carbon (70-80%), with other non-volatile trace minerals from source material 
contained within the char material, including essential nutrients (Anawar et al. 2015; Guo 
and Bi 2015; Huang et al. 2012). Like activated carbons, biochars have a high surface 
area and porosity. The macropore structure in biochars is inherited from the cellulose 
structure of the source material (Sohi et al. 2010), and surface area, governed primarily 
by micropores, is mostly affected by production temperature (Sohi et al. 2010). Other key 
characteristics of biochars that can be manipulated include: pH, surface charge, surface 
groups, volatile compound and ash content, water-holding capacity, bulk density, pore 
volume, and specific surface area (Anawar et al. 2015; Okimori et al. 2003; Sohi et al. 
2010).  The main production parameter that affects these characteristics is pyrolysis 
temperature, followed by heating rate, and feed composition, as the fundamental physical 
changes occurring are heat-dependent. (Lehmann and Joseph 2009; Sohi et al. 2010).  
Other parameters, including pretreatment of the biochars, can alter the characteristics, but 
are not as controllable and do not have as significant of an impact on biochar 
characteristics (Lehmann and Joseph 2009; Peacocke 1994) 
2.2.2 Biochar production   
The production of biochars occurs from the heating of carbon-based material, such as 
cornstalk, sawdust, or other organic waste materials, under no or limited oxygen 
conditions. Common production methods include pyrolysis or hydrothermal 
carbonization, heating raw materials in elevated pressure and temperature water. 
Production parameters including the biomass composition, reaction conditions, and the 
recovery of the final products all affect the yields and compositions of biochars 
(Peacocke 1994), but the effects of one single parameter are not currently well-defined 
(Lehmann and Joseph 2009). The largest influence on biochar properties are the 
composition of the biomass and reaction parameters (Lehmann and Joseph 2009). 
However, some industrial pretreatment methods can tailor biochars for specific purposes, 
such as adsorbing heavy metals, nutrients, or inorganic contaminants.  
2.2.2.1 Pyrolysis 
The production of biochars is similar in nature to activated carbon production for water 
treatment.  Both materials use organic, carbon-based material and expose them to heat 
under low oxygen conditions to produce a carbonaceous material.  Activated carbon 
typically has high production temperatures (>700-1000 °C) and has been activated 
through steam or chemicals at a high temperature (Boehm 1994). In comparison, biochar 
production occurs at a generally lower temperature (200-600 °C) and undergoes much 
simpler pre- or post-treatment processes to alter the chemical and physical characteristics 
of the material. Biochar production mechanisms usually involve the thermochemical 
decomposition of organic material at elevated temperatures under limited oxygen 
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conditions, a process known as pyrolysis. Hydrothermal Carbonization (HTC) is also a 
production method for biochars, exposing biochars to heat in water with an elevated 
pressure to keep water in the liquid form. See Table 2.1 for common production methods 
for biochars.  Biochar production also produces synthesis gas (syngas), and a water-based 
bio-oil liquid, which can be used for heat, as fuel, food additives, or soil 
conditioner/fertilizers (Sohi et al. 2010). The fractions of biochar, syngas, and bio-oil 
produced are predominantly dependent on the production conditions (temperature, 
residence time) (Table 2.1), and can vary based on feedstock composition. While low-
temperature HTC produces the highest yield of biochar, carbonaceous compounds 
produced under HTC are less stable than pyrolysis biochars (Mohan et al. 2014).  As 
such, slow-pyrolysis produces favorable fractions of biochar, and is the best choice for 
any large-scale of production of biochars. Charcoal production has occurred for many 
years under pyrolysis or very similar conditions (Lehmann and Joseph 2009).  Large-
scale production of biochars under slow pyrolysis is feasible with modified charcoal kilns 
that are capable of producing multiple tons of charcoal over a period of several days to a 
week (Whitehead 1980; William H. Maxwell 1976; Wood et al. 2014) with theoretically 
similar biochar production efficiencies. (Kammen and Lew 2005)    

Table 2.1: Production methods for biochars 
  Process Temperature Residence time Bio-oil (%) Biochar (%) Syngas (%) 

Pyr
oly

sis 
Var

iati
ons

 

Fast ~500 °C 
400-600 1-2s 75 (25% 

water) 12% 13% 

Intermediate ~500 °C 
400-600 10-20s 50% (50% 

water) 25 25 

Slow ~500 °C 
350-800 5 min - days 30% (70% 

water) 
35 

20-40% 35 

Gasification >750 °C 5-20s 5% tar (5% 
water) ~10 85 

 HTC 180-250 1-12h N/A 30-60% N/A 
Source: (Lehmann and Joseph 2009; Mohan et al. 2014; Qian et al. 2015; Sohi et al. 2010)  

2.2.2.2 Pretreatment methods 
Although pyrolysis temperature and heating rate control the major factors influencing 
biochar characteristics, industrial treatment methods and novel treatment methods have 
been applied to successfully alter essential physical characteristics including total surface 
area (SA), total pore volume (PV), macro- and micro-pore composition, pore size and 
surface chemistry characteristics of biochars (Table 2.2).  Similar to activated carbon 
production, biochars can be activated, increasing the total pore volume and micropore 
composition to enhance adsorption capacities of the material.  This is typically done 
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physically through steam activation at high temperature post-pyrolysis, or chemically 
with materials such as zinc salts or phosphoric acid pre- or post-pyrolysis. Chemical 
activation is advantageous to use in biochar production as it is carried out in a single step 
and results in a greater production of porous structures, but may also have environmental 
implications from waste produced (Zhang et al. 2004). An activated biochar may have 
different adsorption qualities than unmodified biochar, and should be tested for P 
sorption/desorption in water.  
In addition to chemical or physical activation, several novel techniques have been applied 
to change integral biochar characteristics (Table 2.2). Processes such as magnetization, 
creating metal oxides or zero-valent iron nanocomposites, or producing alkali-modified 
biochars can improve the performance of biochars over certain tasks, such as ion 
adsorption, amending acidic soils, or remediating contaminated soils.  These treatment 
methods are typically performed pre-pyrolysis, influencing the structure of the biochar.  
Because of the negative charge of phosphates in solution, a Magnesium-loaded biochar, 
which should produce a positively-charge MgO biochar nanocomposite, will be tested 
with local source materials.  (Zhang et al. 2012) 

Table 2.2: Biochar treatment methods and their effect on biochar characteristics 
Biochar 

produced Biochar treatment Effect on biochar Source 
Magnetic 
biochar 

Co-precipitation with FeCl 
compounds 

Decreased SA, PV 
High number of micropores 
Separated from solution easily (Chen et al. 

2011) 

Alkali  Alkali Modification with 
NaOH  

Alkaline biochar 
Greatly increased SA, cation exchange 
capacity 

(Ding et al. 
2015) 

Zero-Valent 
Iron biochar 

Reduction reaction performed 
in presence of BIOCHAR 

Greatly reduced PV, SA 
Greatly increased pore size (Han et al. 

2015) 
MgO-biochar Biochar immersed in MgCl 

solution 
MgO-biochar nanocomposites formed (Yao et al. 

2013b) 
MgO-biochar Feedstock bioaccumulation of 

MgO 
MgO-biochar nanocomposites formed (Zhang et 

al. 2012) 
Acid-Modified 

biochar 
Immersing source material 
with acids prior to heat 
application 

Increased monolayer adsorption capacity, 
Introduction of carboxyl groups, 
Increased or decreased SA, PV 

(Sun et al. 
2015) 

2.2.3 Potential Applications 
The physical and chemical characteristics of biochars as well as their inexpensive 
production methods make them attractive materials for use in different situations. 
Varieties of biochars have been tested as an agricultural soil amendment to increase soil 
fertility and facilitate crop growth. In addition, the similarities of biochars to activated 
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carbons make them potential contaminant management tools in soil and water.  
Significant research has been conducted on the use of biochars for the treatment of 
organic contaminants and inorganic contaminants (mainly heavy metals or mining 
wastes). However, little literature exists for the use of biochars as a nutrient (P, N, etc.) 
adsorbent.  
2.2.3.1 Biochars in agriculture  
The concept of using biochars stem as a soil remediate for agricultural purposes can be 
traced back thousands of years through the Terra Preta soils of humid tropical areas, 
where pre-historic people used slash and burn techniques to increase soil fertility. Studies 
of these soils have found an abundance of soil organic matter and nutrients essential to 
soil fertility including N, P, and Ca, stemming from the incomplete combustion of plants, 
leading to charcoal mixed in with soils.  (Glaser et al. 2002). While slash and burn 
techniques with crop residue or trees still experiences widespread use, this technique is 
not advisable.   The in-situ burning of plants results in negative effects on soil physical 
properties and microbial populations, and can be economically unfeasible, particularly in 
the slashing and burning of trees, whereas trees are more valued in their use as a 
construction material or charcoal for general purposes. (Dooley and Treseder 2012; 
Glaser et al. 2002).  Biochars produced from waste biological matter under controlled 
conditions and subsequently added to agricultural soils is much safer than traditional 
slash and burn techniques (Qayyum et al. 2015), and is much more economically feasible.   
Recent studies have examined the potential of biochars to increase crop yield in a variety 
of soil conditions. Biochar has been noted to increase the soil fertility, pH in acidic soils, 
soil cation exchange capacity ,and improve soil microbial activity and nutrient retention 
(Qian et al. 2015).  Laghari et al. (2015) studied the use of fast-pyrolysis biochars under a 
variety of pyrolysis conditions to amend the Kubuqi Desert soil with 5% by mass of 
produced biochar.  Using sorghum as a test crop, it was determined that crop yield 
increased by up to 30% with a pyrolysis temperature of 700 degrees C.  The fast-
pyrolysis biochar improved soil organic matter, cation exchange capacity, and plant 
nutrient content significantly (Laghari et al. 2015).    HTC-produced biochar, with an 
addition of compost, was found to increase the pH of acidic soils, in one case from 4.5 to 
6.1 (Qayyum et al. 2015).   Roberts et al. utilized a macroalgae cultivated from 
wastewater that contained trace elements including As, Cd, Cr, Cu, and Pb to produce a 
biochar under slow pyrolysis that when added to low-quality soil increased the radish 
yield by 30-40% (Roberts et al. 2015).  A study using MgO enhanced biochar to sorb P 
and subsequently tested its application in soils as a slow-release fertilizer. Much of the P 
captured onto the MgO biochar was able to desorb P into an aqueous solution as a slow-
release fertilizer, increasing plant growth rate (Yao et al. 2013a).  Using a biochar that 
has removed P from agricultural runoff as a fertilizer in cropland has the potential to 
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create a closed-loop biochar system that can significantly reduce both the amount of P 
contained in agricultural runoff and the amount required for adequate crop growth.  
2.2.3.2 Biochars for contaminant management 
The similarities between biochars and activated carbons have led to research in using 
biochars to remediate organic contaminants, both in soil and water. The high surface area 
and microporosity allows for adsorption of organic contaminants contained in water 
(Ahmad et al. 2014). Generally, production temperatures >400 °C increase the adsorption 
capacity of organic pollutants onto biochars. A higher production temperature generally 
increases the carbonized fraction of the biochar, and the surface of the biochar surfaces 
become less polar and more aromatic. The adsorption mechanisms shift from linear 
competitive partition adsorption to competitive adsorption onto complete carbonized 
fractions of the material (Ahmad et al. 2014; Beesley et al. 2011; Kuppusamy et al. 
2016).  Application of biochars in soils containing organic contaminants can potentially 
reduce or suppress contaminant biodegradation and the leaching of the contaminant into 
groundwater sources (Jones et al. 2011). Table 2.3 below gives a brief overview of 
several types of organic contaminants and biochars used to successfully remove them 
from an aqueous phase or immobilize/reduce their bioavailability in soils.  

Table 2.3: Biochars used to remediate organic contaminants, and their effects 
Media Biochar Contaminant Results Source 

Soi
l 

Hardwood Polycyclic aromatic 
hydrocarbons Adsorption and biodegradation (Beesley et al. 2010) 

Pine wood Phenanthrene Entrapment in pores  (Zhang et al. 2010) 
Dairy manure Atrazine Sorption of Atrazine (Cao et al. 2011) 
Bamboo Pentachlorophenol Reduced leaching from diffusion 

and partition adsorption (Xu et al. 2012) 

Wa
ter 

Pine needles m-Dinitrobenzene Adsorption of m-Dinitrobenzene (Chen et al. 2008) 
Crop reside Methyl violet Electrostatic interaction, surface 

precipitation (Xu et al. 2011) 
Orange peel Napthalene Adsorption and partition (Chen et al. 2011) 
Peanut shell Trichloroethylene Adsorption  (Ahmad et al. 2012) 

Adapted from (Ahmad et al. 2014; Beesley et al. 2011) 
Unlike their organic counterparts, inorganic contaminants are non-biodegradable in the 
environment.  They can be highly toxic to soil biota and any flora or fauna that come into 
contact with them (Ahmad et al. 2014; Beesley et al. 2011). Inorganic contaminants, 
especially metals in the environment, generally stem from anthropogenic sources—
including mining waste, agricultural runoff, and industrial wastes. Where organic 
contaminants rely on the high surface and microporosity of biochars for adsorption, the 
predominant mechanisms in adsorption inorganic  contaminants involve ion-exchange, 
electrostatic attraction, and precipitation (Ahmad et al. 2014).  Through complexation 
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reactions, many types of biochars can capture or immobilize heavy metals and reduce 
their bioavailability in soils, or remove them from water or leachate (Beesley et al. 2011). 
Carboxyl groups (-COOH and –OH) contained on the biochars can allow metal cations to 
form surface complexes on the material and effectively remove the metals from solution 
(Tong et al. 2011).  In soils, biochar application can reduce metal mobility by raising the 
pH of the soil, decreasing the solubility of the metal. However, in some cases, biochar 
application to soil mobilized contaminants due to an increased pH and other factors 
influencing the solubility of the contaminant (Beesley et al. 2010). Table 2.4 illustrates 
the effects of biochars used for the soil and water remediation of inorganic contaminants.  

Table 2.4: Biochars used to remediate inorganic contaminants in soils and water 
Media Biochar Contaminant Results Source 

Soi
l 

Hardwood, mixed with 
soil 

As, Cd, Cu, Pb, 
Zn 

Increased mobility of As, 
Cu, Pb mobility 

(Beesley and 
Dickinson 
2010) 

Orchard prune residue 
Mine tailings 
with Cd, Cr, Cu, 
Ni, Pb, and Zn 

Reduced leachable Cd, 
Pb, and Cr. Reduced 
bioavailability of Cd, Pb, 
Zn (Fellet et al. 2011) 

Eucalyptus saligna 
activated biochar 

As, Cd, Cu, Pb, 
Zn 

Increase in extractable 
As, Zn. Decrease in Pb. 
Decrease in As, Cd, Cu, 
Pb in plants (Namgay et al. 2010) 

Chicken manure Cd, Cu, Pb Immobilization of metals (Park et al. 2011) 

Wa
ter 

Sugar beet tailing Cr 
Electrostatic interaction, 
complexation, reduction 
of Cr(VI) to Cr (III) (Dong et al. 2011) 

Crop straw Cu Adsorption from surface 
complexation (Tong et al. 2011) 

Cu, Cd, Ni, Zn Corn straw Adsorption onto 
inorganic fraction (Lima et al. 2010) 

Hg Soybean stalk 
Precipitation, 
complexation, and 
reduction of Hg ion (Kong et al. 2011) 

Adapted from (Ahmad et al. 2014; Beesley et al. 2011) 
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Along with heavy metals, nutrients, especially P in excess or entering source waters can 
be an inorganic contaminant. Relatively little research has been conducted on the P 
adsorption capabilities of either unmodified or engineered biochars (Yao et al. 2013b). P 
adsorbed onto biochars could be reapplied to fields, reducing the overall need for 
agriculture application.  Engineered biochars produced from simple treatment processes 
have the potential to increase the adsorption capacities of P onto biochars, through 
increased SA and microporosity from chemical or physical activation, or from tailoring 
biochars to have greater interactions with negative P ions, such as phosphates contained 
in agricultural runoff. Metal ions integrated into the surface structure of a biochar could 
create a positive surface charge, creating electrostatic interactions between the biochar 
surface and phosphates, and create complexes that would effectively remove P from 
water. 
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3 PROPOSED SOLUTION 
Reducing the amount of phosphorus contained in agricultural runoff would limit the 
amount of nutrients entering surface water systems.  A reduction in phosphorus where the 
nutrient is the limiting factor in harmful algal blooms would reduce the size and 
frequency of harmful algal blooms. Biochars are a promising material that can remove 
phosphorus from agricultural runoff. With their simplistic production process, 
inexpensive source material, and physical and chemical characteristic similarities to 
activated carbons, engineered biochars tailored to remove nutrients from solution could 
help to control harmful algal blooms. 
This study seeks to utilize waste materials commonly found in the area, and through 
minor modifications during the biochar production process, produce a biochar that is 
capable of effectively removing phosphorus from an aqueous solution and adsorbing it to 
the biochar.  A biochar that is highly effective as a phosphorus adsorbent has the potential 
for reapplication as a fertilizer to agricultural fields, limiting the amount of phosphorus 
lost to surface water runoff in agricultural fields and reducing phosphorus availability in 
surface waters contributing to harmful algal blooms.   Materials obtained do not represent 
an all-encompassing analysis of locally available materials, but provide an analysis of 
several biochar production methods with two locally available materials, corn-stalk 
residue and oak sawdust, obtained at minimal cost.  
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4 MATERIALS AND METHODS 
Three types of engineered biochars were produced from cornstalk residue and sawdust 
source materials.  The material was pyrolyzed after being pretreated with an acid rinse 
(SA and CA), loaded with a magnesium salt (SMgO and CMgO), or unmodified prior to 
pyrolysis (SP and CP). Biochars produced were tested and characterized for phosphate 
adsorption using batch reactor experiments. Materials that removed phosphates from 
solution were characterized using Langmuir and Freundlich isotherm models.  

 RAW MATERIALS 
4.1.1 Cornstalk residue 
Cornstalk residue was obtained from a local farm in Spencerville, Ohio.  The residue was 
comprised of components of corn that were not used for food or other purposes, including 
corn stalks, cobs, leaves, and other organic matter treated as waste in an agricultural field 
(Figure 4.1).  The material was broken down into smaller pieces, approximately ¼” to 1” 
in length with varying widths (Figure 4.2).  The cornstalk was not sieved prior to biochar 
production to simulate an agricultural setting in which material would be roughly broken 
down, pretreated, and processed in a large-scale pyrolysis reactor. 

 Figure 4.1: Sample of cornstalk residue, as received 
4.1.2 Oak sawdust 
Sawdust was provided from Ogonek Custom Hardwoods in Akron, Ohio.  The material 
primarily consists of chainsaw shavings obtained from a single Red Oak tree processed 
by the company.  The material is thin and fibrous, ranging in size from approximately ½” 
to 3” in length and 1/8” to ¼” wide (Figure 4.2).  The oak sawdust was not processed or 
sieved prior to biochar production for reasons similar to the cornstalk residue preparation.     
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Figure 4.2: Prepared sawdust (left) and cornstalk residue (right) before pyrolysis 

4.1.3 Biochar pre-treatment 
Sawdust and cornstalk residue had three conditions prior to biochar production.  Biochars 
produced were unmodified (pristine), acid-rinsed, and magnesium oxide-loaded sawdust 
and cornstalk biochars (SP and CP, SA and CA, and SMgO and CMgO, respectively 
(Table 4.1).  

Table 4.1: Abbreviations for engineered biochars  
 Pre-pyrolysis condition 

Source material Unmodified Acid rinsed Magnesium loaded 
Cornstalk residue CP CA SMgO 
Sawdust SP SA CMgO 

Unmodified biochars (SP and CP) were prepared by rinsing raw materials with reverse-
osmosis (RO) water for 90 seconds to remove particulate matter and physical surface 
contaminants on the materials.  After the RO water rinse, SP and CP were oven-dried 
overnight at 110°C, and stored for a period of up to 2 weeks in closed glass jars prior to 
pyrolysis. 
An acid rinse pretreatment was used to produce the acid-rinsed biochars (CA and SA). 
The acid rinse pretreatment was accomplished by placing 35.0 g of raw material into an 
acid bath solution prepared by diluting 100mL of 5.0 M HCl (Fisher) with 900mL of RO 
water.  The materials were placed in the acid bath solution for 60 minutes and manually 
agitated using a glass stir rod for 60 seconds every 10 minutes (Figure 4.3).  To stop acid 
interactions with the raw materials, material was rinsed with RO water after the acid 
treatment and oven-dried overnight at 110°C. SA and CA were stored for up to 3 weeks 
in covered glass jars prior to pyrolysis trials.  
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 Figure 4.3: Cornstalk acid rinse with manual agitation 
Magnesium oxide biochars (SMgO and CMgO) were prepared by loading a magnesium 
salt onto the surface of the raw material. The magnesium salt was loaded onto raw 
materials by placing 10.0g of each raw material into 200mL of an MgCl solution 
prepared by dissolving 80.0 g of Fischer MgCl2*6H2O salt in 200 mL of RO water. The 
raw material and solution mixture was mixed at 75 rpm with a SI-300R orbital shaker for 
a period of 2 hours (figure 4.4). The Mg-loaded raw materials were not rinsed with RO 
water to prevent the Mg loaded onto the surface of the materials from rinsing off.  Mg-
loaded sawdust and cornstalk residue was oven-dried overnight and stored in sealed glass 
jars for a period of 2 days prior to pyrolysis trials.  

 
Figure 4.4: Loading cornstalk residue with MgCl salt using SI-300R orbital shaker 
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 EXPERIMENTAL METHODS 
4.2.1 Pyrolysis trials 
Raw materials were pyrolyzed after pretreatment.  Pyrolysis was conducted in a 2” 
diameter steel reactor (Figure 4.5).  Material was placed into the reactor, and the reactor 
was flushed with nitrogen gas for 15 minutes at a flowrate of 2 L/min to remove oxygen 
contained within the reactor.  Nitrogen flow was continued, and the reactor was heated up 
in a Lindberg furnace to 500°C.  The maximum temperature was sustained for an 
additional 30 minutes after reaching the temperature for a total time active heating of 60 
minutes. After shutting off power to the oven, nitrogen flow was sustained for an 
additional 15 minutes to ensure any remaining heat-based reactions happened under low 
oxygen conditions.  Material was cooled to room temperature and ground up to fine 
particles (Figure 4.6) using a Coffeemate blade grinder.  Samples of prepared biochar 
were stored in opaque jars for future adsorption testing.  A detailed schematic of the 
pyrolysis apparatus setup can be found in the Appendices, Section 8.4.   

 
Figure 4.5: Steel reactor for pyrolysis trials 

 Figure 4.6a: Sawdust before pyrolysis, after pyrolysis, and after final production steps 
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 Figure 4.6b: Enlarged image of final biochar products.  
Acid-rinsed sawdust (left) and Acid-rinsed Cornstalk (right) 

4.2.2 Phosphorus adsorption and desorption 
4.2.2.1 Standards and evaluation methods 
A stock solution of 1g/L PO43- was prepared by dissolving 1.453g of  Fischer sodium 
phosphate monohydrate,  NaH2PO4*H2O in 1.0 L of RO water.  Appropriate dilutions, 
from 30 mg/L to 300 mg/L PO43- solution were prepared in RO water. 
Phosphate adsorption/desorption was evaluated in batch reactor experiments. For P-
sorption trials, 40mL of varying concentrations of PO43- solution was placed in 50mL 
Fisher Falcon tubes with varying masses of prepared biochar (Figure 4.7).  Reactions 
took place in a Big SHOT III hybridization oven (Figure 4.8) at a 30°C isotherm and a 
rotational speed of 60 spm. Samples were filtered through 0.20 μm filters to remove 
biochar from PO43- solutions and prevent interference with PO43- concentration 
measurements.   

 Figure 4.7: 50 mL Fisher Falcon tube, empty and with 40mL of 30 mg/L PO43- Solution and 0.1 g 
CMgO  
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 Figure 4.8: Big SHOT hybridization oven used for adsorption isotherm experiments 
Phosphate concentrations of solution were testing using a Hach DR/890 Colorimeter and 
Hach Method 8048 for Orthophosphate 0.2 to 2.50mg/L PO43-, concurrent with USEPA 
PhosVer 3 (Ascorbic Acid) Method (Hach).  To test all concentrations (0-300 ppm PO4), 
appropriate sample dilutions were required to be within the range of the Hach testing 
method, and back calculated to their actual concentration.  
4.2.2.2 RO controls 
A negative control test was conducted through testing the release of PO43- from biochars. 
Batch reactor tests of biochar-RO water were prepared in duplicate with 100 mg of 
biochar placed into 40 mL of RO water. PO43- concentration was measured after a period 
of 24 hours to determine amount of PO43- leaching into water from prepared biochars. 
Two PO43- concentration samples were taken for each batch reactor (See Experimental 
Matrix in Appendix Section 8.3).  
4.2.2.3 Phosphorus adsorption 
Initial time to reach equilibrium was determined using an approximate 30mg/L (ppm) 
PO43- solution and SP.  Batch-reactor experiments were run in triplicate with 5 mL of 
20g/L SP slurry placed into 40mL of 30mg/L PO43- solution. P-adsorption reaction trials 
took place in the hybridization oven for a period of 24 hours, 72 hours, and one week. 
Initial and final PO4 concentrations were measured, and results compared to determine if 
any significant change occurred from 24 hours to 72 hours and one week. From these 
trials, equilibrium time was determined and used for further testing.   
An initial screening test for phosphate adsorption capacity was conducted with 100mg of 
each biochar placed into 40 mL of 30 ppm PO43- solution.  Batch-reactors were run in 
triplicate for 24 hours, with initial and final PO43- concentrations measured. Two PO4 
samples were taken from each batch reactor to account for variability.  Initial and final 
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24-hour concentrations were used to create a normalized equilibrium graph, shown in the 
results section.   
SMgO and CMgO, materials that displayed high PO43- removal, were further evaluated, 
with ranges of 10 to 100 mg biochar placed into 30 to 300 ppm PO43- solution. Batch 
reactors were run in triplicate for a period of 24 hours, with initial and final PO43- 
concentrations measured. Two PO43- samples were taken from each batch reactor to 
account for variability.   

  ANALYTICAL METHODS 
The mass of biochar was measured throughout the production process. The percent yield 
of biochar from pyrolysis can be characterized by Equation 4-1.  
(Eq 4-1)  ݕ = ெ

ெ ∗ 100      Biochar yield 
   Where y= biochar product yield, % 
  Mi = initial mass of source material, g 
  M = final mass of pyrolyzed biochar, g 
The bulk density of raw materials and density of engineered biochars (Equation 4-2) of 
was calculated by measuring the mass of uncompacted material required to fill a specific 
volume in a graduated cylinder. 
(Eq 4-2)   ρ = 

        Bulk density 
   Where  ρ = density (bulk or apparent), g/L  
  m = mass of material, g  
  V = volume of uncompacted material, L 
Adsorption characteristics of the engineered biochars were calculated during the 30 mg/L 
phosphate adsorption screening test and throughout the magnesium oxide biochar 
adsorption tests. The removal efficiency (Eq 4-3) was only calculated for the 30 mg/L 
phosphate adsorption screening test. 
(Eq 4-3)  ݁ = 

 ∗ 100    Adsorption efficiency 
   Where e = PO43- removal efficiency of engineered biochars, % 
  Ci = initial PO43- concentration, mg/L 
  Ceq = final PO43- concentration, mg/L 
The adsorption capacity of biochars was found using Equation 4-4, and applied to both a 
Langmuir (Eq 4-5) and Freundlich (Eq 4-6) isotherm models to characterize the 
adsorption properties of magnesium oxide biochars. A linearized form of the Langmuir 
isotherm model (Eq 4-7) was fitted to a data plotted on a logarithmic CA (x-axis) to q (y-
axis) graph to determine the Langmuir adsorption parameters n and K. The linearized 
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Freundlich isotherm model (Eq 4-8) was curve-fitted to a Ceq (x-axis) vs Ceq /q (y-axis) 
graph to determine the bA and Qm Langmuir isotherm constants. 
(Eq 4-4)  ݍ = 

ெ ܥ) −    )   Adsorption capacityܥ
   Where  q = adsorption capacity, mg adsorbate / g adsorbent    
  V = volume of aqueous solution, mg/L 
  M = mass of adsorbent, g   
 
(Eq 4-5)  ݍ = ொಲ

ଵାಲ     Langmuir isotherm model 
   Where  Qm = max adsorbent phase concentration of adsorbate (mg adsorbate / g adsorbent) 
  bA = Langmuir adsorption constant (L/mg) 
 
(Eq 4-6)  ݍ =  ଵ/    Freundlich isotherm modelܥܭ
   Where  K = Freundlich adsorption capacity parameter  
  1/n = Freundlich adsorption intensity parameter 
 
(Eq 4-7)   

 = ଵ
ಲொಾ + 

ொಾ    Linearized Langmuir model 
 
(Eq 4-8)  ݈ݍ ݃ = ܭ݈݃ + ቀଵ

ቁ    Linearized Freundlich modelܥ݈݃
 
Sample calculations from data gathered in the experiment can be found in the 
Appendices, Section 8.4. 
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5 RESULTS AND DISCUSSION 
 PYROLYSIS YIELDS 

Source materials produced a solid biochar, synthesis gas (syngas) and an oily liquid 
known as bio-oil during slow pyrolysis. As shown in Figure 1, unmodified sawdust (SP) 
yielded 24.1% and cornstalk residue (CP) yielded a slightly higher 33.9 %, by mass, of 
solid biochar after pyrolysis of the source material. Acid-rinsed biochars displayed a 
slight increase in mass retention when compared to the unmodified biochars. The 
pyrolysis of acid-rinsed cornstalk residue (CA) yielded 32.6 % biochar; a decrease of 
1.3% compared to CP. Acid-rinsed sawdust (SA) yielded 27.8% biochar, a 3.6% increase. 
The magnesium-loaded biochars yielded much more solid compared to the source 
material, with magnesium-oxide cornstalk biochar (CMgO) yielding 71.6% and MgO-
sawdust biochar (SMgO) yielding 91.0 % of the source material used.  
Syngas and bio-oil production were observed qualitatively throughout the pyrolysis trials. 
The production of syngas was noted as a smoke with an odor not unlike the smoke 
produced during the combustion of similar raw materials. Syngas was produced 
approximately 10 minutes into heat application and ending 15 minutes after the heating 
portion of the pyrolysis trials. Bio-oil produced during pyrolysis built up in the exhaust 
tubes, restricting airflow several times throughout all of the trials. To account for bio-oil 
production, a larger diameter exhaust tube was used later in the experiment.  

 
Figure 5.1: Biochar yield by mass for different engineered biochars 

P = pristine (unmodified), A = acid-rinsed, MgO = magnesium oxide biochars 
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Typical slow-pyrolysis trials yield between 20-40% by mass of solid material for both 
wood-based biochars and corn stalk biochars (Guo and Bi 2015) (Table 2.2, in literature 
review). The experiment yielded results within those ranges for both acid-rinsed and as-
received materials (Figure 5.1), with corn-based biochar yielding 30-35% by mass and 
wood-based biochar with slightly lower yields between 24% and 28%. Any variation in 
the biochar yield could have resulted from non-ideal reactor conditions. The heating and 
cooling rates of the pyrolysis reaction were not controlled, and the reactor was not ideally 
packed or insulated, observed in a heat gradient ranging from 490°C to 530+ °C. In 
addition, the reactor may not have achieved truly low-oxygen conditions, as no 
instruments were available to monitor the gas composition after piping in nitrogen gas for 
15 minutes. Higher oxygen content in the reactor would create conditions closer to 
combustion, which would volatilize more material and produce more unfavorable 
materials such as ash or syngas. A higher degree of control on the pyrolysis reaction 
could potentially increase reliability of biochar production and the amount of solid 
material yielded per reactor run, as the temperature and heating gradient are two major 
factors that control biochar characteristics (See section 2.2.2, Biochar production). 
Both the SMgO and CMgO biochars had an uncharacteristically high production 
efficiency. This is in part due to the Mg salt pretreatment that loaded Mg onto the biochar 
prior to pyrolysis. The extra mass added from Magnesium being deposited onto the 
surface of the biochar was not accounted for. To improve the accuracy of solids yield 
from both MgO biochars, the mass of each material should be recorded post-treatment 
and pre-pyrolysis to determine the amount of mass lost from both Mg loaded onto the 
source material and the material itself. Even with obtaining a more accurate mass 
measurement for the magnesium salt pretreated biochars, the production efficiency is 
expected to be higher than the other biochars produced. Magnesium salt loaded onto the 
surface of raw materials would provide extra mass that would not volatilize during 
pyrolysis. The same amount of material may be converted to syngas and bio-oil, but the 
raw material has more initial mass. As a result, the yield of MgO biochars should be 
higher.  
Syngas and bio-oil production were observed qualitatively, as measuring their 
compositions or production efficiencies at specified pyrolysis conditions were outside of 
the scope of the study. Syngas is typically composed of H2, CO, O2, CH4, CO2 and C2+, 
with CO2, CO, and O2 gases being the dominant products. Bio-oil produced during the 
pyrolysis of similar raw materials was found to have a pH of 2.5-4 and an elemental 
composition of primarily C and O, with smaller fractions of H,N, and S (González et al. 
2003; Guo and Bi 2015; Tinwala et al. 2015). Under the slow pyrolysis conditions in this 
experiment, a syngas yield of 35% and bio-oil yield of 30% could be expected (Lehmann 
and Joseph 2009; Mohan et al. 2014; Qian et al. 2015; Sohi et al. 2010). To account for 
bio-oil production in future experiments, the recommendation is to install a collecting 
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system to collect and characterize the bio-oil produced. Syngas produced in the 
experiment could be captured and characterized by gas chromatography.  

 BIOCHAR CHARACTERIZATION 
Several properties of both the raw materials and engineered biochars were used to 
characterize the biochars. The bulk density of the biochars was calculated and compared 
to the bulk density of the source materials. The interactions between biochars and water 
were observed and recorded throughout the experiment. Several visual observations were 
made on the physical appearance of pyrolyzed materials that could be used to 
characterize the physical and chemical characteristics of the engineered biochars.  
5.2.1 Bulk Density  
All of the biochars produced in this experiment increased in density after pyrolysis and 
processing of pyrolyzed material, shown in figure 5.2.  The sawdust-based biochars 
increased from a raw material bulk density of 29.9 g/L to a biochar bulk density range of 
306.6 g/L (SP) to 473.2 g/L (SMgO), an increase between 1,000% -1,500%. In 
comparison, the cornstalk residue based biochars were less dense and had less of a 
change in density during pyrolysis. Cornstalk residue biochar showed an approximate 
200 % to 350% increase from raw material to biochar, with a raw material bulk density of 
81.4 g/L and biochar bulk density ranging from 188.3 g/L (CP) to 285.5 g/L (CMgO). 
As can be observed in figure 5.2, both cornstalk residue and sawdust based biochars 
displayed similar trends in biochar densities.  The unmodified biochar was the least dense 
of the pyrolyzed materials, followed by the acid-rinsed and MgO biochars, the densest. 
The apparent densities of the acid-rinsed biochars were 10-15% higher, and the apparent 
densities of the magnesium oxide biochars were 50-60% than the apparent densities of 
the unmodified biochars.  

 
Figure 5.2: Bulk density of prepared biochars vs raw materials 

P = pristine (unmodified), A = acid-rinsed, MgO = magnesium oxide biochars 
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In comparing the corn and sawdust-based biochars, the magnitude difference in density 
change is likely from volatile matter and the fixed carbon contained within the source 
materials. Tinwala et al. noted that sawdust biomass had a much higher percent of its 
mass comprised of volatile matter and fixed carbon in comparison to agricultural 
feedstocks, which could contain nutrients and a higher percent of inorganics due to 
fertilizer and soil amendments (Tinwala et al. 2015). As source materials are heated 
through pyrolysis, volatile matter would vaporize and be removed from solids.  A higher 
percentage of volatile matter would translate into more total mass lost, and a higher 
density gain from remaining carbonaceous content and inorganic materials. This 
correlates to a higher percentage of mass lost and apparent density increase of sawdust-
based biochars in comparison to cornstalk-based biochars.  
The bulk densities of CP and SP biochar were 188 and 307 g/L respectively (Figure 5.2). 
These values are close to expected values. Huang et al. found a bulk density of 
approximately 200 g/L for corncob-derived biochar, and 300 g/L for peanut hull and rice 
hull-derived biochar, which have similar volatile matter and fixed carbon content to 
sawdust-derived biochar (Huang et al. 2012; Tinwala et al. 2015).  The slightly higher 
densities of the acid-rinsed biochars in comparison to the unmodified biochars could be 
due to the acid’s interaction with surface characteristics of the raw material. Acids can 
potentially reach the micro and meso pores of the source material structure, exposing 
more volatiles contained in the raw materials to heat and resulting in a slight increase in 
density as more of the less-dense volatiles are converted to bio-oil or syngas.  
Both MgO biochars showed an approximate 50% increase in apparent densities from 
unmodified biochar. In previous research with similar pretreatment methods, nano-sized 
MgO crystalline structures were found through to be integrated into biochar structure 
(Yao 2013; Yao et al. 2011; Zhang et al. 2012). This formation of an MgO-biochar 
nanocomposite would increase the apparent density of a biochar as MgO complexes are 
formed onto the structure, increasing the mass per volume of the pyrolyzed material. The 
increase in apparent densities observed in these experiments suggest that the selected 
materials and pretreatment methods successfully created MgO- biochar nanocomposites. 
Using X-ray diffraction or electron microscopy is recommended to fully verify the 
formation of Mg-O nanocrystals on the biochar surface. 
5.2.2 Interactions with water 
The interactions between each engineered biochar and water were observed in preparing 
P-adsorption experiments. SMgO and CMgO displayed hydrophobic characteristics, 
repelling water (Figure 5.3a) and settling quickly in solution (Figure 5.4a). In 
comparison, CA, SA, CP, and SP were more hydrophilic. These biochars mixed well with 
water and stayed suspended in solution for much longer than the MgO biochars (Figure 
5.4b). An oily film with some surface tension (Figure 5.3b) was observed when the acid-
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rinsed and unmodified biochars were being used to prepare biochar slurries for adsorption 
experiments. 
Biochar surfaces produced from low temperature pyrolysis tend to be hydrophobic (Sohi 
et al. 2010). While the MgO biochars displayed this characteristic, the other engineered 
biochars did not. The suspension in an aqueous solution of the unmodified and acid-
rinsed biochars could be due to negatively charged carboxyl groups, and a general 
negative surface charge that is typical of biochars (Ahmad et al. 2014). The oily surface 
created from the unmodified and acid-rinsed biochars could come from lignin, found in 
many organic materials. In comparison to cellulose and hemicellulose found in organic 
matter, lignin has a lower reactivity (Khezami et al 2005). The lignin found in the raw 
materials used in these experiments may not decompose or only partially decompose, and 
allowing the lignin contained in the now pyrolyzed material to interact with water. A 
quicker settling and hydrophobic biochar would be more suited to adsorption processes, 
as the material could easily be separated out from an effluent stream. 

 
Figure 5.5a: Hydrophobic CMgO Figure 5.5b: Hydrophilic CA 

 

 
Figure 5.4: SA (left) and SMgO (right), 15 minutes of settling after agitation 
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5.2.3 Visual characteristics 
The sawdust-based biochar was noted to have a black color and had fine-grained 
particles, suggesting a high level of carbon content in the pyrolyzed material (Figure 
5.5a).  In comparison, the cornstalk-based biochars had more of a brown color and were 
coarser, with larger particle sizes (Figure 5.5b). The coloration of the corn-based biochars 
hints at a lower fixed carbon content and more inorganics and nutrients contained in the 
material. This is supported by the biochar yields of the different raw materials (Figure 
5.1), and explains why the apparent density did not change as much from raw cornstalk 
residue to biochar compared to raw sawdust to sawdust based biochar (Figure 5.2). 

 
Figure 5.5: Highlighting the color variation in CA (left) and SA (right)  

The MgO biochar was observed to have metallic crystals in the pyrolysis product. These 
metallic particles hint that more MgO was produced than that which could be integrated 
into the biochar structure, and some of the material did not react to form nanocrystal 
structures on the MgO biochar. These particulates may affect other results and 
characteristics of the engineered MgO biochars such as bulk density, P adsorption 
efficiencies, and surface characteristics.    

 PHOSPHATE ADSORPTION RESULTS 
5.3.1 Desorption of phosphates 
A negative control of RO interference was measured using Hach method 8048, ascorbic 
acid to determine the amount of background PO43- expected from RO water. An average 
PO43- concentration of 0.0475 mg/L was measured and determined to be negligible 
compared to the range of PO43- (30-300 ppm) used during phosphate adsorption 
experiments. The RO interference is displayed as error bars in the biochar desorption 
testing (Figure 5.5a).  
Before testing the PO43- adsorption characteristics of engineered biochars, a negative 
control test of biochar desorption of PO43- into reverse osmosis (RO) water was 
conducted (Figures 5.6a and 5.6b).  MgO and acid-treated biochars of both source 
materials released small amounts of  PO43- into RO water (Figure 5.6a), which are below 
the limits of the testing equipment (0.2 mg/L PO43-). Shown in figures 5.6a and b, the 
unmodified sawdust also released minimal amounts of PO43-. The CP biochar released 7.2 
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g/L PO43- into RO water, 50-100 times more than the release measured in all of the other 
biochars.  

 
Fig. 5.6a: PO43- release in RO water after 24h with RO interference error bars 

Note: SP = unmodified sawdust, SA = acid-rinsed sawdust, SMgO = magnesium loaded sawdust 
CP = unmodified cornstalk, CA = acid-rinsed cornstalk, CMgO = magnesium loaded cornstalk  

 
Fig. 5.6b: PO43- release in RO water after 24 h, enlarged 

Note: SP = unmodified sawdust, SA = acid-rinsed sawdust, SMgO = magnesium loaded sawdust 
CP = unmodified cornstalk, CA = acid-rinsed cornstalk, CMgO = magnesium loaded cornstalk  

None of the engineered biochars in this study, except for CP, are expected to release 
phosphates into the environment without adsorbing any contaminants or nutrients. 
Unmodified biochars should not be used as a PO43- adsorbent, as they may desorb more 
nutrients into agricultural runoff than they adsorb. While a release of PO43- was expected 
in the CP biochar due to rendering many of the nutrients in the raw material more 
bioavailable and open to exposure, the decrease to a negligible PO43- release with the acid 
pretreatment was not expected. This decrease in PO43- desorption is likely due to the acid 
removing nutrients and contaminants contained on the surface and within some of the 
pore structures of the raw material prior to pyrolysis. To determine the effect both 
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pretreatment methods (acid rinsed and MgO-loading) have on the structure, surface 
chemistry, and bioavailability of nutrients within the biochar, further analysis should be 
conducted.  
5.3.2 Phosphate adsorption tests  
The unmodified (CP and SP) biochars showed no adsorption capacity for PO43- at 30 
mg/L. Both materials released phosphates into solution, adding an additional 7.2 % or 
22.4 % of phosphates to the 30 ppm solution (Table 5.1, Figure 5.7). The acid-rinsed 
biochars shifted towards positive adsorption characteristics, with the SA biochar adding 
2.3% more PO43- compared to the 7.2% release of SP, and the CA biochar adsorbed 
13.5% of PO43- in the 30 ppm PO43- solution, compared to the 22.4 % increase from CP. 

Table 5.1: Removal efficiencies and q values at 30 ppm PO43-  
 
 
 

 
 
 
 
 
 
 

 
Figure 5.7: Removal efficiencies of biochars at 30 ppm PO43- 

Note: SP = unmodified sawdust, SA = acid-rinsed sawdust, SMgO = magnesium loaded sawdust 
CP = unmodified cornstalk, CA = acid-rinsed cornstalk, CMgO = magnesium loaded cornstalk  
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Shown in Table 5.1 and Figure 5.7, both MgO biochars showed ~99% removal at 30 ppm 
PO43- . SMgO showed slightly higher adsorption capacities (q) than the CMgO, with 12.6 
and 12.5 mg PO43- / g biochar respectively.  Both MgO engineered biochars showed 
increased q values as the ratio of adsorbate to adsorbent increased, with the q of SMgO 
becoming increasingly larger as the ratio increased (Figure 5.8). When varying the mass 
of biochar used in a 30 ppm PO43- solution from 0.1g to 0.01 g, CMgO displayed an 
adsorption capacity range of 12.5-39.7 mg PO43- / g biochar and SMgO had a range of 
12.6-56.9 mg PO43- / g biochar.  

 
Figure 5.8: 30 mg/L PO43- adsorption capacity with variable mass SMgO and CMgO 

SMgO = magnesium loaded sawdust biochar, CMgO = magnesium loaded cornstalk residue biochar 
SMgO displayed a higher adsorption capacity than CMgO with most of the 
concentrations tested in this experiment (Figure 5.9). At lower concentrations (30-150 
ppm PO43-), SMgO had a higher q, ranging from 12.6-101.7 mg PO43- / g biochar, 
compared to the q of CMgO, ranging from 12.5-60.6 mg PO43- / g biochar. Using 300 
ppm PO43- and 0.05 g of biochar, the CMgO displayed a much higher q with a maximum 
value of 249.6 mg PO43- / g biochar compared to SMgO’s maximum q of 174 mg PO43-/g 
biochar.  
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Figure 5.9: Ce vs qe of CMgO and SMgO 

SMgO = magnesium loaded sawdust biochar, CMgO = magnesium loaded cornstalk residue biochar 
As shown in figures 5.10a and 5.10b, The MgO biochars were characterized using 
linearized Freundlich and the associative Langmuir isotherm models. For Freundlich 
constants determined from a linear curve fit to a logCe vs logq plot (Fig. 5.10a), the 
sawdust based MgO biochar had an n value of 2.94, k value of 23.22, and an R2 value of 
0.94. The CMgO had an n value of 2.41, k value of 16.13, and an R2 value of 0.44.  
The associative Langmuir isotherm model (Figure 5.10b) showed slightly higher 
correlations between data points and the linear curve fit of a Ce vs Ce/Qe plot. The linear 
curve fitted to results showed R2 values of 0.98 for SMgO and 0.63 for CMgO. The 
SMgO linear curve fit showed a Qm value of 119.05 and bA of 0.11. The CMgO linear 
curve fit results were a Qm value of 70.42 and bA of 0.15. A summary of both isotherm 
models can be found in Table 5.2. Equations 4-4 through 4-8 in section 4.3 of materials 
and methods section of this thesis detail the isotherm models and constants used.  
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Figure 5.10a: Linearized Freundlich isotherm model of SMgO and CMgO  

 
Figure 5.10b: Linearized Associative Langmuir isotherm model of SMgO and CMgO  

SMgO = magnesium loaded sawdust biochar, CMgO = magnesium loaded cornstalk residue biochar 
Table 5.2: Isotherm model constants1 

  Langmuir Freundlich 
Biochar Qm bA R2 n k R2 
SMgO2 119.05 0.11 0.98 2.94 23.22 0.94 
CMgO2 70.42 0.15 0.63 2.41 16.13 0.44 

Notes:  1- For derivation of isotherm linear models and constants, see section 4.3, 
analytical methods, in materials and methods section 
2- SMgO = magnesium loaded sawdust biochar, CMgO = magnesium loaded 
cornstalk residue biochar 
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 ADSORPTION MECHANISMS AND BIOCHAR CHARACTERISTICS 
5.4.1 Surface area and porosity 
Much like activated carbons, biochars typically have a much higher surface area and pore 
volume than their source material, which make them superior adsorbents to their raw 
materials(Ahmad et al. 2014; Anawar et al. 2015; Huang et al. 2012; Lehmann and 
Joseph 2009). Sun et al (2015) found that adding acids to activate biochar s generally 
decreased their surface area (Table 5.3) and total pore volume. The stronger acids either 
collapsed or blocked a portion of the micropores, which resulted in a decrease in surface 
area, total pore volume, and average pore width. However, the acid treatment method 
greatly increased the adsorption capacities of methyl blue, an organic contaminant.  As 
the acid used in this experiment is of comparable strength, similar changes could have 
occurred. 
Highlighted in Figure 5.6 and Table 5.1, the adsorption characteristics of the acid-rinsed 
biochars changed slightly, which suggests a change in the surface structure of the acid-
rinsed biochars. Since surface area and porosity are not major mechanisms for the 
adsorption of inorganic contaminants such as phosphates, little change in adsorption 
capacity was expected. Complexation is possibly the major adsorption mechanism, which 
is discussed in section 5.4.2 on the following page.  SA was measured to release a small 
amount of PO43- into solution, while CA showed slight adsorption capabilities. This 
adsorption capacity was unexpected as the unmodified corn-based biochar released much 
higher amounts of PO43- in comparison to the unmodified sawdust-based biochar. The 
acid rinse pretreatment method may have increased or decreased the physical surface 
characteristics of CA and SA, but may have removed surface nutrients that would 
otherwise be released into solution.  
Using the CO2 adsorption method and transmission electron microscopy (TEM) image 
analysis, MgO biochars were found to have a much higher surface area compared to all 
other biochars observed, and were dominated by micropore structures with an average 
pore width of 1.5nm or less (Table 5.3)  (Yao et al. 2013b; Zhang et al. 2012). This 
superior surface area and microporosity of MgO biochars nanocomposites suggests that 
the material would provide for an effective adsorbent in water and soils. The MgO 
biochar engineered in this experiment had similar production parameters with different 
source materials. As a result, the surface area, total pore volume, and pore structure 
should be similar, with some variations depending on the material used. To verify the 
pore structures of engineered biochars, methods such as TEM imagery are recommended. 
To determine the total surface area of the biochars in this experiment, the BET CO2 
adsorption method is recommended.  
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Table 5.3: Surface area and pore characteristics of previous biochar studies 
Raw 

Material 
Pretreatment 

Method 
Surface Area 

(m2/g) Analysis Method Pore Characteristics Source 
Peanut hull N/A 2.53 BET (N2 gas 

assumed)(1) 
Average pore width 31.38 
nm Huang et 

al 2012 Corncob N/A 3.32 BET (N2 gas 
assumed)(1) 

Average pore width 22.05 
nm 

Eucalyptus 
sawdust N/A 1.57 BET (N2 

adsorption) 
Average pore width 7.45 
nm Sun et al 

2015 Eucalyptus 
sawdust Acid 0.69-1.28 BET (N2 

adsorption) 
Average pore width 5.87-
14.34 nm(2) 

Pine wood MgO 18.9 BET (N2 
adsorption)(3) 

Dominated by micropores 
(<1.5 nm) Zhang et 

al, 2012 Peanut 
Shells MgO 2.8 BET (N2 

adsorption)(3) 
Dominated by micropores 
(<1.5 nm) 

Notes: (1) -BET method was stated, but the gas used was not included in the methods. N2 is assumed, as 
similar values are found in other studies 
(2) - Citric acid, the strongest acid in the study, was found to increase pore width. Acetic acid and 
tartaric acid both decreased avg. pore width 
(3) - N2 adsorption is not effective at determining total surface area when the surface structure of the 
biochar is dominated by micropores (<1.5nm). CO2 adsorption found a surface area of 432.6 m2/g and 
346.5 m2/g for pine wood and peanut shell-based biochars respectively 

5.4.2 Adsorption characteristics of MgO biochars 
The high adsorption capacity of the MgO biochars can be attributed to several factors. 
Rather than block micropores for adsorption sites, MgO nanocrystals enhance the 
adsorption capabilities of the engineered biochar. Surface area and pore volume analyses 
conducted in previous research showed that MgO- biochar display high surface areas 
dominated by micropores (Table 5.3), characteristics observed in effective activated 
carbons. Electrostatic interactions between the phosphate anion and Mg-O cation bring 
the nutrient close to the surface of the biochar. Yao et al (2013) documented a 
complexation reaction occurring on the biochar surface between the MgO and PO43- . 
Phosphate precipitated from solution and deposited onto the biochar, forming 
magnesium-phosphate complexes (MgHPO4 and Mg(H2PO4)2) on the surface. Similar 
conditions during the experiments are expected, but further analysis should be conducted 
on biochar - phosphate interactions with the engineered MgO biochars to verify this 
occurrence with the experimental setup in this thesis.  
The superior adsorption capacities of the sawdust-based MgO biochar at lower 
concentrations is likely in part due to the source material compositions. With a higher 
nutrient and mineral content, the surface of CMgO could interact with the inorganics 
already contained in the material (such as phosphates, nitrates, or clay minerals). MgO-
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nutrient interactions could block micropores with a larger chemical structure or block 
active adsorption sites that could be utilized in PO43- adsorption.  
SMgO displayed a high R2 value in both the Freundlich and Langmuir adsorption models 
(Figures 5.9a and 5.9b, Table 5.2), which hints that the sawdust-based biochar can be 
characterized by these typical isotherm adsorption models. The R2 value was higher in 
the Langmuir associative isotherm model, which suggests that physisorption through a 
linear monolayer adsorption is the major mechanism through which the SMgO biochar 
interacts with PO43- in water. To further verify this model, an extended range of adsorbate 
to adsorbent ratios should be tested. 
CMgO  biochar did not match either the associative Langmuir or Freundlich isotherm 
models particularly well (Figure 5.9a and 5.9b), showing R2 values of 0.44 and 0.63 
respectively (Table 5.2). Langmuir and Freundlich isotherms describe physisorption, so 
little correlation between these may suggest that chemisorption contributes to the 
adsorption characteristics of the cornstalk-based biochar. In addition, the composition of 
the biochar source material is expected to play a major role in the change in adsorption 
mechanisms, as cornstalk residue will typically have more inorganics (including 
nutrients) and organics within the raw material’s structure. These extra materials in the 
cornstalk residue structure may interact with the MgO nanocrystals formed on the biochar 
structure. Other models may provide a better fit for the CMgO, but more research is 
needed on the adsorption mechanisms and characteristics of the engineered biochar 
before any conclusions can be made.  

 PRACTICAL APPLICATIONS 
5.5.1 Biochar Production 
To scale up to production scale of biochars, a continuous-feed reactor such as the 
continuous multiple hearth kiln (Figure 5.11) would provide for a quick and efficient 
method of producing biochars. Typical kilns used for charcoal production are capable of 
producing 2.5 tons of charcoal/hour, and offer a superior control of reaction properties 
(Lehmann and Joseph 2009). The kiln below could be easily adapted to flow N2 or 
another inert gas to promote pyrolysis, and provide a heating gradient throughout the 
reactor to control the heating rate and final temperature of biochar production. A 
contaminant management system such as air stripping or gas adsorption would help 
mitigate the syngas produced during production. 
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Figure 5.11: Multiple hearth kiln 

Source: EPA (1995) 
Before the development of petroleum-based products, kilns were used to produce bio-oil 
for fuel (Lehmann and Joseph 2009).  If typical yields of bio-oil from the multiple-hearth 
kiln were condensed and collected into one place, the bio-oil produced from pyrolysis 
could be captured and used as fuel for the kiln, saving on external energy usage and 
removing a potential waste stream from biochar production.  
5.5.2 Potential biochar applications 
Although unmodified corn-based biochar would not be an efficient P adsorbent for 
nutrient runoff management, desorption of phosphates into RO water suggests that the 
engineered biochar has potential as a soil amendment to increase crop growth.  Various 
studies have shown that biochar soil amendments can significantly increase crop growth 
and fertility through various mechanisms.  (Atkinson et al. 2010; Biederman and Stanley 
Harpole 2013; Kookana et al. 2011; Krishnan and Haridas 2008; Qian et al. 2015; Sohi et 
al. 2010). The ease at which phosphates desorb from the CP biochar could additionally 
increase the soil fertility and reduce the overall need for fertilizer application, reducing 
the amount of nutrients contained in agricultural runoff. 
The high adsorption of MgO biochars indicates that these biochars would be an effective 
P adsorbent to control PO43- contained in agricultural runoff. To fully test the potential for 
PO43- removal, a mixture of typical agricultural runoff constituents should be used for 
future PO43- adsorption tests, as other inorganic or organic contaminants could interfere 
with P adsorption characteristics.  



P a g e  | 36 
 

 
 

In addition, PO43- -laden biochars with a high adsorption capacity have a P content 
(approximately 20% Phosphate with a q of 250 mg phosphate/g biochar) comparable to 
or higher than commercial agricultural fertilizers (Smart Fertilizer 2016). If an applicable 
desorption technique was developed for P-laden biochars, the MgO biochars engineered 
in this experiment could be efficient fertilizers or agricultural soil amendments. Previous 
research indicates that P-laden biochar acted as a slow-release fertilizer, releasing P into 
aqueous solution multiple times and mimicking a typical slow release nutrient source for 
plant uptake (Yao et al. 2013a).  Using P-laden biochars as a slow-release fertilizer would 
reduce the demand for commercial agricultural fertilizers to meet crop growth 
expectations, and reduce the total amount of phosphates contained in agricultural runoff.  
Amending agricultural soils with biochars has the potential for carbon sequestration. 
Although the production of biochars includes producing syngas, if approximately 40% of 
biochars are returned to soil, the greenhouse gas emissions of the production and usage of 
biochars is neutral, turning the carbon cycle renewable (Yang et al. 2016). Applying 
biochars would provide a permanent offset in CO2 emissions (Sohi et al. 2010), and allow 
carbon that would otherwise be released into the atmosphere to remain in soil. 
In addition to carbon sequestration, biochars could amend the pH of acidic soils. Huang 
et al. (2012) noted that most biochars are alkaline, even if their source material is acidic. 
This alkalinity comes from organic anion bases from nutrients, which are condensed 
during pyrolysis. The biochars produced from pyrolysis have a higher concentration of 
these bases, and thus a pH >7. As cornstalk is naturally exposed to more nutrients and is a 
known nutrient sink in agricultural fields, the pH is likely well above 7. Sawdust may 
contain less nutrients due to less exposure to fertilizer and other nutrients found in 
agricultural fields, but is still expected to be alkaline. Adding these biochars to acidic 
soils could amend the pH and allow for better conditions for plant growth. 
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6 CONCLUSION 
Engineered biochar s derived from sawdust and cornstalk residue have the potential for 
use as (a) an effective remediation tools for the removal of phosphates from agricultural 
runoff and (b) an agricultural soil amendment, acting as a fertilizer to increase crop 
growth. Unmodified cornstalk biochar released phosphates into solution, and could be 
used on its own as a soil amendment to increase crop growth. Engineered magnesium-
oxide biochar nanocomposites displayed high phosphate adsorption capacities, showing 
essentially complete removal at 30 mg/L phosphate concentration. Sawdust-based 
magnesium-oxide biochar displayed adsorption characteristics that correlated well with 
both Langmuir and Freundlich isotherm models, with Langmuir isotherm model showing 
slightly higher correlation, suggesting linear monolayer physiorption as the main 
mechanism for phosphate adsorption. However, cornstalk residue-based magnesium 
oxide biochar did not match either isotherm models studied particularly well. Other 
adsorption mechanisms are likely major contributors to the adsorption properties of the 
corn-based biochar. The source material chemical and physical compositions possibly 
play a major role in this deviation from typical physisorption isotherm models. 
Future research should include characterizing and verifying the physical and chemical 
properties discussed in previous sections, as the material characterization was limited in 
this experiment. These include the pH, surface area, porosity, surface charge, material 
composition, bio-oil and syngas production, magnesium oxide nanocrystalline structures, 
and complexation reactions forming magnesium-phosphate complexes on the biochar 
surface. Possible research directions could include the use of phosphorus-laden biochars 
as a slow-release fertilizer, column testing to determine the potential characteristics of a 
biochar filterbed, the use of an aggregate aqueous solution to mimic agricultural fertilizer 
and potential phosphate adsorption inhibitors, or the use of different raw materials or 
treatment methods in the biochar production process. 
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8 APPENDICES 
 DETAILED EXPERIMENTAL METHODS 

8.1.1 General materials used: 
 Eppendorf Research Adjustable ES-1000 100-1000-μL pipette, with plastic tips 
 Eppendorf Research Adjustable ES-100 10-100 μL pipette, with plastic tips 
 Fisherbrand Disposable Plastic Pipettes (2,5,10,25 mL) 
 Thermo Scientific Nunc Disposable Plastic Pipettes (2,5,10,25 mL) 
 Fisherbrand Low Form Weighing Dish, Fluted Aluminum, 42mL 
 Microflex, Miracle, or Perform Nirtile Powder-Free examination gloves 

8.1.2 Pre-pyrolysis preparation 
8.1.2.1 Materials Used: 

 Oak Sawdust (from Ogonek Custom Hardwoods) 
 Cornstalk Residue (from Spencerville, OH) 
 Fisher 5.0M HCl 
 Fisher MgCl2*6H2O Salt 
 SI-300R Orbital Shaker 

8.1.2.2 Procedure:  
Unmodified Biochar Preparation: 

1. Break down cornstalk residue into approximately ¼”-1” pieces. This is used in all 
cornstalk-based biochar production. 

2. Weigh appropriate amount of raw material (30.0g used in this study) 
3. Rinse broken-down cornstalk residue and sawdust (separately) for 90 seconds 

with RO water.  
4. Oven-dry raw materials at 110°C overnight.  
5. Store materials in closed jars until pyrolysis. 

Acid-rinsed Biochar Preparation: 
1. Prepare 1L of a dilute HCl solution by mixing 100 mL of 5.0 M HCl with 900 mL 

of water.  
2. Place 35.0g of desired raw material into a graduated cylinder with the dilute acid 

solution. 
3. Leave raw material in the acid solution for 60 minutes. Agitate the acid bath 

manually with a glass stir-rod for 60 seconds every 10 minutes during the 
pretreatment. 
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4. Remove material from acid bath. Rinse thoroughly with RO water. 
5.  Oven-dry raw materials at 110°C overnight.  
6. Store materials in closed jars until pyrolysis. 

Magnesium-loaded Biochar: 
1. Dissolve 80.0g of MgCl2*6H2O into 200 mL of RO water. Mix until 

MgCl2*6H2O is completely dissolved.  
2. Place 10.0g of desired raw material in MgCl solution 
3. Mix MgCl-raw material mixture with the SI-300R orbital shaker at 75 rpm for 2 

hours. 
4. Remove raw material from solution. Do not rinse with RO water 
5. Oven-dry raw materials at 110°C overnight.  
6. Store materials in closed jars until pyrolysis.  

8.1.2.3 Data Gathered 
 Mass of raw material used for each biochar production method 

 
8.1.3 Biochar Production 
8.1.3.1 Materials Used: 

 Pyrolysis reactor (See Section 8.4) 
 Prepared biochar raw materials (from 8.1.1) 
 Unasco Nickel anti-seize tape (-268° to 1,300° C) 
 Lindberg Furnace 
 Industrial-grade nitrogen gas 
 Coffeemate blade grinder 

8.1.3.2 Procedure:  
Pyrolysis Trials: 
Note: See Section 8.4 for a schematic of the reactor used and the pyrolysis process.  

1. Record the initial mass of the biochar being used. 
2. Ensure sure pyrolysis reactor is set up in a well-ventilated area. 
3. Load prepared raw material into reactor. Ensure that the packing density allows 

for nitrogen airflow through the reactor to the exhaust tube. 
4. Wrap reactor threads in nickel anti-seize tape. 
5. Close reactor. Ensure nitrogen airflow can travel through the reactor and reach the 

exhaust port. 
6. Turn on exhaust fan for proper ventilation. 
7. Turn on nitrogen flow. Pipe nitrogen through reactor at 2 L/min for 15 minutes.  
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8. Set furnace to 500 °C. Turn on furnace. 
9. Once furnace has reached 500 °C (approximately 30 minutes), maintain heat 

application for 30 minutes. 
10. Turn off furnace, allow reactor to cool to room temperature 
11.  Continue nitrogen flow for 10-15 minutes after the furnace is turned off; until 

smoke is no longer visible from the exhaust pipe. 
Post-pyrolysis production: 

1. After reactor has cooled, remove biochar from reactor.  
2. Using a Coffeemate blade grinder, break down biochar materials. Use 2-3 10 

second pulses, allowing the biochar powder to settle after each pulse. Repeat until 
a powder-like consistency is achieved 

3. Weigh the final mass of biochar produced. 
4. Store biochar in a closed opaque jar for future trials. 

Apparent Density:  
1. After biochar has been produced, fill a graduated cylinder to target volume of 

biochar (3 mL used in this study). Do not compact the biochar or allow the 
biochar to settle. 

2. Record the mass of biochar required to reach the target volume.  
8.1.3.3 Data Gathered:  

 Initial mass of biochar, pre-pyrolysis 
 Mass of biochar after pyrolysis and production.  
 Known volume of a measured mass of biochar 

8.1.3.4 Results:  
 Biochar product yield (Eq. 4-1, section 4.3) 
 Bulk density of biochars (Eq. 4-2, section 4.3) 

 
8.1.4 Adsorption Trials 
8.1.4.1 Materials Used:  

 Fisher NaH2PO4*H2O 
 Fisher 50mL Centrifuge Tubes 
 Big SHOT III Hybridization Oven 
 BD 10mL Syringer, Luer-Lok Tip 
 Corning Incoporated 28mm Syringe membrane filter (0.20 μm) 
 Hach DR/890 Colorimeter 
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 Hach PhosVer 3 Phosphate Reagent, for 10mL samples 
8.1.4.2 Procedure:  

1. Prepare 1L of a 1g/L PO43- stock solution by dissolving 1.453g of NaH2PO4*H2O 
into 1.0L of RO water. Mix until fully dissolved. Prepare appropriate dilutions of 
PO43- from this stock solution. 

2. For acid-rinsed and unmodified biochars, prepare a 20g/L biochar slurry with 0.8g 
of biochar mixed with RO water to reach a total volume of 40 mL (use the bulk 
densities of biochars, calculated in Section 8.1.3). MgO biochars need to be 
weighed for each individual trial. 

3. Prepare appropriate PO43- dilution (or RO water for negative controls). Record 
concentration using the Hach Colorimeter and Hach Method 8048 for 
Orthophosphate. 

4. Prepare batch reactor by placing 40mL of phosphate solution (or RO water) and 
target mass of biochar (using biochar slurry or individually weighed) into 50ml 
centrifuge tubes. Prepare three batch reactors per experimental condition.  

5. Place all reactors in Big SHOT III hybridization oven. Run adsorption isotherms 
with the hybridization oven at 30°C and 60 rpm for 24 hours.  

6. Remove batch reactors from hybridization oven.  
7. Using a 10mL syringe and 0.20 μm, filter out biochar from the liquid solution. 
8. Measure final phosphate concentration using Hach Method 8048. Record two 

trials per sample (total of 6 data points per experimental condition). 
8.1.4.3 Data Gathered:  

 Mass of biochar  
 Volume of solution 
 Total volume (if slurry is used) 
 Initial PO43- concentration 
 Final  PO43- concentration 

8.1.4.4 Results:  
 q (Eq 4-4, section 4.3) 
 Langmuir isotherm model constants (Eq 4-5, section 4.3) 
 Freundlich isotherm model constants (Eq 4-6, section 4.3) 
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 EXPERIMENTAL MATRIX FOR ADSORPTION TRIALS1 
 

             Biochar  
            Tested2 
Liquid 
 Used3 

CP CA CMgO SP SA SMgO 

RO water [0.1g] [0.1g] [0.1g] [0.1g] [0.1g] [0.1g] 

30 mg/L 
Phosphate [0.1g] [0.1g] 

[0.01g] 
[0.02g] 

[0.05g] [0.1g] 
[0.1g] [0.1g] 

[0.01g] 
[0.02g] 

[0.05g] [0.1g] 
60 mg/L 

Phosphate NT4 NT [0.05g] NT NT [0.05g] 

150 mg/L 
Phosphate NT NT [0.05g] NT NT [0.05g] 

300 mg/L 
Phosphate NT NT [0.05g] NT NT [0.05g] 

 Note:  (1)- Batch experiments were run in triplicate, with two samples taken per batch reactor 
(2)- [Masses] listed in the matrix represent mass of biochar used during an adsorption trial. 

 (3)- 40 mL of liquid was used with designated mass of biochar 
 (4)- NT – not tested 
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 DATA AND SAMPLE CALCULATIONS 
8.3.1 Biochar Yield 

 
Biochar Mi (g)  M (g)  y (%) 

CP 30.04 10.18 33.9% 
CA 35 11.40 32.6% 

CMgO 10 7.16 71.6% 
SP 30 7.23 24.1% 
SA 35 9.74 27.8% 

SMgO 10 9.10 91.0% 
 

    
 
Sample Calculation:  
ݕ = ܯ

݅ܯ ∗ 100 

ݕ = 10.18݃
30.04݃ ∗ 100 

ݕ = 33.9% 
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8.3.2 Bulk Density 
 

Biochar V (mL) M (g) ρ (g/L) 
CP 3 0.57 188.33 
CA 3 0.63 209.27 

CMgO 4.5 1.28 285.53 
SP 3 0.92 306.60 
SA 3 1.15 384.47 

SMgO 3.5 1.66 473.71 
  

 
Sample Calculation:  
ρ = 

     
ρ = .ହ

ଷ × ଵ
ଵ     

ρ =     ܮ/݃ 188.33
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8.3.3 30 mg/L Phosphate Adsorption Screen   
 

Biochar 
[PO4]i 
(mg/L) 

[PO4] 24h 
(mg/L) m Sorbent qe, mg/g Ceq/Ci 

Removal 
Eff. 

SP 28.15 30.17 0.1 -1.10 1.07 -7.17% 
SA 28.15 28.80 0.1 -3.41 1.02 -2.32% 
SMgO 31.67 0.21 0.1 12.58 0.01 99.35% 
CP 28.15 34.45 0.1 -2.84 1.22 -22.39% 
CA 28.15 24.35 0.1 1.71 0.87 13.49% 
CMgO 31.67 0.36 0.1 12.52 0.01 98.88% 

  

 
Sample Calculation:  
݁ = ݅ܥ − ܥ

݅ܥ ∗ 100 

݁ = 28.15 ܮ݃݉ − ܮ/݃݉ 30.17
ܮ/݃݉ 28.15 ∗ 100 

݁ = −7.17% 
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8.3.4 Adsorption Trials 
8.3.4.1 Sawdust 

V (L) M (g)  
[PO4]i 
(mg/L) 

[PO4]  
(mg/L) qe, (mg/g) Ce/qe Log Ce Log qe 

0.04 0.1 31.7 0.20 12.59 0.02 -0.70 1.10 
0.04 0.1 31.7 0.20 12.59 0.02 -0.70 1.10 
0.04 0.1 31.7 0.20 12.59 0.02 -0.70 1.10 
0.04 0.1 31.7 0.22 12.58 0.02 -0.66 1.10 
0.04 0.1 31.7 0.24 12.57 0.02 -0.62 1.10 
0.04 0.1 31.7 0.18 12.59 0.01 -0.74 1.10 
0.04 0.05 32.7 0.74 25.59 0.03 -0.13 1.41 
0.04 0.05 32.7 1.72 24.81 0.07 0.24 1.39 
0.04 0.05 32.7 1.80 24.75 0.07 0.26 1.39 
0.04 0.05 32.7 0.78 25.56 0.03 -0.11 1.41 
0.04 0.05 32.7 1.80 24.75 0.07 0.26 1.39 
0.04 0.05 32.7 1.78 24.76 0.07 0.25 1.39 
0.04 0.02 32.7 11.45 42.57 0.27 1.06 1.63 
0.04 0.02 32.7 11.10 43.27 0.26 1.05 1.64 
0.04 0.02 32.7 10.75 43.97 0.24 1.03 1.64 
0.04 0.02 32.7 10.30 44.87 0.23 1.01 1.65 
0.04 0.02 32.7 10.00 45.47 0.22 1.00 1.66 
0.04 0.01 32.7 17.80 59.73 0.30 1.25 1.78 
0.04 0.01 32.7 18.70 56.13 0.33 1.27 1.75 
0.04 0.01 32.7 17.80 59.73 0.30 1.25 1.78 
0.04 0.01 32.7 19.40 53.33 0.36 1.29 1.73 
0.04 0.01 32.7 18.70 56.13 0.33 1.27 1.75 
0.04 0.01 32.7 18.00 58.93 0.31 1.26 1.77 
0.04 0.05 32.7 0.74 25.59 0.03 -0.13 1.41 
0.04 0.05 32.7 1.72 24.81 0.07 0.24 1.39 
0.04 0.05 32.7 1.80 24.75 0.07 0.26 1.39 
0.04 0.05 32.7 0.78 25.56 0.03 -0.11 1.41 
0.04 0.05 32.7 1.80 24.75 0.07 0.26 1.39 
0.04 0.05 32.7 1.78 24.76 0.07 0.25 1.39 
0.04 0.05 64.3 4.10 48.14 0.09 0.61 1.68 
0.04 0.05 64.3 3.76 48.41 0.08 0.58 1.68 
0.04 0.05 64.3 5.20 47.26 0.11 0.72 1.67 
0.04 0.05 64.3 3.56 48.57 0.07 0.55 1.69 
0.04 0.05 64.3 4.24 48.02 0.09 0.63 1.68 
0.04 0.05 64.3 5.12 47.32 0.11 0.71 1.68 
0.04 0.05 165.7 38.00 102.16 0.37 1.58 2.01 
0.04 0.05 165.7 38.20 102.00 0.37 1.58 2.01 
0.04 0.05 165.7 45.80 95.92 0.48 1.66 1.98 
0.04 0.05 165.7 38.00 102.16 0.37 1.58 2.01 
0.04 0.05 165.7 38.60 101.68 0.38 1.59 2.01 
0.04 0.05 165.7 47.80 94.32 0.51 1.68 1.97 
0.04 0.05 324.0 178.00 116.80 1.52 2.25 2.07 
0.04 0.05 324.0 188.00 108.80 1.73 2.27 2.04 
0.04 0.05 324.0 178.00 116.80 1.52 2.25 2.07 
0.04 0.05 324.0 174.00 120.00 1.45 2.24 2.08 
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8.3.4.2 Cornstalk 
V (L) M (g)  [PO4]i 

(mg/L) 
[PO4]  
(mg/L) qe, (mg/g) Ce/qe Log Ce Log qe 

0.04 0.1 31.7 0.46 12.48 0.04 -0.34 1.10 
0.04 0.1 31.7 0.34 12.53 0.03 -0.47 1.10 
0.04 0.1 31.7 0.33 12.53 0.03 -0.48 1.10 
0.04 0.1 31.7 0.34 12.53 0.03 -0.47 1.10 
0.04 0.1 31.7 0.31 12.54 0.02 -0.51 1.10 
0.04 0.05 32.7 4.84 22.31 0.22 0.68 1.35 
0.04 0.05 32.7 4.38 22.68 0.19 0.64 1.36 
0.04 0.05 32.7 4.44 22.63 0.20 0.65 1.35 
0.04 0.05 32.7 4.90 22.27 0.22 0.69 1.35 
0.04 0.05 32.7 4.48 22.60 0.20 0.65 1.35 
0.04 0.05 32.7 4.32 22.73 0.19 0.64 1.36 
0.04 0.02 32.7 17.80 29.87 0.60 1.25 1.48 
0.04 0.02 32.7 17.90 29.67 0.60 1.25 1.47 
0.04 0.02 32.7 16.70 32.07 0.52 1.22 1.51 
0.04 0.02 32.7 18.30 28.87 0.63 1.26 1.46 
0.04 0.02 32.7 17.40 30.67 0.57 1.24 1.49 
0.04 0.01 32.7 20.40 49.33 0.41 1.31 1.69 
0.04 0.01 32.7 24.50 32.93 0.74 1.39 1.52 
0.04 0.01 32.7 22.40 41.33 0.54 1.35 1.62 
0.04 0.01 32.7 23.30 37.73 0.62 1.37 1.58 
0.04 0.01 32.7 24.10 34.53 0.70 1.38 1.54 
0.04 0.01 32.7 22.10 42.53 0.52 1.34 1.63 
0.04 0.05 32.7 4.84 22.31 0.22 0.68 1.35 
0.04 0.05 32.7 4.38 22.68 0.19 0.64 1.36 
0.04 0.05 32.7 4.44 22.63 0.20 0.65 1.35 
0.04 0.05 32.7 4.90 22.27 0.22 0.69 1.35 
0.04 0.05 32.7 4.48 22.60 0.20 0.65 1.35 
0.04 0.05 32.7 4.32 22.73 0.19 0.64 1.36 
0.04 0.05 64.3 24.40 31.90 0.76 1.39 1.50 
0.04 0.05 64.3 25.80 30.78 0.84 1.41 1.49 
0.04 0.05 64.3 26.00 30.62 0.85 1.41 1.49 
0.04 0.05 64.3 24.20 32.06 0.75 1.38 1.51 
0.04 0.05 165.7 90.00 60.56 1.49 1.95 1.78 
0.04 0.05 165.7 99.00 53.36 1.86 2.00 1.73 
0.04 0.05 165.7 102.00 50.96 2.00 2.01 1.71 
0.04 0.05 165.7 105.00 48.56 2.16 2.02 1.69 
0.04 0.05 165.7 98.00 54.16 1.81 1.99 1.73 
0.04 0.05 324.0 40.00 227.20 0.18 1.60 2.36 
0.04 0.05 324.0 17.60 245.12 0.07 1.25 2.39 
0.04 0.05 324.0 12.00 249.60 0.05 1.08 2.40 
0.04 0.05 324.0 50.00 219.20 0.23 1.70 2.34 
0.04 0.05 324.0 56.00 214.40 0.26 1.75 2.33 
0.04 0.05 324.0 62.00 209.60 0.30 1.79 2.32 
0.04 0.05 324.0 52.00 217.60 0.24 1.72 2.34 
0.04 0.05 324.0 17.20 245.44 0.07 1.24 2.39 
0.04 0.05 324.0 10.90 250.48 0.04 1.04 2.40 
0.04 0.05 324.0 50.00 219.20 0.23 1.70 2.34 
0.04 0.05 324.0 42.00 225.60 0.19 1.62 2.35 
0.04 0.05 324.0 68.00 204.80 0.33 1.83 2.31 
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Sample Calculation 
ݍ = ܸ

ܯ ܥ) −  (ܥ

ݍ = ܮ݉ 40
ݎℎܽܿ݅ܤ 0.1݃ (31.7݉݃

ܮ ܲℎݏℎܽ݁ݐ − 0.46݉݃
ܮ ܲℎݏℎܽ݁ݐ) 

ݍ =  ݎℎܾܽܿ݅ ݃/݁ݐℎܽݏℎ ݃݉ 12.48
8.3.4.3 Freundlich Isotherm Model 

 
Freundlich equation: ݍ =    ଵ/ܥܭ
Linearized: ݈ݍ ݃ = ܭ݈݃ + ቀଵ

ቁ      ܥ݈݃
SMgO:  ݈ݍ ݃ = 1.37 + ݍ ݈݃ :  CMgOܥ݈݃(0.34) = 1.21 +    ܥ݈݃(0.42)
SMgO: ݍ = ݍ :.ଷସ   CMgOܥ23.22 =  .ସଵܥ16.13
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8.3.4.4 Langmuir Isotherm Model 

 
 

Langmuir equation: ݍ = ொಲ
ଵାಲ  

Linearized Langmuir: 
 = ଵ

ಲொಾ + 
ொಾ   

SMgO:  
 = 0.075 + 0.0084 ∗   CMgO:  ܥ

 = 0.092 + 0.014 ∗  ܥ
SMgO:   ݍ = ଵଵଽ.ହ∗.ଵଵ∗

ଵା.ଵଵ∗    CMgO:  ݍ = .ସଶ∗.ଵହ∗
ଵା.ଵହ∗   

 
 
 
 
 

y = 0.0084x + 0.0752R² = 0.9819
y = 0.0142x + 0.0918R² = 0.633
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 PYROLYSIS REACTOR  
8.4.1 Detailed pyrolysis reactor: 

 
 
 
Callouts:  

1. 2” I/D x12” standard-wall galvanized welded steel threaded pipe 
2. 2” to 1” galvanized iron threaded pipe fitting, reducing coupling 
3. Wire mesh, located inside reducing coupling 
4. 1” male to ¼” female zinc-plated iron hex bushing 
5. ¼” male to ¼” pipe size NPTF hex nipple, compact extreme-pressure steel 
6. ¼” I/D copper tubing, nitrogen inlet 
7. ¼” male to ½” pipe size NPTF hex nipple, compact extreme-pressure steel 
8. ½” I/D steel tubing, exhaust for reactor 

8.4.2 Pyrolysis reaction schematic 
 
 
 

   

Nitrogen flow 
(2L/min) 

1 2 2 3 4 4 5 6 7 8 

Raw Material 
Biochar 

Reactor in Lindberg 
Furnace; maintain 
500°C for 30 min 

Bio-oil and 
syngas exhaust 
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