Phase Space Analysis to Detect and Remove Rain from Video

Varun Santhaseelan
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Introduction

- Rain streaks in videos can be considered as dynamic noise that severely hampers the ability to extract information from a scene.
- Location of rain streaks in a frame is completely random.

Properties of Rain in Video

- Temporal property – Rain does not occlude all parts of the scene at all times.
- Chromatic property – Presence of a rain streak causes an increase in intensity at that particular pixel. The standard deviation of all the color components because of the presence of a rain streak will be similar.
- Directional property – Orientation of all the rain streaks in a frame will be in a single direction.

Algorithm

1. Calculate phase correlation and align frames
2. Difference image calculation for individual color components
3. Phase congruency calculation on difference images to find the candidate rain pixels
4. Replace the rain affected pixel with the pixel value from replacement pixel using alpha blending
5. For the candidate rain pixels, select the pixel value with lowest intensity from the neighboring frames as the replacement pixel value

Phase Congruency Features

- Phase information of image contains the finer details.
- Key idea of Phase Congruency – Fourier components of an image are maximal in phase where there is an edge or line.

Results

- Results illustrated in following figures.

Conclusion

- Rain has been removed satisfactorily in different videos captured using a moving camera and containing rain with varying intensities.
- Research is in progress to improve the algorithm to account for object motion in the scene.