4-18-2012

Design, Prototyping and Evaluation of an Elastically-Based Mechanical Starter for Automotive Engines

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/147
Design, Prototyping, and Evaluation of an Elastically-Based Mechanical Starter for Automotive Engines

Travis Schubert
Advisor: Andrew Murray, Ph.D.
Advisor: David Myszka, Ph.D.

Research Objective: Provide proof of concept and determine feasibility of a spring-powered engine starter.

Design and Prototyping

- Concept was interpreted into commonly available items
- Key components acquired first
- 3-D modeled in Autodesk Inventor around key components for sizing
- Remaining components purchased and assembled

Experimentation

- Video camera and strobe light used to collect data
- Data points fit to curve and differentiated both numerically and theoretically

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile Strength MPa (ksi)</th>
<th>Mass of Spring kg (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Drawn ASTM – A227</td>
<td>1309 (190)</td>
<td>16.0 (35.2)</td>
</tr>
<tr>
<td>Oil Tempered ASTM – A229</td>
<td>1344 (195)</td>
<td>15.2 (33.4)</td>
</tr>
<tr>
<td>Alloy Steel ASTM – A232</td>
<td>1516 (220)</td>
<td>11.9 (26.2)</td>
</tr>
<tr>
<td>Music Wire ASTM – A228</td>
<td>1654 (240)</td>
<td>10.0 (22.0)</td>
</tr>
</tbody>
</table>

Evaluation

- Energy and power determined
- Calculated mass of spring capable of providing torque to start engine
- Various steels explored

Conclusions

- Spring starter with equal or less weight than conventional electric starter found to be feasible
- Environmental risk decrease realized with reduction in size of battery

Recommendations

- Continue development of this concept
- Next step: incorporate spring starter on real engine