Bleed Hole Location, Sizing, and Configuration for Use in Hypersonic Inlets

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/161

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Project Objective

Objective: Design a bleed hole configuration for an axisymmetric Busemann inlet to start at a freestream Mach of 3.5 (2600 mph). The inlet is to include a geometric contraction ratio of 5.8 and a bleed plenum incorporated into the internal structure.

Testing: Bleed perforation configuration will be validated via Computational Fluid Dynamics (CFD) and wind tunnel experiments.

Importance of Bleed

- Hypersonic airbreathing vehicles are the future for cruise missiles, reconnaissance and space access
- Some limiting technology holding field back → unstarted inlets
- Bleed perforations are inexpensive and lightest solution to inlet starting (passive starting solution) in comparison to variable geometry and retractable doors

Research

- High contraction ratios at high speeds make inlet starting difficult; but are desired for optimal performance
- As flight Mach number increases maximum started contraction ratio will increase
- Introducing bleed holes effectively lowers the contraction ratio, allowing operation at lower Mach ranges

Design and Computational Results

Cart3D was used to produce all CFD results for this project. Cart3D is a high-fidelity inviscid tool developed by NASA Ames for automated CFD.

Preliminary Design

Preliminary design included holes sized by the Mölder Theory. Holes were spaced evenly along the length of the inlet. The bleed holes all had a diameter of 0.25”. The Mach contour shows a normal shock at the beginning of the plenum.

Next Step: Isolate inlet to determine cause for normal shock

Conclusions and Future Work

Conclusions:
- Mölder Theory with Kantrowitz spacing proved most efficient
- Offset and smaller diameter holes produced more uniform flow
- Angled holes were less efficient due to small thickness of wall

Future Work – Wind Tunnel Testing
- Test at Mach 3.5 in GoHypersonic Inc. (Dayton, OH) wind tunnel
- Total designed hole area ≈ 1% larger than theoretically determined hole size
- Excess holes will be plugged with dental paste to determine minim required hole area