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Pole Arrangements that Introduce Prismatic Joints into the Design
Space of Four and Five Position Rigid-Body Synthesis

David H. Myszka* and Andrew P. Murray

University of Dayton
Dayton, Ohio 45469

Abstract

The fixed pivots of a planar 4R linkage that can achieve four design positions are constrained
to a center-point curve. For five positions, a fixed pivot is limited to the intersection of
center-point curves. The curve is a circular cubic and plots can take one of five different
forms. The center-point curve can be generated with a compatibility linkage obtained from
an opposite pole quadrilateral of the four design positions. This paper identifies four and
five position pole configurations where the associated center-point curve(s) includes the line
at infinity. With a center-point line at infinity, a PR dyad with line of slide in any direction
can be synthesized to achieve the design positions. Further, four and five position pole
configurations are identified where the associated circle-point curve(s) includes the line at
infinity. With a circle-point that includes a line at infinity, an RP dyad originating anywhere

on a center-point curve can be synthesized to achieve the design positions. If the rigid-
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body guidance problem is approximate, small changes to the positions may result in the

introduction of a one-parameter family of dyads including a P joint.

Key words: rigid-body guidance, planar synthesis, center-point curves, compatibility

linkage

1. Introduction

A center-point curve is the locus of feasible fixed pivot locations for a planar 4R linkage
that will guide the coupler through four finitely separated positions. The theory, originally
formulated by Burmester [1], is described in numerous classic sources [2, 3, 4] and continues
to be an essential element of more recent machine theory textbooks [5, 6, 7]. To guide
a coupler through five positions, the fixed pivot is limited to the intersection of the five
center-point curves generated by taking all five combinations of four positions [8].

The equation of the center-point curve is

(Crx + Coy)(2® + y°) + Csa2” + Cuy® + Csy (1)

+06!L‘ + C7y + Cg = 0,

which is classified as a circular cubic. Keller [9] shows that the constants C; are not indepen-
dent and a function of the coordinates of an opposite pole quadrilateral. Thus, the opposite
pole quadrilateral dictates the shape of the center-point curve.

Sandor and Erdman [10] present an algebraic formulation for the center-point curve that



is similar in form to a closure equation for a four-bar linkage. Further, they introduce the
concept of a “compatibility linkage” as a conceptual linkage whose solution for various crank
orientations will generate points on the center-point curve. They show that the curve can be
parameterized based on the conceptual crank angle of the compatibility linkage. McCarthy
[11] shows that the opposite pole quadrilateral serves as a compatibility linkage and uses
its crank angle to parameterize the center-point curve. Murray and McCarthy [12] state
that there is a two dimensional set of quadrilaterals that can generate a given center-point
curve. Barker [13] classified four-bar mechanisms based on the permissible motions. Schaaf
and Lammers [14] applied Barker’s classifications to compatibility linkages to distinguish the
geometric form of the associated center-point curve.

Beyer [3] illustrates five possible geometric forms of the center-point curve. Chase et
al., [15] observe that the form of the center-point curve is dependent on the motion type
of the compatibility linkage. They show that a Grashof compatibility linkage (one where
at least one link can make a full revolution) generates a disjoined (bicursal) center-point
curve, as shown in Fig. la. A non-Grashof compatibility linkage (one where no link is able
to make a full revolution) generates a continuous (unicursal) center-point curve, as shown in
Fig. 1b. Schaaf and Lammers [14] expand the work of Chase et al., and note that a change
point linkage (transition between Grashof and non-Grashof) will generate three less common

forms. A double-point form is the transition between a unicursal and bicursal curve where



the branches are joined at a self-intersection, as shown in Fig. 1c. When the compatibility
linkage is a change-point and all sides are unequal, a double-point center-point curve will be
generated. The circle-degenerate form consists of a circle intersected by a straight line. The
hyperbolic-degenerate form is an equilateral hyperbola and a line at infinity. A change-point
linkage that has two equal pairs or all equal lengths will generate either a circular-degenerate
or a hyperbolic-degenerate center-point curve. Myszka and Murray [16] state that if the
configuration of the compatibility linkage is open, a hyperbolic-degenerate will result, as
shown in Fig. le. If the compatibility linkage is crossed, a circular-degenerate will result, as
shown in Fig. 1d.

The study presented in this paper identifies position and pole arrangements that intro-
duces a one parameter family of solutions to rigid-body guidance. Specifically, pole arrange-
ments for four and five position cases are identified that have a center-point at infinity,
allowing a PR dyad in any direction to achieve the design positions. Additionally, pole
arrangements for four and five position cases that have a circle-point at infinity allow an
RP dyad to be selected from a anywhere along a center-point curve to achieve the design
positions. With the aforementioned restrictions on four and five position guidance, adjusting
the positions such that the poles are configured into the special orientations will increase the

design space.



(b) Unicursal.

(¢) Double-point. (d) Circle-degenerate.

Figure 1: Five different center-point curve forms.



(e) Hyperbola-degenerate.

Figure 1: Five different center-point curve forms (con’t).

2. Four Position Cases

2.1. Compatibility Linkage and Center-point Curves
In dealing with precision point synthesis, the location of the *" design position in the
fixed frame is specified with a rotation angle ; and a translation vector d; = (d;;, di)T. A

rotation matrix is calculated as

cos #; —sin 6,

A; = : (2)

sin 6; cos 6;



Any displacement of a rigid body from position j to position k, and vice versa, can be

accomplished by a pure rotation about the displacement pole Pjx = Pyj, where

Pj = A;j[4; — Ag](dx — dj) + d; (3)

= Au[A; — A)(dy — d;) + dy..

Given four specified positions, six displacement poles exist (P12, P13, P14, P23, P24 and Pgy).

An opposite pole quadrilateral is defined by four poles, such that the poles along the di-
agonal do not share an index. For the four position case, three different opposite pole quadri-
laterals can be formed with vertices: P12P23P34P14, P12P24P34P13, and P13P23P34P14.
Note that as a distinctive shape is formed with one opposite pole quadrilateral, the others
will also form that same shape. Therefore, it is sufficient to focus on a single opposite pole
quadrilateral. To that end, the development presented in the remaining sections of the paper

will focus on the quadrilateral P12P23P34P14.

2.2. Opposite Pole Quadrilateral forming a Rhombus

Barker [13] identified a linkage having all sides of equal length as a class 6, change point
linkage. A shape having all sides with equal lengths and parallel opposite sides is a rhombus.
A compatibility linkage taking the form of a rhombus will result in a center-point curve that
appears as two intersecting lines, which is a limiting case of the hyperbolic-degenerate form.

As an example of the opposite-pole quadrilateral taking the form of a rhombus, four



Figure 2: Opposite pole quadrilateral forming a rhombus.

positions are given as d; = (0,0)7, 6, = —45°, dy = (1,1)T, 0, = 45°, d3 = (2,—1)T
03 = 120°, dy = (0.7753, —2.2247)T and 6, = —120.0°. The resulting poles and center-point
curve are shown in Fig. 2. The opposite pole quadrilateral forms a rhombus and the center-
point curve appears as two intersecting lines. Burmester [1] originally recognized that, as the
center-point curve degenerates into an equilateral hyperbola, the curve also contains the line
at infinity. Also shown in Fig. 2 as the dotted red curve is the circle-point curve associated

with the first position, which has a circle-degenerate form.



2.3. Opposite Pole Quadrilateral forming a Parallelogram

Barker [13] identified a linkage having two sets of opposite sides having the same length
as a class b, change point linkage. A shape having two pairs of opposite sides that are
parallel and the same length is a parallelogram. Burmester [1] originally recognized that
as the opposite pole quadrilateral is arranged as a parallelogram, the center-point curve
will degenerate into an equilateral hyperbola. As stated in the previous section, the curve
includes the line at infinity.

As an example of the opposite-pole quadrilateral taking the form of a parallelogram,
four positions are given as dy = (0,0)7, 0, = —45°, dp = (1,1)T, 0, = 45°, d3 = (2,—1)T
3 = 120°, dy = (0.1466, —0.9675)7, and 0, = —75°. The resulting poles and center-point
curve are shown in Fig. 3. As the opposite pole quadrilateral forms a parallelogram, the
center-point curve is an equilateral hyperbola. Also shown as the dotted curve is the circle-

point curve associated with the first position, which has a circle-degenerate form.

2.4. Opposite Pole Quadrilateral forming a Folded Rhombus or Crossed Parallelogram

A folded rhombus is a shape that has four equal length sides, but one diagonal has zero
length. A crossed parallelogram has a two sets of equal length sides which are not parallel.
A compatibility linkage taking the form of a folded rhombus or crossed parallelogram will
result in a circle-degenerate form of a center-point curve. As an example of the crossed
parallelogram, four positions are given as d; = (0,0)%, §; = —45°, dy = (1,1)T, 6, = 45°,

9



Figure 3: Opposite pole quadrilateral forming an open parallelogram.

ds = (2,-1)T 03 = 120°, dy = (—0.8395,1.3653)7, and 6, = —75°. The resulting poles,
opposite pole quadrilateral and center-point curve is shown in Fig. 4. Also shown as the
dotted curve is the circle-point curve associated with the first position, which takes the form
of equilateral hyperbola. As with the center-point curve, a hyperbolic-degenerate circle-point

curve includes the line at infinity.

10



Figure 4: Opposite pole quadrilateral forming a closed parallelogram.

3. Synthesizing PR Dyads

For a general case of four finitely separated positions, one unique prismatic-revolute chain
(PR dyad) can be synthesized. A general PR dyad is shown in Fig. 5. The location of the

moving pivot relative to the fixed frame is

Zi = AiZ + di- (4)

11



Figure 5: General PR dyad.

Alternatively, the location of the moving pivot relative to the fixed frame as constrained by

the slide is

cos ¢
Z; = G+ L, : (5)

sin ¢

where L; = |L;||. Combining Eqs. 4 and 5, for two positions ¢ and j, gives

cos ¢
(Aj — Az)Z + (dJ — dl) = Lij s (6)

sin ¢

12



where Lij = Lz - Lj.

For four finitely separated positions, three independent versions of Eq. 6 can be expressed

as ) ) .
— COos ¢ 0 0 Zz
[As — Aj] ds—ds
—sing 0 0 2y
0 —Cos @ 0 Lsy
[A4 - AQ] d4 - d2 =0 (7)
0 —sing 0 Loy
0 0 —cos ¢ Ly
[Ay — Ay dy —dy
0 0 —sin ¢ 1
L . \ Vs

A PR solution exists only if the determinant of the matrix in Eq.7 is zero. For a general
set of positions, a single value of ¢ (0 < ¢ < 7) is possible. The line of slide defined by
¢ will be perpendicular to the asymptote of the center-point curve. As the center-point
curve approaches infinity, the highest order terms in Eq. 1 dominate. The equation of the
asymptote is

Cll‘ + ng = 0, (8)

which has a slope

m=y/x=—C1/Cs. (9)

As the center-point curve appears as a hyperbola, as in the open parallelogram or rhom-

bus, the center-point curve exhibits two asymptotes and the circle at infinity. For this special

13



case where the center-point curve includes the line at infinity, the determinant of the matrix
in Eq. 7 is zero for any ¢. This confirms that any five of the six equations can be solved for z,
Ly, Log, L3y with an arbitrary ¢. The solution will be consistent with the unused equation.
Therefore, for these situations a PR dyad to achieve the four positions can be synthesized
with the line of slide in any direction. As an example, PR dyads are synthesized at arbitrary
47° and 152° to achieve the positions illustrated in Fig. 2, and are shown in Figs. 6a and 6a,
respectively. The two dyads are joined to form a double-slider linkage to achieve the four
target positions and is shown in in Figs. 6¢c. Although the center-point curve degeneracies
are thoroughly discussed in the literature, the authors are not aware of previous examples

detailing the arbitrary line of slide for the P in a PR chain.

4. Synthesizing RP Dyads

For a general case of four finitely separated positions, one unique revolute-prismatic chain
(RP dyad) can be synthesized. A general RP dyad is shown in Fig. 7. Similar to the PR
dyad, the location of the prismatic joint can be represented through alternative vector paths,

written relative to the moving reference frame M; as

. B B | —siny
A (G—dy) =z+; ) (10)

cos Y

14



(a) 47° slide direction

(¢) Double-slider mechanism to achieve the four

positions

Figure 6: A PR dyad can be oriented in any direction when the center-point curve is

hyperbola.
15



Figure 7: General RP dyad.

Writing Eq. 10 for two positions ¢ and j and subtracting gives

sin )

(AiT — AJT) G+ 1;; = (Adei - A;‘-Fdj) ) (11)
— cos Y

where [;; = |l; — [;|. For the general case of four finitely separated positions, three indepen-
dent versions of Eq. 11 can be expressed, which allows determination of six parameters: G,
l14, loa; l34, and ¢.

16



For four finitely separated positions, three independent versions of Eq. 11 can be expressed

as
— T (¢
, sin (0 0 0 G,
[As — As] (ATds — ATd,)
—cos 0 0 Gy
- 0 sin 0 [34
[Ay — A)) (ATd, — ATdy) =0. (12)
0 — cos Y 0 loy
- AI]T 0 0 sin (A{dl - A4Td4) l14
0 0 —cosv \ 1

An RP solution exists only if the determinant of the matrix in Eq.12 is zero. For a general
set of positions, as in the case of the PR dyad, a single value of ¢ (0 < ¢ < 7) is possible.
As the circle-point curve appears as a hyperbola, as in the crossed parallelogram or folded
rhombus, the circle-point curve exhibits two asymptotes and the line at infinity. For this
special case where the circle-point curve includes the line at infinity, the determinant of the
matrix in Eq. 12 is zero for any ¢. This confirms that any five of the six equations can be
solved for G, Ly4, Loy, L3y with an arbitrary ¢. The solution will be consistent with the
unused equation. The corresponding fixed pivot G will always lie along the circular portion
of the center-point curve. Therefore, an RP dyad to achieve the special case of four positions
can be synthesized for any point along the circular portion of the center-point curve. As

an example, two RP dyads are synthesized from arbitrary points on the center-point curve

17



(a) (b)

Figure 8: Two RP dyads are synthesized from arbitrary points on the center-point curve.

illustrated in Fig. 4, is shown in Fig. 8.

5. Five Position Cases

For five general design positions, a discrete number of locations (0, 2 or 4) are possible
for a fixed pivot of an RR dyad. The fixed pivot locations correspond with the intersection
of all five center-point curves generated by taking every four position combination. With
five positions, 10 poles exist (P12, P13, P14, P15, P23, Payg, Pas, P34, P35 and Pys). Three
center-point curves will intersect at a pole as the two positions that the define the pole are

used in the generation of the center-point curves.

18



Figure 9: Compatibility structure for five position synthesis.

A compatibility platform can be constructed analogous to the compatibility linkage from
P12, P14, P15, P23, P34 and P35 as shown in Fig. 9. As Murray and McCarthy [17] describe,
fixed pivot locations coincide with the displacement poles of the platform Ps3, P34 and P35,
for the different assembly configurations of a compatibility platform. One such solution point

is shown as S in Fig. 9.

5.1. Case 1: Movable Compatibility Platform

A noteworthy case for the five position guidance problem aligns the poles such that the

compatibility platform contains three equal length and parallel cranks. As in the general
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case, this compatibility platform can have different assembly configurations revealing fixed
pivots for an RR dyad. It is noteworthy in that because of the symmetry the structure is
able to move as a triple crank. The motion of the platform is an orbital translation where
each point on the platform traces a circle, and the displacement poles form a line at infinity.
Like the four position cases where the center-point curve includes a line at infinity, a PR
dyad can be synthesized to achieve the five positions with the line of slide in any arbitrary
direction.

As an example of a compatibility platform with motion, five positions are given as d; =
(0,00, 0, = —45°,dy = (1, 1)7, 0, = 45°,d3 = (2, —1)T 05 = 120°, dy = (1.4691, —2.6237)7,
04 = 200°, ds = (0.1040, —0.8033)7, and 05 = 290°. This movable compatibility platform
and an alternate assembly configuration are shown in Fig. 10a. An RR dyad, synthesized
from the displacement pole of the compatibility platform is shown in Fig. 10b. Two PR

dyads are synthesized at arbitrary directions of 57° and 162°, and shown in Fig. 10c.

5.2. Case 2: Alternate Configuration of the Movable Compatibility Platform

A second interesting case is revealed if a movable compatibility platform, as in Fig. 10b, is
placed in an alternate configuration. An alternate configuration is shown in gray in Fig. 10a.
As described earlier, fixed pivot locations for the five positions correspond to the pole of the
compatibility platform with another configuration. In this case, the other configuration is
able to move, and the displacement pole becomes a curve. Thus a center-point curve for five

20



Figure 10: Five positions with a compatibility structure that has motion.
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(c)

Figure 10: Five positions with a compatibility structure that has motion (con’t).

positions is obtained. However, the corresponding circle-point is at infinity. As with the four
position case with a circle-point at infinity, an RP dyad can be constructed from any point
on the center-point curve that achieves the five design positions.

Pole locations that place the compatibility platform of Fig. 10b into an alternate config-
uration are shown in Fig. 11a. Positions consistent with this set of poles are dy = (0,0)7,
6, = 0°, d2 = (0.9914,0.8692)", 6, = 82.5°, dg = (—3.2602,0.7422)T 63 = —195.0°,
dy = (1.6268,—1.3416)7, 0, = —72.5°, ds = (—3.2472, —1.7717)T, and 65 = —162.5°. The

center-point curve for these five positions is shown as blue in Fig. 11a. Two RP dyads are

22



synthesized from arbitrary points on the center-point curve, and shown in Fig. 11b and c.
The prescription for pole locations that generate the alternative compatibility platform
is shown in Fig 12. The three poles Pa3, P34, and P35 define a circle. An arbitrary distance
[ can be used from P,z to place P12 on the circle. Then, using the same length [, P14 and
P15 are placed on the circle in the same rotational direction as P15. With this arrangement
of poles, the design space for five positions includes an infinite number of RP dyads to solve

the five-position rigid-body guidance.

6. Example

A rigid guidance design task has the requirements shown in the left portion of Table 1.
The task positions, poles, and the five center-point curves are shown in Fig.13. The five
center-point curves all intersect at two points, shown as solid markers labeled G; and Gg in
Fig.13). These are the only two locations that a fixed pivot of an RR chain can be synthesized
to achieve the five positions. As the positions are shifted as indicated in the right portion
of Table 1, the poles become arranged into a Case 2 compatibility platform, which exhibits
a center-point curve. The shifted position arrangement along with the platform is shown in
Fig. 14.

The center of the center-point circle is a feasible fixed pivot for an RR dyad. Any arbitrary

point along the center-point circle can be selected as the fixed pivot of a RP dyad. Joining

23



(b)

Figure 11: Center-point curve for five design positions.
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(c)

Figure 11: Center-point curve for five design positions (con’t).

the two dyads, an RRPR linkage can be synthesized to achieve the five shifted positions is

shown in Fig. 15.

7. Conclusions

The study presented in this paper identifies four and five position pole configurations
where the associated center-point curve(s) includes the line at infinity. With a center-point
line at infinity, a PR dyad with line of slide in any direction can be synthesized to achieve

25



Figure 12: Pole locations that generate a center-point curve for five design positions.

Table 1: Target Positions for Example.

Target Positions Shifted Positions

1| 40° —=0.5 25| 41.8° —0.348 2.461

2| 30° 0.5 25| 29.9° 0.479  2.301

3] —-10° 15 15| =89° 1.706 1.766

4| —40° 2.8 25| —41.8° 2768 2.386

5| =75 5.5 25| —76.5° 5719 2.389
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Figure 13: Two fixed pivot locations correspond with the five target positions of Table 1.

the design positions. Further, four and five position pole configurations are identified where
the associated circle-point curve(s) includes the line at infinity. With a circle-point that
includes a line at infinity, an RP dyad originating anywhere on a center-point curve can
be synthesized to achieve the design positions. By adjusting the positions in four and five
position guidance problems such that the poles are configured into the special orientations,

the design space will significantly increase.

27



Figure 14: Shifted target positions to reorient the poles into a Case 2 compatibility platform.
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