
University of Dayton University of Dayton

eCommons eCommons

Computer Science Faculty Publications Department of Computer Science

2019

Reachability Analysis for Neural Feedback Systems Using Reachability Analysis for Neural Feedback Systems Using

Regressive Polynomial Rule Inference Regressive Polynomial Rule Inference

Souradeep Dutta

Xin Chen

Sriram Sankaranarayanan

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

 Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer Sciences

Commons

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/cps_fac_pub
https://ecommons.udayton.edu/cps
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages

Reachability Analysis for Neural Feedback Systems using
Regressive Polynomial Rule Inference

Souradeep Dutta
souradeep.dutta@colorado.edu
University of Colorado, Boulder

Boulder, Colorado

Xin Chen
xchen4@udayton.edu
University of Dayton

Dayton, Ohio

Sriram Sankaranarayanan
srirams@colorado.edu

University of Colorado, Boulder
Boulder, Colorado

ABSTRACT
We present an approach to construct reachable set overapproxi-
mations for continuous-time dynamical systems controlled using
neural network feedback systems. Feedforward deep neural net-
works are now widely used as a means for learning control laws
through techniques such as reinforcement learning and data-driven
predictive control. However, the learning algorithms for these net-
works do not guarantee correctness properties on the resulting
closed-loop systems. Our approach seeks to construct overapproxi-
mate reachable sets by integrating a Taylor model-based flowpipe
construction scheme for continuous differential equations with
an approach that replaces the neural network feedback law for
a small subset of inputs by a polynomial mapping. We generate
the polynomial mapping using regression from input-output sam-
ples. To ensure soundness, we rigorously quantify the gap between
the output of the network and that of the polynomial model. We
demonstrate the effectiveness of our approach over a suite of bench-
mark examples ranging from 2 to 17 state variables, comparing our
approach with alternative ideas based on range analysis.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Computer
systems organization → Embedded and cyber-physical sys-
tems; • Mathematics of computing → Interval arithmetic; Dif-
ferential equations;

KEYWORDS
reachability analysis, polynomial regression , neural network, hy-
brid system, flowpipe construction

ACM Reference Format:
Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachabil-
ity Analysis for Neural Feedback Systems using Regressive Polynomial Rule
Inference. In 22nd ACM International Conference on Hybrid Systems: Compu-
tation and Control (HSCC ’19), April 16–18, 2019, Montreal, QC, Canada. ACM,
New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/3302504.
3313351

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from Permissions@acm.org.
HSCC '19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6282-5/19/04…$15.00
https://doi.org/10.1145/3302504.3311807

1 INTRODUCTION
We present a reachability analysis approach for neural feedback
systems consisting of nonlinear ODEs with deep neural networks
as feedback. Given initial conditions and a range of possible time-
varying disturbances, our approach computes an overapproxima-
tion of the reachable sets over a finite time horizon. The overap-
proximation can be used to prove safety properties of the system
by excluding a given target set. Additionally, reachability proofs
are obtained by showing that the reachable set at some time instant
lies entirely inside a target set.

Neural feedback systems naturally arise in safety critical systems
wherein neural networks are synthesized through approaches such
as reinforcement learning [42], learning from demonstrations [25]
or translating a large lookup table-based controller into a more
compact form using neural networks [23]. However, verification of
these closed-loop systems remains a key challenge. A rapidly grow-
ing body of recent work focuses on verifying pre-/post-conditions
for neural networks in isolation [16, 17, 26, 29, 36]. The applications
to such verification are numerous, ranging from reasoning about
“robustness” of classifiers used in perception systems to synthesiz-
ing adversarial inputs to improve training [5, 21, 35]. Our work
considers neural networks in conjunction with ODE models.

First we note that a straightforward combination of existing
tools: a flowpipe construction for ODEs [10] and a range analysis
for neural networks [16] suffers from large overestimation errors
due to the wrapping effect [33]. This motivates the overall approach
of this paper using rule generation. Rather than abstract the out-
put, our approach abstracts the function computed by the network
using a local polynomial approximation along with rigorous error
bounds. Formally, given a set of inputs, we compute the output as
a polynomial over the input using regression. Next, we compute
an error interval that conservatively accounts for the difference
between the network function and the polynomial approximation.
This yields a “local” Taylor model (polynomial + interval) overap-
proximation of the neural network that is integrated into a Taylor
model-based flowpipe construction tool Flow* [7, 10]. The result is
significantly less prone to runaway overestimation errors due to
the wrapping effect, as shown by our evaluation.

The key technical challenge therefore lies in computing the error
between a neural network and a polynomial approximation over
a given range of inputs. This problem can be solved as a mixed
integer nonlinear optimization (MINLP), but is significantly larger
than what current MINLP solvers can handle, even for tiny neural
networks. Therefore, we use an indirect approach. First, we produce
a piecewise linearization (PWL) of the polynomial using branch-
and-bound search with interval analysis. The error between the
polynomial and the PWL approximation is guaranteed to lie within

157

https://www.acm.org/publications/policies/artifact-review-badging/#replicated
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3302504.3311807&domain=pdf&date_stamp=2019-04-16

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

a given tolerance bound. Next, we compute the maximum and
minimum difference between the neural network model and the
PWL approximation using a combination of mixed integer linear
programming (MILP) solver and local gradient-descent search along
the lines of a recent work by Dutta et al [16]. The final error interval
is obtained by adding the error between the original polynomial
and the PWL model plus the error between the PWL model and
the neural network.

Our experimental evaluation considers eleven neural networks
that were created to stabilize a series of benchmark dynamical sys-
tems with neural network sizes ranging from 50-500 neurons and
up to 6 hidden layers. The learning was carried out directly inside
the Tensorflow framework [1]. Our approach is shown to be signif-
icantly faster and more accurate even with larger initial sets and
a longer time horizon, when compared to a direct combination of
Flow* and Sherlock tools. Thus, abstracting the function computed
by the NN as opposed to just the set of outputs is necessary to avoid
the wrapping effect in reachable set computation.

1.1 Related Work
The problem of constructing overapproximations to the reach sets
of continuous and hybrid systems has received significant attention
in the past two decades. Representative approaches for linear hybrid
systems include tools such as SpaceEx [18] and HyLAA [4], while
tools such as Flow* [10], CORA [2], HyCreate [3], C2E2 [14] and
dReach [27] can tackle nonlinear systems. The model considered in
this work consists of ODEs in feedback with neural networks that
represent piecewise linear functions. Although such a model can be
translated into a hybrid automaton, an upfront translation is often
prohibitively expensive. An on-the-fly translation can alleviate this
cost but in turn suffers from the cost of dealing with numerous mode
transitions at each reachability computation step. The approach
in this paper alleviates this complexity by locally approximating
the feedback as a polynomial function of the inputs to the network
with an appropriate error term. This avoids the need to explicitly
consider mode changes in our framework.

Providing formal guarantees to neural network based feedback
systems has grown in importance, since neural networks are be-
coming increasingly common in safety-critical applications. Given
pre-condition assertions describing the inputs of a network, the
verification problem asks whether the resulting outputs satisfy
post-condition assertions. Numerous approaches have been pro-
posed for neural network verification, starting from the abstraction-
refinement approach of Pulina et al. [35, 36]. Therein, the nonlinear
activations are systematically abstracted using an abstract relation,
resulting in a linear arithmetic SMT formula. Spurious counterex-
amples are then used to refine the abstractions. The rapid improve-
ments to the state-of-the-art linear arithmetic solvers such as Z3,
CVC4 and MathSAT have made this approach increasingly feasible.
Katz et al. present a solver specialized for neural networks with
ReLU units by building on the standard simplex algorithm using
special rules for handling nonlinear constraints involving the ReLU
activation function [26]. Their approach was used to verify a neural
network encoding advisories for an aircraft collision avoidance sys-
tem. Recent work by Ehlers augments a branch-and-bound solver

using facts inferred from a convexification of the activation func-
tions [17]. Their approach can also handle max-pooling layers that
are commonly used in applications in image classification. Other
approaches to verification focus on the synthesis of adversarial
counterexamples [5, 21] and simulation-based approaches [44].

However, the approaches mentioned above consider the network
in isolaton which is important for a wide variety of applications. Our
focus in this paper requires an approach that can propagate sets of
states across networks. Lomuscio et al. evaluate an mixed integer
linear program (MILP) encoding to analyze networks learned using
reinforcement learning [29]. Earlier work by Dutta et al. extend
the MILP approach by using local search to compute ranges over
the output of a network given a polyhedron over its inputs [15].
This approach has led to a prototype tool Sherlock that produces
ranges on the outputs given ranges on the inputs of the network.
In principle, a combination of Sherlock with a reachability analysis
tool (such as Flow*) can solve the problem at hand. However, this
approach produces highly inaccurate results on all the benchmarks
used in our evaluation. This happens because of the well known
wrapping effect in reachability analysis. Another recent approach
involves the work of Xiang et al. that computes the output ranges
as a union of convex polytopes [45]. This approach does not use
SMT or MILP solvers unlike other approaches and thus can lead to
highly accurate estimates of the output range. However, judging
from preliminary evaluation reported, the cost of manipulating
polyhedra is quite expensive, and thus, the approach is currently
restricted to smaller networks when compared to SMT/MILP-based
approaches [15, 17, 26, 29, 36]. Another recent work by Xiang et
al. considers the combination of neural networks in feedback with
piecewise linear dynamical systems [46] using the techniques pre-
sented in [45]. Their approach is based on abstracting the outputs
and currently lacks a detailed evaluation. Additionally, our approach
handles nonlinear systems wherein the wrapping effect is often
more pronounced, and thus, a bigger challenge.

Another approach to safety verification involves the use of dis-
cretized plant models and neural network controllers studied by
Scheibler et al. [41] and recently by Dutta et al. [15]. These ap-
proaches use Runge-Kutta solvers to discretize the ODEs and check
input/output assertions on the unrolling. Our approach here handles
continuous-time dynamics specified by ODEs without requiring
a discretization. To overcome the wrapping effect, our approach
considers the idea of using sound rule generation. Rule generation
refers to the inference of input-output relations that hold for a given
set of inputs to the network [19]. The primary objective of rule gen-
eration has been to explicitly write down the “knowledge” encoded
in the network in a transparent, possibly human understandable
form [31]. Thus, most approaches to rule generation focus on gener-
ating a combination of Boolean implications, and are approximate
in nature [43]. In this paper, we focus on rules that are of the form
y ∈ p(x) + I wherein p is a polynomial over the inputs x to the
network, y is the output of the network. Rule generation has had a
long history of research in the AI community. Our approach here
differs significantly in (a) the form of the rules inferred and (b) the
need for sound rule generation with an error interval I . The use of
regression in rule generation has been explored by Saito et al [38].
One key difference is that our approach includes a rigorous error

158

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

x

✓

0

u

x3

x1 x2

x4

t

t t

t
(b)(a)

�1

1

0

20 400 60 80 100

20 400 60 80 100

20 400 60 80 100

20 400 60 80 100

�1

1

0

�1

1

0

2

�1

1

0

Figure 1: A diagram of the plant model for Tora

(a) (b)

Figure 2: (a) an output range approach fails after 2 control
steps due to large overestimation error, (b) polynomial rule
generation approach can successfully overapproximate N =
20 control steps and beyond.

analysis. Also, the rules generated include a logical combination of
Boolean conditions over nominal variables and polynomials.

1.2 Motivating Example
We consider the control of an electromechanical benchmark system
called Tora with a rotating mass actuated by a DC motor [22], as
shown in Fig. 1. The dynamics are described by a nonlinear ODE
with 4 state variables and a single control input u:

Ûx1 = x2, Ûx2 = −x1 + 0.1 sin(x3), Ûx3 = x4, Ûx4 = u .

Our goal is to stabilize this system to an equilibrium state xi = 0
for i = 1, . . . , 4. For this purpose, we have synthesized a neural
network feedback controller consisting of 3 hidden layers with a
total of 300 neurons. The controller is periodic (time triggered) with
a period τc = 1 units.

For the initial condition x1 ∈ [0.6, 0.61], x2 ∈ [−0.7,−0.69],
x3 ∈ [−0.4,−0.39] and x4 ∈ [0.59, 0.6], we seek to construct over
approximate reach sets over a time horizon [0, 20]. We consider
two approaches for the same: (a) output range analysis approach
uses a combination of the tool Flow* to integrate the ODE for
each control time period followed by an application of the tool
Sherlock to compute the output range of the neural network.
Figure 1(b) shows the resulting reachable set after N = 2 control
steps. Unfortunately, the overapproximation error grows beyond
tolerance making further flowpipe construction steps impossible. (b)
the polynomial rule generation approach presented in this paper is
shown in Figure 1(c). This approach is able to continue beyond N =
20 control steps, yielding a tight over approximation. Comparing
the computed reach sets against numerical simulations shows that
our approach is able to find a more accurate reachable set estimate.

2 PRELIMINARIES
In the paper, we use R to denote the set of all reals. A vector of
variables x1, . . . ,xn is written as x. Its jth entry is written xj .

Definition 2.1 (Continuous Dynamical System). A continuous dy-
namical system (CDS) is defined by an ODE Ûx = f (x, u,w), wherein
x ∈ Rn is a vector of the state variables, u ∈ U are the control in-
puts, and w ∈ W are the time-varying disturbances. The sets U
andW denote the bounded sets for control inputs and disturbances
respectively.

The function f is assumed to be Lipschitz continuous in x, and
continuous in u and w. Thus, the solution to the ODE exists for
some time horizon [0,Tmax) and is unique for given control inputs
and measurable disturbances.

The evolution under a CDS is a continuous function φf , also
known as the forward flowmap of the ODE. Given an initial state
x(0) = x0, fixed control inputs u : [0, t] 7→ U and disturbances
w : [0, t] 7→ W , the state at some time t ≥ 0 is given by x(t) :
φf (x0, t , u,w). Given an initial state set X0, we call a state xt reach-
able iff there exists some x0 ∈ X0, t ≥ 0, functions u : [0, t] 7→ U ,
and w : [0, t] 7→W , such that the state reached at time t equals xt ,
i.e, φf (x0, t , u,w) = xt .

Definition 2.2 (Reachability Problem). The reachability problem
for CDS has inputs (a) CDS defined by function f (x, u,w), (b) a
Lipschitz continuous feedback law u = д(x), wherein д : Rn → U ,
(c) disturbance setW , (d) an initial set X0, (e) a target set Xf and (f)
time horizon [0,T]. We ask if there exists a time trajectory of the
closed-loop system starting from X0, with disturbance signal inW
that reaches the target set Xf within time [0,T].

Solving reachability problems plays a key role in the safety verifi-
cation of dynamical systems such that an unsafe state set is defined
as a target set. However, the reachability problem on nonlinear
continuous dynamics is undecidable [20]. Therefore, a common
approach is to construct an overapproximation of the exact reach-
able set that does not intersect the unsafe set. This is supported by
a variety of tools and techniques, discussed earlier in Section 1.1.
Each approach is driven by a representation of sets of reachable
states. The approach in this paper is built on top of Taylor models,
since the dependencies of the state variables of a dynamical system
can be accurately approximated by the polynomial part of a Taylor
model. It further allows us to bring the dependencies from the con-
tinuous component to the discrete component in the analysis of a
neural feedback system.
Taylor Model. An interval is the set of all reals between two
bounds a, b such that a,b ∈ R and a ≤ b. A vector interval is
of the form [a, b] for a, b ∈ Rn represents a Cartesian product∏n

j=1[aj , bj]. Such an interval forms a box or a hyperrectangle
in Rn . Interval arithmetic extends standard arithmetic operators
from floating point numbers to intervals [32]. Taylor models are a
higher-order extension of interval arithmetic.

Definition 2.3. A Taylor Model (TM) is denoted by a pair (p, I)
wherein p is a polynomial over x, whose domain D is an interval,
and I is an interval.

Given a function f (x) with x ∈ D, a TM (p, I) overapproximates
f if and only if f (z) ∈ p(z) + I for all z ∈ D. We also call (p, I) a

159

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

TM of f . TMs can also be organized as vectors to overapproximate
vector-valued functions.

TMs are closed under most basic arithmetic operations and the
overapproximation property is conserved. For example, assume
that (pf , If) and (pд , Iд) are TMs of the functions f and д respec-
tively over the domain D, then the summation (pf , If) + (pд , Iд) =
(pf + pд , If + Iд) is a TM of f + д. Other operations include multi-
plication, application of any smooth function, differentiation and
integration. TM arithmetic was originally developed by Berz and
Makino (see [6, 30]), and a powerful integration technique which
is called TM integration [7, 9] is implemented based on it. The
extension of the method also allows ODEs to have time-varying
disturbances [8].

Given an ODE Ûx = f (x, u,w) with a feedback law u(t) = д(x, t),
a time horizon [0,T] and integration time step τI , we may use
a TM integrator such as Flow* to compute a series of N TMs
(p0, I0), . . . , (pN−1, IN−1) wherein N = ⌈ TτI ⌉, and (pj , Ij) is a TM
that overapproximates the reachable sets of the closed loop system
over the time interval [jτI , (j + 1)τI]. The tool may also adaptively
vary the integration time step τI and the degree of the polynomials
pj using heuristics that are described elsewhere [8].
Neural Network. Next, we define feedforward neural networks
(FNNs). Structurally, a FNN N consists of k > 0 hidden layers,
wherein we assume that each layer has the same number of neurons
N > 0. We use Ni j to denote the jth neuron of the ith layer for
j ∈ {1, . . . ,N } and i ∈ {1, . . . ,k}.

Definition 2.4 (Neural Network). A k layer, n input , neural net-
work with N neurons per hidden layer is described by matrices:
(W0, b0), . . ., (Wk−1, bk−1), (Wk , bk), wherein (a)W0, b0 are N × n
and N × 1 matrices denoting the weights connecting the inputs to
the first hidden layer, (b)Wi , bi for i ∈ [1,k − 1] connect layer i to
layer i + 1 and (c)Wk , bk connect the last layer k to the output.

Each neuron is defined using its activation function σ linking its
input value to the output value. Although this can be any nonlinear
function, we focus on neural networks with “ReLU” activation
functionσ (z) : max(z, 0). However, the techniques presented in this
paper extend to other types of activation units through piecewise
linearization [16].

For a neural network N , as described above, the function FN :
Rn → R computed by the neural network is given by the composi-
tion FN := Fk ◦ · · · ◦ F0 wherein Fi (z) : σ (Wi z + bi) is the function
computed by the ith hidden layer, F0 the function linking the inputs
to the first layer, and Fk linking the last layer to the output. Note
that the function defined by a neural network with ReLU activation
functions is continuous and piecewise differentiable.
Range Analysis for Neural Networks. The problem of range
analysis for a neural network starts from a network N and a set
x ∈ D of inputs to the network. The goal is to find an interval [ℓ,u]
such that (∀ x ∈ I) FN (x) ∈ [ℓ,u].

Often, we are interested in ensuring that the interval is tight.
Finding such an interval over the outputs is performed by solving
two optimization problems:

max(min) y s.t x ∈ I ∧ y = FN (x) ,

ODE
Ûx = f (x, u,w)

FNN
u(jτc) = FN (x(jτc))

Sample
Hold

x(t)

x(jτc)
u(jτc)

w(t)

clk

Figure 3: Block diagram of a neural feedback control system.

However, the problem of solving optimization problems with
neural network constraints is highly nonlinear. Using the proper-
ties of ReLU function, it can be encoded as a large mixed integer
linear program (MILP) [16, 29]. Recent work by Dutta et al, aug-
ments the MILP approach by using local gradient information to
improve the current solution. While the approach uses an MILP
solver to perform global search, it is only asked to provide a small
ϵ improvement to an existing local solution, when it is stuck in a
local minima. The combined approach is reported to be faster and
more effective for many of the networks tested, and implemented
inside the tool Sherlock [16].

3 PROBLEM STATEMENT AND APPROACH
We present the problem statement and a high level overview of our
approach.

3.1 Problem Statement
Definition 3.1 (Neural Feedback System). A Neural Feedback Sys-

tem S is a tuple ⟨X ,U ,W , f (x, u,w),N ,τc ⟩ wherein Ûx = f (x, u,w)
defines the dynamics of the continuous component, X ⊆ Rn is the
state space of the system, U ⊆ Rm is the control input range, and
W ⊆ Rl is the range of the time-varying disturbances. Finally, τc is
the time period of the controller, i.e., the control stepsize.

Figure 3 shows a block diagram representation of a NFS. The
feedback N is a FNN with input x ∈ X and yields an output u ∈
U . The neural network is invoked at time instants t = jτc for
j ∈ N, with the output of the network held constant over times
t ∈ [jτc , (j + 1)τc). The network is assumed to compute its output
instantaneously whenever its inputs change.

Given a bounded time horizon [0,T], initial state x0 and a dis-
turbance w : [0,T] 7→ W , trajectory x(t) and control signal u(t)
for t ∈ [0,T] are defined as follows. For each time interval t ∈
[jτc , (j + 1)τc] such that j = 0, 1, . . . , Tτc − 1, we have that x(t) =
φf (x(jτc), t − jτc , u(t),w(t)) and u(t) = FN (x(jτc)).

It is obvious that the reachability problem is undecidable on
NFSs, since it is already undecidable on CDS. Thus we want to
compute an accurate overapproximation for the reachable set of a
NFS in order to prove its safety.

3.2 Our Approach
Our approach exploits the local continuity properties of the feed-
back function FN (x). Rather than consider the given NFS as a hybrid
automaton, we will consider it as a continuous feedback system and
locally approximate the feedback FN by a polynomial of a given
degree, while carefully accounting for the error.

160

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Given an initial set X0 and a reachability computation task for N
control steps, spanning a time horizonT = Nτc . Our approach uses
an integration step τI =

τc
M , wherein M flowpipes are constructed

for each control step or time period. Therefore, we successively
produce a sequence of TM flowpipes of a fixed order k > 0:

R1,1, . . . ,R1,M︸ ︷︷ ︸
Ctrl. Step # 1

, · · · RN ,1, . . . ,RN ,M︸ ︷︷ ︸
Ctrl. Step # N

.

such that for each j = 1, . . . ,N and i = 1, . . . ,M , Rj,i is an overap-
proximation of the reachable set in the time interval of [(j − 1)τc +
(i − 1)τI , (j − 1)τc + iτI]. More intuitively, the reachable set in each
control step is overapproximated by M TM flowpipes.

For the jth control step such that j = 1, . . . ,N , our algorithm
performs the following steps.

(1) Compute the orderk TM overapproximationX j for the reach-
able set at time t = (j − 1)τc .

(2) We compute a polynomial rule qj (x) as well as an error in-
terval Jj which are valid for any input x ∈ X j of the FNN
controller, i.e., (∀x ∈ X j).(FN (x) ∈ qj (x)+ Jj)wherein FN de-
notes the input/output mapping of the FNN. We call this step
rule generation, and discuss this in the subsequent sections.

(3) Compute the control input uj = qj (X j) + Jj for the current
control step by TM arithmetic with the order k .

(4) Update the continuous dynamics to Ûx = f (x, uj ,w), and
perform TM integration with the stepsize τI : τc

M to com-
pute the order k TM flowpipes Rj,1, . . . ,Rj,M for the current
control step. Then the new flowpipes are appended to the
resulting list.

By doing so, the dependencies among the state variables in the
system evolution can be transferred between the continuous and
discrete components, so that the overall overestimation in reacha-
bility computation can be greatly reduced. In the next section, we
will describe the rule generation step in detail.
Remark. A more direct approach could be constructing a hybrid
automatonA on the fly for the executions of the given NFS S, and
then perform the safety verification on A to prove the safety of S.
However, such a method requires to introduce a discrete mode to
A each time a linear region in the FNN is visited in a computation
path, and the total number of linear regions is exponential in the
number of neurons in the FNN. As we will show in Section 7 that,
in each test, the number of our piecewise linear sections is much
smaller than the number of linear regions of the FNN controller.
Such an approach would also lead to intersections of flowpipes with
hyperplanes and a loss in precision as a result. Our approach here
avoids direct intersections between TMs and guards.

4 POLYNOMIAL RULE GENERATION
In this section, we will describe the polynomial rule generation
problem and a rigorous rule generation approach. LetN be a neural
network with n inputs written as x ∈ Rn and a single output y ∈ R.
Let D be a given domain of the inputs x. The purpose of the rule
generation is to keep the dependencies of the variables under the
FNN input/output mapping as much as possible.

Definition 4.1 (Polynomial Rule Generation Problem). The inputs
to the polynomial rule generation problem include (a) neural network

Figure 4: Polynomial Rule plus Interval: The red curve
shows the actual behavior of the Neural Network Controller,
around the point x0. The black curve shows the polynomial
obtained by regression, and the blue curves show the upper
and lower bound polynomials after adding the interval error
I to the polynomial p

N , (b) input domain D and (c) desired order of the TM k . The output
is a TM (p, I), known in this context as a polynomial rule for the
network, such that (∀ x ∈ D) FN (x) ∈ p(x) + I , i.e., p(x) + I is an
overapproximation of FN (x) w.r.t. x ∈ D.

Our overall approach to polynomial rule generation has two
main steps:
(a) We use polynomial regression over sample input/output pairs
(xi ,yi)Ki=1 obtained by sampling the domain D and computing yi =
FN (xi) for each sample. The result of the polynomial regression is
the polynomial p.
(b) We estimate an interval I that subsumes the range of the error
e(x) : FN (x) − p(x), that is, to ensure the overapproximation prop-
erty. We would refer the reader to Fig 4 as an illustration of this
approach.

4.1 Polynomial Regression
The first step in our rule generation approach is to compute a
polynomial p(x) through regression. To do so, we generate samples
from the domain D. Let x1, . . . , xK ∈ D denote the samples thus
obtained. The outputs yi : FN (xi) are computed by evaluating the
neural network over the obtained samples.

Next, given the desired order k , let Nk denote all vectors α ∈ Nn
of size n over natural numbers, such that

∑n
i=1 αi ≤ k . We write

xα as a shortcut for the monomial
∏n

i=1 xαii . A generic polynomial
template of order upto k is written as p(x; c) :

∑
α ∈Nk

cα xα .
The goal of least squares regression is to find values of the coef-

ficients c such that the sum of square of the error for each sample
xi is minimized:

min
c

K∑
j=1
(yi − p(xi ; c))2 .

This can be solved readily as a linear Ordinary Least Squares (OLS)
problem by constructing a matrix M whose rows range from i =
1, . . . ,K wherein the ith row represents the sample xi . The columns
of M range over the polynomials xα for monomials α ∈ Nk . Once
M is constructed, we solve the least squares problem Mc ≃ y using
off-the-shelf approaches available in most linear algebra packages.

161

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

However, in many instances, OLS approaches to polynomial
regression yield large coefficients c that make the error computation
quite expensive. To control the size of the coefficients, we adopt
two popular ideas: (a) We use ridge regression, wherein we add the
norm of c as a penalty function to the objective.

min
c

K∑
j=1
(yi − p(xi ; c))2 + γ cT c .

Here γ is a constant that weights the penalty term with respect to
the regression error. (b) Rather than construct an order k model
in “one shot”, we start by first fitting an order 1 (linear model)
p1(x). Next, we fit a purely quadratic model to the residual function
yi − p1(xi). The result is an order two model p1 + p2. We proceed
thus until the maximum residual is within tolerance. This approach
provides yet another way to bias the search towards lower degree
polynomials.

4.2 Error Analysis
Next, we will focus on computing the error between a polynomial
p(x) and the given network N over a domain D. Let e(x) : FN (x) −
p(x) denote the difference between the neural network output and
the polynomial p(x). Therefore, we seek to compute an interval
I : [a,b] such that a ≤ minx∈D e(x) ≤ maxx∈D e(x) ≤ b.
Furthermore, we wish our bounds to be “tight”, in practice.

However, finding the optimum value of e(x) over D is a large
mixed-integer nonlinear optimization problem, which is quite ex-
pensive to solve in practice. Since our goal is to overapproximate
the range of e , we proceed in two steps: (a) We approximate p using
piecewise linear models (PWL). (b) We compute the error between
the PWL models and the neural network.

Each of the steps is described in the subsequent sections.

5 FROM POLYNOMIALS TO PIECEWISE
LINEAR MODELS

In this section, we describe the approximation of a given polynomial
p(x) over a domain D by piecewise linear (PWL) models.

Definition 5.1 (PWL Function). A PWL function f : D 7→ R over
a domain D is a set of linear pieces (Rj , cj ,dj)Mj=1 such that (a) each
Rj ⊆ D is a hyper-rectangle; (b) the union of rectangles cover D:⋃n

j=1 Rj = D; and (c) Ri ∩Rj = ∅ for i , j . The function f is defined
as f (x) : cjx + dj whenever x ∈ Rj .

Although we have defined a PWL function over non-intersecting
examples: our representation of these functions used subsequently
will perform a topological closure to allow rectangles to share
common faces. The result is technically a PWL relation rather than
a function. Given a domain D, a polynomial p(x) and a desired
tolerance ϵ > 0, we seek to find a PWL approximation f : D 7→ R
s.t. (∀ x ∈ D) | f (x) − p(x)| ≤ ϵ .

Algorithm 1 shows the overall scheme to systematically con-
struct a PWL model for a polynomial with a given error tolerance
[−ϵ, ϵ]. The parameter δ > 0 is used primarily by the FindMax-
Interval procedure. The algorithm maintains a set S , which is a
union of mutually disjoint hyperrectangles. At each iteration of the
loop (line 4), it finds a point xs ∈ S and constructs a linearization
fs around xs (line 7). It then uses the method FindMaxInterval to

Algorithm 1: Algorithm to systematically compute PWL
model by selecting a new sample and building a maximal in-
terval around it, given polynomial p(x) over domain D with
tolerance ϵ and minimum box width δ .

1: procedure FindPWLApproximation(p, D, ϵ , δ)
2: S ← D; ▷ S ⊆ D represents the region that remains to be

examined.
3: L ← ∅; ▷ L represents the set of linear pieces thus far.
4: while S , ∅ do
5: xs ← getSample(S); ▷ Get a current sample from S .
6: (cs ,ds) ← (∇ p(xs), p(xs));
7: fs : λx. cTs (x − xs) + ds ; ▷ Compute linearization

around xs
8: Bs ← FindMaxInterval(xs ,p − fs , ϵ,δ , S); ▷

Compute interval Bs .
9: ▷ FindMaxInterval guarantees that
(∀ x ∈ Bs) |p(x) − fs (x)| ≤ ϵ .

10: S ← S \ Bs ;
11: L ← L ∪ {(Bs , cs , ds − cTs xs)}; ▷ Add to PWL model.
12: return L. ▷ return the final PWL model

estimate an interval Bs around xs such that the |p(x) − fs (x)| ≤ ϵ
for all x ∈ Bs . The region Bs is removed from further consideration
(line 10) and a linear piece is added to the PWL model L.

The algorithm relies on the routine FindMaxInterval. This
routine is shown in Algorithm 2. This routine attempts to find a
box B around the current sample x such that the range of a given
polynomial f inside B lies within [−ϵ, ϵ]. The approach first builds a
box of width δ around the given sample x (line 2). If the range of the
function inside this box fails to be within the given tolerance, we
conclude that the minimum box width is too large with respect to
the desired tolerance ϵ and terminate with failure (line 5). Otherwise,
the approach attempts a series of box expansions. The symbol≪i
is used to denote a reduction of the current lower bound for xi by
δ (line 11), whereas ≫i denotes an increase to the current upper
bound by δ (line 12). If the change to the interval requested by
current symbol succeeds in that the new interval continues to lie
within S (line 14) and the range of f continues to lie within [−ϵ, ϵ]
(lines 16, 17), we update the current box (line 19) and save the
current symbol (line 20). Otherwise, we discard the change and
remove the current symbol from future consideration.

Algorithm 2 relies on the routine EvaluateRange that returns
an interval J that overapproximates the range of a polynomial f
over an interval I . We assume that the procedure EvaluateRange
is sound: J ⊇ {y | y = f (x), x ∈ I }.

Theorem 5.2. For any polynomial f , sample x, set S , tolerance ϵ
and minimum box width δ , the FindMaxInterval routine (a) always
terminates; (b) if it succeeds, returns a box B such that f (B) ⊆ [−ϵ, ϵ].

A proof is provided in the appendix. Successful execution of
algorithm 2 requires us to implement a sound range evaluation
procedure EvaluateRange and choose values of ϵ,δ so that the
assertion in line 5 always succeeds.

162

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Algorithm 2: For a given polynomial function f (x), find
largest interval B around sample x such that B ⊆ S and
| f (x)| ≤ ϵ . The input δ is the smallest allowable interval.

1: procedure FindMaxInterval(x, f , ϵ , δ , S)
2: [a, b] ← [x − δ

2 1, x + δ
2 1]; ▷ Form initial box around x

3: J0 ← EvaluateRange(f , [a, b]);
4: ▷ Compute range of f over initial box.
5: ASSERT(J0 ⊆ [−ϵ, ϵ]);
6: ▷ Failure: either ϵ is too small or δ is too large.
7: wlist ← {≪1, . . . ,≪n ,≫1, . . . ,≫n };
8: ▷≪j : decrease lower bound x j and≫j : increase the upper

bound for x j
9: while wlist , ∅ do

10: s ← pop(wlist); ▷ pop from the worklist of actions.
11: if s =≪i then â ← a − δei , b̂ = b; end if
12: if s =≫j then â ← a, b̂ = b + δej ; end if
13: if [â, b̂] ⊆ S then
14: ▷ Ensure that new box remains inside S
15: J ← EvaluateRange(f , [â, b̂]);
16: ▷ evaluate range of f
17: if J ⊆ [−ϵ, ϵ] then
18: ▷ error remains within tolerance?
19: a ← â, b ← b̂; ▷ update the current box
20: push(wlist, s);
21: ▷ save current direction to try again
22: return [a, b];

Lemma 5.3. Algorithm 2 is always called with a function f and x
such that f (x) = 0 and ∇f (x) = 0. Furthermore S ⊆ D.

The proof is simply to examine the arguments at the only call
site to FindMaxInterval in Algorithm 1.

Theorem 5.4. For any compact set D, and fixed tolerance ϵ > 0,
there is a sound procedureEvaluateRange and a corresponding value
of δ such that the assertion check in line 5 of Algorithm 1 always
succeeds.

The explicit formula for setting δ is provided in the appendix.
Using the properties of the FindMaxInterval method, we now

provide guarantees for Algorithm 1.

Theorem 5.5. If Algorithm 1 terminates with success for input p
over domain D with tolerance ϵ , then the resulting set of linear pieces
L define a PWL function fL such that | fL(x) − p(x)| ≤ ϵ, ∀ x ∈ D.

Data Structures: We note that Algorithms 1 and 2 rely on a data
structure that maintains the disjoint union of boxes. Furthermore,
Alg. 2 guarantees that the corners of these box lie on a uniform
grid of size δ along each axis of the original domain D.

We use a modification of the standard kd-tree data structure to
carry out the basic operations that include (a) find an cell in S and
return its center point; (b) check if a box lies entirely inside S ; and
(c) remove a box from S [39]. The details of this data structure and
its implementation will be discussed in an extended version.

Decomposed PWL Models: Another significant detail is that when
the dimensionality of the space is large, the approach of gridding

the state space can cause the number of linear pieces to explode,
making it prohibitively expensive in practice. As a result, we exploit
the fact that p is generally of low degree and is often sparse due to
the nature of the regression techniques used to construct it.

Therefore, we write p(x) as a sum of polynomials, each involving
a much smaller number of variables:

p(x) : p1(x1,1, . . . , x1,k) + · · · + p J (xJ ,1, . . . , xJ ,k).
More specifically, each of the summands need involve at most k out
of the n variables, where k is the order of p. Therefore, our approach
separately considers PWL models for p1, . . . ,p J with tolerance ϵ

J .
In practice, since k is typically 2 or 3, we are able to construct PWL
models through subdivisions without suffering from the curse of
dimensionality.

EvaluateRange Procedure: Theorem 5.4 (proof in Appendix) con-
structs a sound EvaluateRange procedure along with a value of δ
so that the assertion failure in Line 5 of Algorithm 2 never happens.
This is quite cumbersome to implement, in practice. Our implemen-
tation uses standard affine arithmetic evaluation [13] built on top
of the MPFI interval arithmetic library [37].

Setting Parameters: Line 5 of Algorithm 2 has an assertion that
requires the user to set parameters ϵ,δ in the right combination
to avoid an assertion failure. In practice, this is quite cumbersome.
Therefore, we allow the user to set ϵ,δ initially. If the condition in
line 5 is not satisfied, we increase ϵ to force it to be satisfied. Note
that in doing so, the linear pieces already constructed in Algorithm 1
are not invalidated since they satisfy a smaller tolerance. Also, our
implementation allows the user to specify a different value of δ
along each dimension of x.

6 ERROR ANALYSIS USING OPTIMIZATION
In the previous section, we showed how a polynomial p(x) over a
domain D can be replaced using a piecewise linear function f (x)
such that for all x ∈ D, |p(x) − f (x)| ≤ ϵ , for a given ϵ > 0. In this
section, we complete the rule generation for a given neural network
N by computing bounds on | fN (x) − f (x)| over x ∈ D. Thus,

| fN (x) − p(x)| ≤ | fN − f | + | f − p |︸ ︷︷ ︸
≤ϵ

.

Our approach builds on earlier work on output range generation
of neural networks, wherein we pose the problem as a mixed integer
linear program (MILP), and next combine local search with MILP
solvers to yield more efficient bounds estimation.

Definition 6.1 (Neural Network to PWL Error). Given a neural
network N over inputs x ∈ D and a PWL model fL : D 7→ R, find
an interval [a,b] such that (∀ x ∈ D) (fN (x) − fL(x)) ∈ [a,b].

To do so, we will first define a mixed integer linear programming
(MILP) by separately encoding the network N and the PWL model
L into MIL constraints.

Definition 6.2 (Mixed Integer LP (MILP)). Let x ∈ Rn be a set of
real variables and v ∈ Zm be a set of integer variables. A MILP over
x, v is an optimization problem of the form:

max aTx x + aTwv s.t. Ax + Bv ≤ c .

163

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

First, given a neural network N over inputs x ∈ D and output
y ∈ R, we derive a set of linear constraints ΨN (x,y, v) over (x,y) ∈
Rn+1 and binary variables v ∈ {0, 1}M , such that for any x ∈ D,
if z = FN (x) then (∃ v ∈ {0, 1}M) ΨN (x, z, v). In other words, the
constraints Ψ capture all possible input output pairs for the network
N . Conversely, if the network is constructed using ReLU units, we
conclude that whenever (∃ v ∈ {0, 1}M) ΨN (x, z, v) holds, we have
z = FN (x). This encoding is described in detail elsewhere [16, 29].

Encoding PWL Models: Let fL be a PWL model defined by L :〈
Rj , cj ,dj

〉N
j=1, over x ∈ D (see Def. 5.1). Let D be represented by

the interval [aD , bD]. We briefly describe the compilation of the
PWL model into constraints. To do so, we use variables x ∈ Rn for
the inputs and z ∈ R for the output of the model. Additionally, we
will introduce a fresh binary variable lj ∈ {0, 1} corresponding to
the piece

〈
Rj , cj ,dj

〉
. The first constraint encodes that only one of

the pieces can apply.

l1 + l2 + · · · + lN = 1 (6.1)

Next, we note that if li = 1, then x ∈ Rj . Let Rj : [aj , bj].
aj lj + aD (1 − lj) ≤ x ≤ bj lj + bD (1 − lj) . (6.2)

Next, we need to encode the relation between the output z and
inputs x whenever piece j is selected. To this effect, let M be a large
constant chosen so that for all x ∈ D, (a) fL(x) ∈ [−M,M], and (b)
|cTj x + dj | ≤ M for j = 1, . . . ,N . We can encode the input output
relation for the PWL as follows:

cTj x + dj − 2M(1 − lj) ≤ z ≤ cTj x + dj + 2M(1 − lj) (6.3)

The overall MIL constraints are given as ΨL(x, z, ®l) taken as the
conjunction of (6.1), (6.2) and (6.3), wherein ®l : (l1, . . . , lN) collects
the binary variables. The MILP encoding precisely captures the
function represented by the PWL model.

Theorem 6.3. For all x ∈ D, If z = fL(x) then, (∃ ®l ∈ {0, 1}N)
ΨL(x, z, ®l).

The converse will also hold in general, if our encoding did not
effectively compute the topological closure of each rectangle in L.
Ensuring this will yield MILPs with strict inequalities, and therefore
is omitted for simplicity of presentation.

Combined MILP Model: Given the constraints ΨN (x,y, v) for a
neural network N and constraints ΨL(x, z, ®l) for a PWL model L,
the error interval is estimated by setting up a two MILPs as follows:

max(min) z − y
s.t. ΨN (x,y, v) (*MILP encoding for NN*)

ΨL(x, z, ®l) (*MILP encoding for PWL*)
x ∈ D, (v, ®l) ∈ {0, 1} |v |+ |®l |

It is clear that the solutions to the MILP problem above yields the
required error bound between the PWL model and the neural net-
work. Combining this with the tolerance between the polynomial
p(x) and the PWL model yields the total error interval.

Theorem 6.4. The PWL model along with the error interval com-
puted above overapproximate the range of fN (x) wherein x ∈ D.

7 EXPERIMENTAL RESULTS

Figure 5: Flowpipes for the
Tora example with a larger
initial set

Figure 6: Flowpipes for the
Car Model

We implemented a prototype tool for our rule generation as
well as error analysis techniques and use it together with the tool
Flow* and Sherlock. The TM flowpipes under continuous dynamics
are computed by Flow* with the symbolic remainder technique
described in [11]. The polynomial rule generation procedure de-
scribed in Algorithms 1 and 2 along with the MILP encoding were
implemented on top of the tool Sherlock. The experiments were
run on a MacBook Pro Laptop, with 2.7 GHz Intel Core i5, with 16
GB RAM. The source code for repeating our experiments, can be
found at bit.ly/2Ibhfha . The virtual machine with all the dependen-
cies set up, and running experiments can be obtained by requesting
the authors.
Benchmarks. We consider the continuous dynamical systems de-
scribed in [24, 28, 34, 40, 47], and create the NFS benchmarks given
in Table 1. For each system, the controller is a neural network which
is trained using a standard MPC control scheme. Each benchmark
is also equipped with a time-varying disturbance which is added to
the control input. Our purpose is to prove that for each system, all
state variables stay in the safe range of [−2, 2] during the first N
control steps from the initial set.

The benchmark #9 is our motivating example while with a much
larger initial set. A sample reach set computation for 0.1 seconds of
Benchmark 9 has been shown here. We start with a set given by the
interval : I = [0.6, 0.7] × [−0.7,−0.6] × [−0.4,−0.3] × [0.5, 0.6]. By
uniformly sampling interval I we obtain the following polynomial,
through regression:
p(x0,x1,x2,x3) =0.62 + 1.01x0 + 0.54x1 − 0.69x2 − 2.1x3

+ 3.1e-4x2
0 + 7.1e-4x0x1 + 1.5e-4x2

1

+ 1.1e-4x0x2 − 1.6e-4x1x2 + 1.5e-4x2
2

− 2.5e-4x0x3 − 6.5e-4x1x3 + 6.8e-5x2x3 + 5.5e-5x2
3

The max error between the neural network, and p, in the domain I
is deduced as e = 0.0178211. That is, the neural network behavior
is overapproximated by the TM : p(x0,x1,x2,x3) + [−e, e]. Using
this TM as the feedback function, the flowpipe computed yields
the following set, after 0.1s of time, [0.53, 0.63] × [−0.77,−0.66] ×
[−0.35,−0.24] × [0.49, 0.60].
Results. We present our experimental results in Table 2. We use the
regression order 2 in all of our tests, and to provide a comparison,
we give the column TI for the time costs of a direct combination of
Flow* and Sherlock, although it works on none of our benchmarks.
In all of the tests, we use the symbolic remainder method provided

164

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Table 1: Suite of benchmarks used for testing the proposed method. Legend : Var : # of state variables, N : # of control steps for
computing the reach sets , τc : Duration of control time steps, NN :, Neural Network k : # of layers in the Neural Network, N :
of neurons, init : Initial set for reachability computation, w : Disturbance range.

NN
Var N τc k N init w

1 2 30 0.2 5 56 [0.5, 0.9]2 ±10−2

2 2 50 0.2 6 156 [0.7, 0.9] × [0.42, 0.58] ±10−3

3 2 100 0.1 5 56 [0.8, 0.9] × [0.4, 0.5] ±10−2

4 3 50 0.2 6 156 [0.35, 0.45] × [0.25, 0.35] × [0.35, 0.45] ±10−2

5 3 50 0.2 6 156 [0.3, 0.4] × [0.3, 0.4] × [−0.4,−0.3] ±10−2

6 3 50 0.2 5 106 [0.35, 0.4] × [−0.35,−0.3] × [0.35, 0.4] ±10−3

7 3 20 0.5 2 500 [0.35, 0.45] × [0.45, 0.55] × [0.25, 0.35] ±10−2

8 4 25 0.2 5 106 [0.5, 0.6]4 ±10−4

9 4 20 1 3 300 [0.6, 0.7] × [−0.7,−0.6] × [−0.4,−0.3] × [0.5, 0.6] ±10−3

10 4 50 0.2 1 500 [9.5, 9.55] × [−4.5,−4.45] × [2.1, 2.11] × [1.5, 1.51] ±10−4

in Flow*, and the queue size is set to be 200. As an example, we
illustrate the flowpipes computed for the benchmark #9 in Figure 5.
Car example We trained a neural network controller, for the uni-
cylce model of a car as a stabilizing controller. An MPC controller
was used to train the network, which ends up having interesting
dynamics. We were able to compute the reach sets for this case,
which are shown in Fig 6.
Quadrotor example. We start with the initial set which is a box
with the maximum width 0.01, and try to compute the flowpipes
for the time horizon [0, 10]. We use a TM order 5 with the inte-
gration stepsize 0.01, the maximum error encountered in the PWL
approximations is bounded by 1.8e−4.

8 CURRENT LIMITATIONS

Figure 7: Flowpipes for the Drone Model
Our approach also provides a way to alleviate the wrapping

effect in reachability analysis for neural feedback systems by ap-
proximating neural networks locally as polynomials plus intervals.
However, it may lead to difficulties that arise primarily due to the
following limitations:

• Large initial sets. Large initial sets either cause large errors for
the local approximation or require high degree polynomials
for approximations.
• Divergent traces. Traces of dynamical systems can diverge

(eg., positive Lyapunov exponent) locally before converging,
as see in Fig. 7. In such cases, our method may not control
the explosion of overestimation. Currently, such cases can
be handled through a subdivision of the state-space which
can be expensive for a large model.

Solving these two problems will continue to drive our future efforts
in this space.

9 CONCLUSION
Thus, we have presented an approach to compute accurate flow-
pipe overapproximations for the reachable sets of neural feedback
systems. Our key contribution is a sound rule generation method
along with a rigorous error analysis technique, based on which
the wrapping effect in flowpipe computation is greatly reduced.
Future directions will investigate stochastic uncertainties in our
framework.
Acknowledgments: This work was supported in part by the Air
Force Research Laboratory (AFRL) and by the US NSF under Award
1646556.

REFERENCES
[1] Abadi, Martín et al. 2016. TensorFlow: A System for Large-scale Machine Learning.

In Proc. OSDI’16. USENIX, 265–283.
[2] M. Althoff. 2015. An Introduction to CORA 2015. In Proc. of ARCH’15 (EPiC Series

in Computer Science), Vol. 34. EasyChair, 120–151.
[3] S. Bak and M. Caccamo. 2013. Computing Reachability for Nonlinear Systems

with HyCreate. In Demo and Poster Session in HSCC’13.
[4] S. Bak and P. S. Duggirala. 2017. HyLAA: A Tool for Computing Simulation-

Equivalent Reachability for Linear Systems. In Proc. of HSCC’17. ACM, 173–178.
[5] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,

Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness with
constraints. In Advances in Neural Information Processing Systems. 2613–2621.

[6] M. Berz. 1999. Modern Map Methods in Particle Beam Physics. Advances in Imaging
and Electron Physics, Vol. 108. Academic Press.

[7] M. Berz and K. Makino. 1998. Verified Integration of ODEs and Flows Using
Differential Algebraic Methods on High-Order Taylor Models. Reliable Computing
4 (1998), 361–369. Issue 4.

[8] X. Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor
Models. Ph.D. Dissertation. RWTH Aachen University.

[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2012. Taylor Model Flowpipe
Construction for Non-linear Hybrid Systems. In Proc. of RTSS’12. IEEE Computer
Society, 183–192.

[10] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An Analyzer
for Non-linear Hybrid Systems. In Proc. of CAV’13 (LNCS), Vol. 8044. Springer,
258–263.

[11] X. Chen and S. Sankaranarayanan. 2016. Decomposed Reachability Analysis
for Nonlinear Systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE
Press, 13–24.

[12] Antonio Eduardo Carrilho da Cunha. 2015. Benchmark: Quadrotor Attitude
Control. In Proc. of ARCH 2015 (EPiC Series in Computing), Vol. 34. EasyChair,
57–72.

165

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

Table 2: Details of the experiments for different Benchmarks. Legend : #: Benchmark No., k : TM Integration Order , τI :
stepsize used for flowpipe construction, Po :, order of the polynomial used for the regression, ϵ : maximum computed
error bound between the neural network and polynomial, Tp : time cost for computing the reach sets using polynomial rule
generation, TI : time taken for computing the reachable sets using simple interval propagation, Pr : % of the time cost in
polynomial regression, Ppwl : % of the time cost in computing the Piecewise Linear Approximations for the polynomials
generated , Ps : % of the time cost in Sherlock for computing the error, Pf : % of the time cost in Flow* to compute the reachable
sets for the ODE. TI : time cost of a direct combination of Flow* and Sherlock, Lc : Maximum number of linear regions in one
control step .

k τI Po ϵ Tp (s) Pr (%) Ppwl (%) Ps (%) Pf (%) TI (s) Lc
1 4 0.02 2 0.66 6.5 2.2 2.3 14 81 × 31
2 5 0.02 2 0.2 46.0 1.3 1.4 42 54 × 31
3 4 0.02 2 1.89e-2 40.4 1.3 0.9 11 86 × 7
4 5 0.02 2 3.7e-2 21.8 2.4 4.2 62.6 30.2 × 76
5 4 0.02 2 6.8e-5 19.5 2.7 1.2 44.7 50.6 × 4
6 4 0.02 2 2.7e-2 15.3 2.3 1.7 12.0 82.7 × 6
7 5 0.05 2 1.2e-2 57.4 1.9 0.3 93 5 × 58
8 4 0.02 2 6e-2 13.1 1.87 7 13.3 75.3 × 156
9 4 0.1 2 6.8e-2 36.7 1.5 2.0 80 16.1 × 86
10 30 0.01 2 0.02 1081 0.4 0.1 0.85 98.3 × 16

[13] Luiz H. de Figueiredo and Jorge Stolfi. 1997. Self-Validated Numerical Methods
and Applications. In Brazilian Mathematics Colloquium monograph. IMPA, Rio
de Janeiro, Brazil. Cf. http://www.ic.unicamp.br/~stolfi/EXPORT/papers/by-tag/
fig-sto-97-iaaa.ps.gz.

[14] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. 2015. C2E2: A Verification
Tool for Stateflow Models. In Proc. of TACAS’15 (LNCS), Vol. 9035. Springer, 68–82.

[15] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Learning and verification of feedback control systems using feedforward neural
networks. IFAC-PapersOnLine 51, 16 (2018), 151–156.

[16] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods, Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer
International Publishing, Cham, 121–138.

[17] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neu-
ral Networks. In ATVA (Lecture Notes in Computer Science), Vol. 10482. Springer,
269–286.

[18] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A.
Girard, T. Dang, and O. Maler. 2011. SpaceEx: Scalable Verification of Hybrid
Systems. In Proc. of CAV’11 (LNCS), Vol. 6806. Springer, 379–395.

[19] LiMin Fu. 1994. Rule generation from neural networks. IEEE Transactions on
Systems, Man, and Cybernetics 24, 8 (Aug 1994), 1114–1124.

[20] E. Hainry. 2008. Reachability in Linear Dynamical Systems. In Proc. of CiE 2008
(LNCS), Vol. 5028. Springer, 241–250.

[21] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2016. Safety
Verification of Deep Neural Networks. CoRR abs/1610.06940 (2016). http://arxiv.
org/abs/1610.06940

[22] M. Jankovic, D. Fontaine, and P. V. Kokotovic. 1996. TORA example: cascade- and
passivity-based control designs. IEEE Transactions on Control Systems Technology
4, 3 (1996), 292–297.

[23] Kyle Julian and Mykel J. Kochenderfer. 2017. Neural Network Guidance for
UAVs. In AIAA Guidance Navigation and Control Conference (GNC). https:
//doi.org/10.2514/6.2017-1743

[24] R. R. Kadiyala. 1993. A tool box for approximate linearization of nonlinear systems.
IEEE Control Systems 13, 2 (April 1993), 47–57. https://doi.org/10.1109/37.206985

[25] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. 2016. PLATO:
Policy Learning using Adaptive Trajectory Optimization. arXiv preprint
arXiv:1603.00622 (2016).

[26] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochender-
fer. 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Net-
works. Springer International Publishing, Cham, 97–117. https://doi.org/10.
1007/978-3-319-63387-9_5

[27] S. Kong, S. Gao, W. Chen, and E. M. Clarke. 2015. dReach: δ -Reachability Analysis
for Hybrid Systems. In Proc. of TACAS’15 (LNCS), Vol. 9035. Springer, 200–205.

[28] Lectures. 2014. Nonlinear Systems and Control. http://people.ee.ethz.ch/~apnoco/
Lectures2014/.

[29] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability anal-
ysis for feed-forward ReLU neural networks. CoRR abs/1706.07351 (2017).
arXiv:1706.07351 http://arxiv.org/abs/1706.07351

[30] K. Makino and M. Berz. 2003. Taylor models and other validated functional
inclusion methods. J. Pure and Applied Mathematics 4, 4 (2003), 379–456.

[31] S. Mitra and Y. Hayashi. 2000. Neuro-fuzzy rule generation: survey in soft
computing framework. IEEE Transactions on Neural Networks 11, 3 (May 2000),
748–768.

[32] R. E. Moore, R. B. Kearfott, and M. J. Cloud. 2009. Introduction to Interval Analysis.
SIAM.

[33] A. Neumaier. 1993. The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confi-
dence Regions. Springer Vienna, 175–190.

[34] W. Perruquetti, J. P. Richard, and P. Borne. 1996. Lyapunov analysis of sliding
motions: Application to bounded control. Mathematical Problems in Engineering
3, 1 (1996), 1 – 25.

[35] Luca Pulina and Armando Tacchella. 2010. An abstraction-refinement approach to
verification of artificial neural networks. In Computer Aided Verification. Springer,
243–257.

[36] Luca Pulina and Armando Tacchella. 2012. Challenging SMT Solvers to Verify
Neural Networks. AI Commun. 25, 2 (2012), 117–135.

[37] Nathalie Revol and Fabrice Rouillier. 2005. Motivations for an Arbitrary Precision
Interval Arithmetic and the MPFI Library. Reliable Computing 11, 4 (2005), 275–
290. https://doi.org/10.1007/s11155-005-6891-y

[38] Kazumi Saito and Ryohei Nakano. 2002. Extracting regression rules from neural
networks. Neural Networks 15, 10 (2002), 1279 – 1288.

[39] Hanan J. Samet. 2006. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann.

[40] Mohamed Amin Ben Sassi, Ezio Bartocci, and Sriram Sankaranarayanan. 2017. A
Linear Programming-based iterative approach to Stabilizing Polynomial Dynam-
ics. In Proc. IFAC’17. Elsevier.

[41] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. 2015.
Towards verification of artificial neural networks. In MBMV Workshop. 30âĂŞ40.

[42] Richard S. Sutton and Andrew G. Barto. 2017. Reinforcement Learning: An Intro-
duction. MIT Press.

[43] H. Tsukimoto. 2000. Extracting rules from trained neural networks. IEEE Trans-
actions on Neural Networks 11, 2 (Mar 2000), 377–389.

[44] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2017. Output Reach-
able Set Estimation and Verification for Multi-Layer Neural Networks. CoRR
abs/1708.03322 (2017). arXiv:1708.03322 http://arxiv.org/abs/1708.03322

[45] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2107. Reachable Set
Computation and Safety Verification for Neural Networks with ReLU Activations.
Cf. https://arxiv.org/pdf/1712.08163.pdf, posted on ArXIV Dec. 2017.

[46] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson.
2018. Reachable Set Estimation and Verification for a Class of Piecewise Linear
Systems with Neural Network Controllers. To Appear in the American Control
Conference (ACC), invited session on Formal Methods in Controller Synthesis.

[47] Dong-Hae Yeom and Young Hoon Joo. 2012. Control Lyapunov Function Design
by Cancelling Input Singularity. 12 (06 2012).

166

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

A APPENDIX: PROOFS OF THEOREMS
We will now discuss the proofs of the various theorems stated in
the paper. We first consider Theorem 5.2 from page 6.

Theorem A.1. For any polynomial f , sample x, set S , tolerance ϵ
and minimum box width δ , the FindMaxInterval routine (a) always
terminates; (b) if it succeeds, returns a box B such that f (B) ⊆ [−ϵ, ϵ].

Proof. To prove that the FindMaxInterval routine (Algorithm 2)
always terminates, we need to prove that at each iteration of the
while loop (line 9) at least one of two progress conditions are met:
(a) the size of wlist decreases (else branch at line 17 or else branch
at line 14, or (b) the size of the list remains the same, but the volume
of the interval [a, b] strictly increases by at least δn (then branches
taken at lines 14 and 17). Consider a lexicographic ranking function
(|wlist|,−Πn

j=1(bj − aj)). We note that |wlist| ≥ 0 and the volume
of [a, b] is upper bounded by that of S .

To establish (b), we will prove the loop invariant that
EvaluateRange(f , [a, b]) ⊆ [−ϵ, ϵ]. This clearly holds the first time
the head of the while loop is visited (line 9) and each time [a, b]
is updated in a loop iteration, the loop invariant is re-established
(line 17). The rest follows by assuming the soundness property of
the EvaluateRange routine. □

Next, we consider the proof of theorem 5.4 in page 7. Let D2 f (x)
represent the Hessian matrix of a C2 function f : Rn 7→ R. The
i, j entry of the Hessian is ∂2f

∂xi ∂x j
. For a n × n symmetric matrix

M , let λmax(M) be the largest eigen value of M and λmin(M) be
the smallest eigenvalue. These are always real numbers and well-
known to be a continuous function of the matrix M . Finally, recall
that for a quadratic form q : xtAx, we have the inequality that
λmin(A)xtx ≤ xtAx ≤ λmax(A)xtx. The Euclidean norm of a vector
| |x| |2 is simply xtx.

Theorem A.2. For any compact set D, and fixed tolerance ϵ > 0,
there exists a sound procedure EvaluateRange and a corresponding
value of δ such that the assertion check in line 5 of algorithm 2 always
succeeds.

Proof. Using Lemma 5.3, we know that the function f and
sample x satisfy f (x) = 0 and ∇f (x) = 0. Define

N (x) : λmin(D2 f (x)), and M(x) : λmax(D2 f (x)) ,
the smallest and largest eigenvalues of the Hessian matrix of f eval-
uated at x. Note that M is a scalar function of x and is continuous.

Now let us choose some δ . Using a Taylor series development of
f , we note

f (x + h) : f (x) + ∇f (x) · h︸ ︷︷ ︸
=0

+
1
2 htD2 f (x̂)h ,

for some x̂ : x + αh. The first two terms vanish due to Lemma 5.3.
Therefore, the EvaluateRange(f , [a, b]) procedure is simply as

follows: (a) set m0 : maxz∈[a,b]M(z) and n0 : minz∈[a,b] N (z). (b)
β : 1

2 max(|m0 |, |n0 |)n | |b−a| |2, and (c) return EvaluateRange(f , [a, b]) :
[−β , β].

The soundness of the procedure follows from Taylor theorem.
Note that if x + h ∈ [a, b] then | |h| |22 ≤ ||b − a| |2. Therefore,

| f (x + h)| = | 12 htD2 f (x̂)h|

We know that htD2 f (x̂)h ≤ M(x)hth ≤ m0 | |h| |22 . Further-
more, htD2 f (x̂)h ≥ N (x)hth ≥ n0 | |h| |22 . Therefore, |htD2 f (x̂)h| ≤
max(|m0 | | |h| |22 , |n0 | | |h| |22) ≤ max(|m0 |, |n0 |)| |h2

2 | |. Putting it all to-
gether, we have

| f (x + h)| = | 12 htD2 f (x̂)h| ≤ β .

Next, given ϵ , we choose δ as follows.
Since D is compact and S ⊆ D. Therefore, let us definem∗ as

m∗ : max(|max
x∈D

M(x)|, |min
x∈D

N (x)|) .

The compactness of D and continuity of M(x),N (x) guarantee that
m∗ exists. If m∗ = 0, then the second derivative vanishes every-
where and f is essentially the 0 function. For such a function, the
assertion in line 5 will never fail. Without loss of generality, let
m∗ > 0.

Consider the box B0 : [x − δ
2 1, x + δ

2 1], chosen in line 2 of

Algorithm 2. Let us set 1
2m
∗nδ2 = ϵ , or in other words, δ :

√
2ϵ
m∗n .

We note that for any x+h ∈ B0, | f (x+h)| ≤ 1
2m0 | |h| |22 ≤ 1

2m
∗nδ2 ≤

ϵ . Thus the assertion in line 5 will never fail if the value of δ is set
to at most

√
2ϵ
m∗n and the EvaluateRange function defined in this

proof is used. □

Next, we will consider the proof of theorem 5.5 from page 7.

Theorem A.3. If Algorithm 1 terminates with success for input p
over domain D with tolerance ϵ , then the resulting set of linear pieces
L define a PWL function fL such that | fL(x) − p(x)| ≤ ϵ for each
x ∈ D.

Proof. We conclude that the final result fL must be a function
defined over the domainD. This is proved using a loop invariant that⋃
⟨Bs ,c,d ⟩∈L Bs ∪ S = D holds for the while loop in line 4. Another

useful loop invariant to prove is that for all pieces (B, c,d) ∈ L,
we have B ∩ S = ∅ at the loop head (line 4). Next, we note that
the domain of the pieces are mutually exclusive. This is proved
by noting that the set Bs returned at line 8 must satisfy Bs ⊆ S .
Therefore, Bs cannot have a common intersection with any existing
piece in L. Together, we note that the linearization defined by fL
exists and Note that line 9 in Algorithm 1 follows directly from
Theorem 5.2. Therefore, the property | fL(x) − p(x)| ≤ ϵ holds for
each piece added to L in line 11. □

Finally, we will address the proof of Theorem 6.3 in page 8.

Theorem A.4. For all x ∈ D, If z = fL(x)
then (∃ ®l ∈ {0, 1}N) ΨL(x, z, ®l).

Proof. Suppose for some x ∈ D, we have that z = fL(x). Then,
x must belong to precisely one linear piece in x. Therefore, let it
belong to piece corresponding to ®lj . We will set ®lj = 1 and ®li = 0
for all i , j . We now verify that (6.1), (6.2) and (6.3) are all satisfied
by the assignment to ®l . □

167

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Dutta, Chen and Sankaranarayanan

Table 3: ODE for the different Benchmarks.

Benchmark ODE
1 Ûx1 = x2 − x3

1 +w, Ûx2 = u
2 Ûx1 = x2, Ûx2 = ux2

2 − x1 +w
3 Ûx1 = −x1(0.1+(x1+x2)2), Ûx2 = (u+x1+w)(0.1+

(x1 + x2)2)
4 Ûx1 = x2 + 0.5x2

3 , Ûx2 = x3 +w, Ûx3 = u
5 Ûx1 = −x1+x2−x3+w, Ûx2 = −x1(x3+1)−x2, Ûx3 =

−x1 + u
6 Ûx1 = −x3

1 + x2, Ûx2 = x3
2 + x3, Ûx3 = u +w

7 Ûx1 = x3
3 − x2 +w, Ûx2 = x3, Ûx3 = u

8 Ûx1 = x2, Ûx2 = −9.8x3 + 1.6x3
3 + x1x2

4 , Ûx3 =
x4, Ûx4 = u

9 Ûx1 = x2, Ûx2 = −x1 + 0.1sin(x3), Ûx3 = x4, Ûx4 = u
10 Ûx1 = x4cos(x3), Ûx2 = x4sin(x3), Ûx3 = u2, Ûx4 =

u1 +w

B APPENDIX: DETAILS OF BENCHMARKS
AND EXPERIMENTAL RESULTS

We give details of the benchmarks in Table 1 and present the plots
of the flowpipes.

High Dimensional Example
We refer the reader to [12], for further details on the system dy-
namics. The initial set is given by the following : pn ∈ [−1,−0.99],
pe ∈ [−1,−0.99] , h ∈ [9, 9.01], u ∈ [−1,−0.99], v ∈ [−1,−0.99],
w ∈ [−1,−0.99], q0 ∈ [0, 0], q1 ∈ [0, 0], q2 ∈ [0, 0], q3 ∈ [1, 1],
p ∈ [−1,−0.99], q ∈ [−1,−0.99], r ∈ [−1,−0.99], pI ∈ [0, 0],
qI ∈ [0, 0], rI ∈ [0, 0], hI ∈ [0, 0]. The ODE equations governing the
dynamics are given by the following, where d is the time-varying
disturbance.

Ûpn = 2u(q2
0 + q

2
1 − 0.5) − 2v(q0q3 − q1q2) + 2w(q0q2 + q1q3)

Ûpe = 2v(q2
0 + q

2
2 − 0.5) + 2u(q0q3 + q1q2) − 2w(q0q1 − q2q3)

Ûh = 2w(q2
0 + q

2
3 − 0.5) − 2u(q0q2 − q1q3) + 2v(q0q1 + q2q3)

Ûu = rv − qw − 11.62(q0q2 − q1q3)
Ûv = pw − ru + 11.62(q0q1 + q2q3)
Ûw = qu − pv + 11.62(q2

0 + q
2
3 − 0.5) + control_input + d

Ûq0 = −0.5q1p − 0.5q2q − 0.5q3r

Ûq1 = 0.5q0p − 0.5q3q + 0.5q2r

Ûq2 = 0.5q3p + 0.5q0q − 0.5q1r

Ûq3 = 0.5q1q − 0.5q2p + 0.5q0r

Ûp = (−40.000632584pI − 2.8283979829540p) − 1.133407423682qr
Ûq = (−39.999804525qI − 2.8283752541008q) + 1.132078179614pr
Ûr = (−39.999789097rI − 2.8284134223281r) − 0.004695219978pq
ÛpI = p, ÛqI = q, ÛrI = r , ÛhI = h

Figure 8: Flowpipes computed for different benchmarks 1 -
9 (left to right and top down). The red trajectories are the
simulation traces.

Figure 9: Flowpipes computed for the quadrotor model. The
red trajectories are the simulation traces.

168

	Reachability Analysis for Neural Feedback Systems Using Regressive Polynomial Rule Inference
	tmp.1715011293.pdf.joI97

