
University of Dayton University of Dayton

eCommons eCommons

Computer Science Faculty Publications Department of Computer Science

11-2020

Divide and Slide: Layer-Wise Refinement for Output Range Divide and Slide: Layer-Wise Refinement for Output Range

Analysis of Deep Neural Networks Analysis of Deep Neural Networks

Chao Huang (0000-0002-9300-1787)

Jiameng Fan (0000-0001-9325-7718)

Xin Chen

Wenchao Li (0000-0003-4756-6397)

Qi Zhu

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

 Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer Sciences

Commons

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/cps_fac_pub
https://ecommons.udayton.edu/cps
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020 3323

Divide and Slide: Layer-Wise Refinement for
Output Range Analysis of Deep Neural Networks

Chao Huang, Jiameng Fan , Graduate Student Member, IEEE, Xin Chen, Wenchao Li, and Qi Zhu

Abstract—In this article, we present a layer-wise refine-
ment method for neural network output range analysis. While
approaches such as nonlinear programming (NLP) can directly
model the high nonlinearity brought by neural networks in output
range analysis, they are known to be difficult to solve in general.
We propose to use a convex polygonal relaxation (overapproxi-
mation) of the activation functions to cope with the nonlinearity.
This allows us to encode the relaxed problem into a mixed-
integer linear program (MILP), and control the tightness of the
relaxation by adjusting the number of segments in the polygon.
Starting with a segment number of 1 for each neuron, which coin-
cides with a linear programming (LP) relaxation, our approach
selects neurons layer by layer to iteratively refine this relaxation.
To tackle the increase of the number of integer variables with
tighter refinement, we bridge the propagation-based method and
the programming-based method by dividing and sliding the layer-
wise constraints. Specifically, given a sliding number s, for the
neurons in layer l, we only encode the constraints of the lay-
ers between l − s and l. We show that our overall framework is
sound and provides a valid overapproximation. Experiments on
deep neural networks demonstrate significant improvement on
output range analysis precision using our approach compared to
the state-of-the-art.

Index Terms—Linear programming (LP), mixed-integer linear
programming (MILP), neural networks, output range analysis,
refinement.

I. INTRODUCTION

NEURAL networks have shown promising applications in
a variety of domains, including safety-critical systems,

such as self-driving cars and medical devices. However,
to ensure system safety and security, more formal analy-
sis of neural networks is needed before they can be widely
applied in practice. As observed in [1], some of the key

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported in part by NSF under Grant
1834701, Grant 1834324, Grant 1839511, Grant 1724341, and 1646497; in
part by Office of Naval Research under Grant N00014-19-1-2496; in part by
the U.S. Air Force Research Laboratory under Contract FA8650-16-C-2642;
and in part by the DARPA BRASS Program under Agreement FA8750-16-C-
0043. This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Chao Huang.)

Chao Huang and Qi Zhu are with the Department of Electrical and
Computer Engineering, Northwestern University, Evanston, IL 60208 USA
(e-mail: chao.huang@northwestern.edu; qzhu@northwestern.edu).

Jiameng Fan and Wenchao Li are with the Department of Electrical and
Computer Engineering, Boston University, Boston, MA 02215 USA (e-mail:
jmfan@bu.edu; wenchao@bu.edu).

Xin Chen is with the College of Arts and Sciences: Computer
Science, University of Dayton, Dayton, OH 45469 USA (e-mail:
xchen4@udayton.edu).

Digital Object Identifier 10.1109/TCAD.2020.3013071

correctness problems of neural networks, such as adversarial
robustness [2]–[4] and reachability analysis of neural-network
controlled systems [5]–[7], can be converted to the analysis
of their output range. Thus, addressing the output range anal-
ysis problem is vital to provide guarantees for the safety and
security of neural networks.

Informally, output range analysis solves the following
problem: given a neural network f and the input range X , com-
pute the output range of f (X). Since a neural network is highly
nonlinear due to the large number of parameters and nonlin-
ear activation functions, it is generally difficult to compute
the exact range. In most cases, we use an overapproximation
Y such that f (X) ⊆ Y . Such overapproximation can provide
an explicit bound for determining whether the neural network
output falls into an unwanted region. Early work shows that
basic interval-bound propagation (IBP) can be used to tackle
this problem, but often leads to an overly loose estimation due
to the loss of dependencies across layers [8].

State-of-the-art methods for output range analysis mainly
fall into two categories: 1) symbolic interval propagation
(SIP) [9], [10] and 2) constraint programming (CP) [11], [12],
where the overapproximation is computed in different man-
ners. The main drawback with SIP is that it can hardly
propagate the dependencies for nonlinear operations across
layers, and the performance of these propagation-based meth-
ods declines with deeper networks. On the other hand, CP-
based methods need to solve a large nonlinear programming
(NLP) problem encoding the entire network and suffer from
the curse of dimension.

In this article, we propose a layer-wise refinement method
that bridges propagation-based methods with mixed-integer
linear programming (MILP) by using sliding windows.
Specifically, we first compute the interval relaxation for each
operation with a propagation-based method as the initial-
ization step. Based on the initial range, we use a linear
programming (LP) relaxation approach to better approxi-
mate the variable range. Then, the relaxation can be further
tightened by the MILP encoding. Our approach iteratively
improves the approximation precision by increasing the num-
ber of integer variables. In addition, we refine the variable
range such that fewer integer variables are needed to achieve
a similar approximation precision. Furthermore, to alleviate
the complexity of MILP brought from the large number of
integer variables, we encode the constraints in a propaga-
tion manner, which divides and slides the neural network
by layers and handles the encoding within each sliding
windows. Intuitively, given a length of sliding window s,

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9325-7718
https://orcid.org/0000-0002-7700-4099

3324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

for the neuron in layer l, we only encode the constraints
of the layers between l − s and l. With these methods, we
can effectively manage the size of MILP and handle deep
networks.

In summary, this article makes the following contributions.
1) We propose an iterative framework for output range

analysis of neural networks, using a combination of
interval, LP, and MILP relaxation.

2) We develop a convex polygonal relaxation method for
nonlinear operations with the ability to tune the over-
approximation tightness based on the number of integer
variables, and we prove soundness and convergence of
the overapproximation.

3) We leverage a sliding window method to encode partial
constraints to further reduce MILP complexity, while
maintaining the soundness of our approach.

4) We show that on multiple benchmarks, our approach can
provide significantly tighter output range overapproxi-
mation than the current state-of-the-art method [13]. Our
approach also applies to neural networks with different
architectures and activation functions.

The remainder of this article is structured as follows.
Section II introduces the state of the arts on the output
range analysis via different techniques. Section III introduces
the neural network model and formulates the output range
analysis problem. Sections IV and V present our approach,
where Section IV shows the interval, LP, and MILP relax-
ation as well as the guarantees on soundness and convergence.
Section V proposes the sliding-window-based propagation
method. Section VI presents the experimental results and
Section VIII concludes this article.

II. RELATED WORK

A main idea on output range analysis of neural networks is
IBP [8], [14], [15]. It leverages the monotonicity of the oper-
ations. Thus, the range of each layer, which is represented
by an interval, can be easily propagated by interval arith-
metic. Benefiting from that only simple algebraic operations
are involved, IBP works efficiently and thus is also used in
training procedure to evaluate the robustness [15]. However,
due to the loss of layer dependencies, IBP can only provide
loose estimation in most cases. Two types of methods are then
proposed to conquer this problem: 1) SIP and 2) CP.

Different from IBP, SIP methods denote the range of a
neuron as a symbolic interval, where a symbol represents a
variable in the previous layers [9], [10], [16]. For instance,
ERAN uses symbolic zonotopes [10], while NNV adopts sym-
bolic image-star representation [16], [17]. Such representation
can keep the dependencies of previous layers and improve
the estimation precision. However, when handling nonlinear
operations, symbolic intervals have to be concretized to range
intervals and lose the dependencies between dimensions. Even
though the refinement procedure can improve the estimation
accuracy [9], [18], state-of-the-art methods can only be applied
to ReLU activations.

CP methods encode the neural network as a constraint
system and compute the output range with CP techniques. The

work in [11] and [19] extends the simplex algorithm to handle
ReLU constraints with satisfiability modulo theories (SMTs).
MILP is also widely used to model ReLu networks equiv-
alently and thus can obtain precise output range [20]–[23].
For instance, the work in [12] and [23] presents an equiv-
alent MILP transformation for ReLU activation functions
and computes the exact output range. Besides the lack of
support for general nonlinear activation functions, such encod-
ing may also lead to large MILP formulations and suffer
from low efficiency. A number of approaches have then
been proposed to compute the overapproximation with var-
ious relaxation techniques. For instance, LP relaxation is
used in [24] and solved with duality principle, e.g., via
basic dual problem [25], Lagrangian relaxation [26], and
Lagrangian decomposition [27]. In [28] and [29], semidefinite
programming (SDP) relaxation is used, although the proposed
approaches cannot be easily applied to large networks due
to the complexity of current SDP solvers. The work in [30]
presents the interval neural network (INN), which is a simpler
neural network with fewer neurons in each layer to abstract
the original network. Then, the problem of overapproximat-
ing the output range of the original neural network can be
reduced to solving a mixed-integer programming problem on
INN. Our work is similar to this work in spirit, where abstrac-
tion is used to reduce the problem complexity. However, our
technique abstracts neural networks in a layer-wise manner and
also provides a mechanism to refine the abstraction iteratively.

It is worth noting that there are other approaches that try to
leverage the Lipschitz continuity of neural networks [1], [5],
[31], [32]. The work in [1] shows that a large number of neural
networks are Lipschitz continuous and the Lipschitz constant
can help in estimating the output range, which requires solv-
ing a global optimization problem. Based on the Lipschitz
continuity, the work in [5] leverages Bernstein polynomials
with a bounded interval to overapproximate a neural network,
which is further improved by parallel computing in [31] and
used for distilling a more verification-friendly controller [32].
However, these approaches rely on a large number of sampling
for estimation and thus are time consuming.

III. PROBLEM FORMULATION

Notation: Throughout this article, we use R to denote the
set of real numbers, and R

n to denote the n-dimensional
Euclidean space. Intervals are represented by their endpoints.
For instance, the set {x ∈ R | a ≤ x ≤ b} is denoted by [a, b].
An array can be multidimensional. Given an n-dimensional
(n-D) real-valued array �M, we use sum(�M) to denote the sum
of all elements in �M, max(�M) for the maximum element in
�M, and �M[i1] · · · [in] to denote the element in the position
of the indices i1, . . . , in in the n dimensions, respectively.
We also represent a section of the elements in a dimension
from the index i to j (i ≤ j) with i:j. Given two n-D arrays
�M1 and �M2 that are of the same size, we use �M1 � �M2
to denote their element-wise product. We denote �M1 ∼ �M2
for ∼∈ {<,>,≤,≥,=} if �M1, �M2 are of the same size and
m1 ∼ m2 for every elements m1, m2 in the same position in
�M1, �M2, respectively. We use · for scalar multiplication.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3325

CNN Operations: In this work, we consider convolutional
neural networks (CNNs) [33], which have been widely used in
applications, such as image analysis and natural language pro-
cessing. For instance, a CNN may take a 3-D image with width
W, height H, and depth D, and produce an output to classify
the input. The high-level structure of such CNNs is shown in
Fig. 1. The layers in this CNN can be categorized into three
groups: 1) the input layer that takes an input image; 2) the
hidden layers that process the image; and 3) the output layer
that outputs the result. Within the hidden layers, a convolution
layer performs two sequential operations. It first convolves the
input, and then processes each element in the result with an
activation function. The function is usually of ReLU type, but
in this work, we also consider sigmoid or hyperbolic tangent
functions. The details of the two operations are discussed as
follows.

Convolution Operation: A convolution operation transforms
an input image to a feature map according to a finite group
of filters, biases, and strides. To simplify the notations, we
provide a formal description in below for the operation that
has only a single filter, bias, and stride number. The cases of
multiple numbers are straightforward extensions.

A filter (or kernel) is defined by a 2-D real-valued array
WF of the size IF × JF . It defines the processing window for
the convolution operation. A bias bF ∈ R is a constant value
that is added onto the result of every step in convolution. A
stride can be viewed as a stepsize measured by the number
of elements and is used to determine how much distance the
processing window should be moved in the width or height
dimension after every step. In this article, we allow to use
independent strides in the dimensions of width and height,
so that the composite stride is denoted by a pair of positive
integers SW × SH .

Given an input image �X ∈ R
W×H×D with the parameters

WF , bF , and Sx × Sy, the convolution result is a 2-D array
�Y ∈ R

((W−IF)/SW+1)×((H−JF)/SH+1), which is obtained as

�Y[i][j] = sum
(�X[(i− 1)SW : (i− 1)SH + IF]
[
(j− 1)SW : (j− 1)SH + JF

]

[1:D]�WF
)+ bF.

We may also use constraints over the arrays of variables �x, �y to
describe the above relation: �y = Conv(�x). For any real-valued
arrays �X, �Y , satisfying the constraints �Y = Conv(�X) implies
that �Y is the result of �X under convolution.

When there are multiple filters, biases, and strides, the out-
put array for all filters-stride settings are stacked in the third
dimension and �Y becomes a 3-D array.

Activation Operation: An activation operation produces an
output array �Y that is of the same size as the input array �X,
such that every element in �Y is the image of the corresponding
element in �X under the mapping of the activation function. We
consider the following activation function types:

ReLU: σReLU(x) = max(0, x)

Sigmoid: σsigmoid(x) = 1

1+ e−x

Hyperbolic Tangent: σtanh(x) = ex − e−x

ex + e−x

where x is the input and has a real value.

Similar to the convolution operation, we may also use
constraints over the array variables �x, �y to describe the input–
output relation: �y = σ(�x).

Pooling Layer: A pooling layer is often used to extract
the dominant features of the input image. It performs a max
pooling or average pooling operation. Given that the input is
represented by a 3-D real-valued array �X and we use a pro-
cessing window of the size IF × JF and a stride SW × SH , the
output image �Y after max pooling is obtained by

�Y[i][j][k] = max
(�X[(i− 1)SW : (i− 1)SW + IF]
[
(j− 1)SH : (j− 1)SH + JF

]
[k]

)
.

The operation of average pooling can be defined similarly

�Y[i][j][k] = 1

IF JF
sum

{�X[(i− 1)SW : (i− 1)SW + IF]
[
(j− 1)SH : (j− 1)SH + JF

]
[k]

}
.

Both pooling operations can also be represented by con-
straints: �y = MaxP(�x), �y = AvgP(�x).

Flatten Layer: Given an input image represented by a 3-D
array �X ∈ R

W×H×D, a flatten layer performs the flattening
operation to transform �X to a 1-D array �Y such that

�Y[
(k − 1) ·W · H + (j− 1) · I + i

] = �X[i][j][k]

for all 1 ≤ i ≤ W, 1 ≤ j ≤ H, 1 ≤ k ≤ D. Again, we may
denote its constraint description by �y = Flat(�x).

Fully Connected (FC) Layer: An FC layer first performs an
affine mapping �Y = WA �X+ bA for every input 1-D array �X to
generate a 1-D output array �Y , where WA is a constant matrix
and bA is a constant vector of the appropriate sizes, and then
performs an activation operation on �Y . Similar to the other
operations, we may use �y = WA�x+ bA to represent the affine
mapping relation.

Network Output: Given an input 3-D array �X for a CNN,
the network output 1-D array �Y is the result of consecutively
applying a series of the above operations. For instance, if there
are n ordered operations in the network: OP1, . . . , OPn, then
Y is obtained as

�Y = OPn
(
OPn−1

(· · ·OP1
(�X) · · ·)).

An example is shown in Fig. 2, in which the output array �Y
for an input array X is evaluated by

�Y = σ
(
WA Flat

(
MaxP

(
σ
(
Conv

(�X))))+ bA
)

where σ is a ReLu activation.
Output Range of a CNN: Given a CNN with n operations

and an interval range X of the input �X (i.e., every element of
X is an interval), its output range is defined by the set Y =
{OPn(OPn−1(· · ·OP1(�X) · · ·)) | ∀�X.(X ≤ �X ≤ X)}, where X
is the array that has the lower bounds for the corresponding
elements in X , X is the array that has the upper bounds for
the corresponding elements in X , and X ≤ �X ≤ X means that
�X is contained in the interval array X . Hence, the problem
of output range analysis tries to compute Y for a given input
range X .

However, even finding the upper and lower bounds in each
dimension of Y is very difficult since it requires to solve a
complex NLP problem on the constraint representations for

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

3326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 1. CNN structure: a typical CNN example is shown. A 3-D input image is first processed by multiple convolution operations, each of which is followed by
an activation function operation. Then, after flattened to a 1-D array, the intermediate result passes though multiple linear transformation layers and activation
layers, and yields the output.

Fig. 2. CNN example: this figure shows a concrete example of CNNs in Fig. 1. This CNN consists of four layers: a convolution layer, a pooling layer, a
flatten layer, and an FC layer. The convolution layer contains a convolution operation and a ReLU activation, while the FC layer contains an affine mapping
and a ReLu activation. Steps 1–6 illustrate how these operations works on the example.

all of the involved operations. For the CNN in Fig. 2, finding
the upper bound of the first output dimension over the input
set X requires to solve the following optimization problem:

max(�y[1]) s.t.

�y = σ(WA�x4 + bA) ∧ �x4 = Flat(�x3) ∧ �x3 = MaxP(�x2)

∧ �x2 = σ(�x1) ∧ �x1 = Conv(�x0) ∧ �x0 ∈ X

where �y has 2×1 variables, �x0 has 5×5×1 variables, �x1 and
�x2 both have 4× 4× 1 variables, �x3 has 2× 2 variables, and
�x4 has 4× 1 variables. Note that although the number of the
variables is linear with respect to the input size and the number
of operations in a CNN, the input image size or the CNN size
is often very large in practice. Also, the activation function and
the max-pooling operation further make the problem nonlinear
and intractable.

In this work, we seek to efficiently compute an upper or
lower bound for each output dimension of a CNN, by solving
an MILP relaxation of the original nonlinear problem.

IV. RELAXATION AND LAYER-WISE REFINEMENT

In this section, we introduce our layer-wise refinement
approach for computing the output range of a CNN. Our main
idea is as follows. Instead of solving the nonlinear problem

max(�y[1]) s.t. �y = �xn ∧ γn(�xn−1, �xn)

∧ · · · ∧ γ1(�x0, �x1) ∧ �x0 ∈ X (1)

Fig. 3. Workflow of our approach.

for obtaining the upper bound of the first output dimension,
we seek to solve a relaxation of it, that is

max(�y[1]) s.t. �y = �xn ∧ γ̂n(�xn−1, �xn)

∧ · · · ∧ γ̂1(�x0, �x1) ∧ �x0 ∈ X (2)

such that γi is the constraint representation for the ith operator
in the CNN, and γ̂i is a relaxation of it. Intuitively, solving
the problem (2) gives us a larger value than problem (1) on
the same CNN and the input set X . The upper bounds for the
other dimensions and the lower bounds are handled similarly.

The relaxed expressions γ̂1, . . . , γ̂n are updated iteratively
in our framework, as shown in Fig. 3, to repeatedly refine the
obtained output range overapproximation.

Initially, all γ̂1, . . . , γ̂n are just interval relaxations. For all
1 ≤ i ≤ n, γ̂i(�xi−1, �xi) is represented as �xi ∈ Bi ∧ �xi−1 ∈ Bi−1,
where Bi and Bi−1 are two intervals that contain the ranges

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3327

Fig. 4. Different relaxations for the input–output relation for the ReLu
function. In interval relaxation, ReLU is simply relaxed as a rectangle and
all the relations between x and y are dropped. In LP relaxation, a much
tighter triangle is used for approximation and relatively main the input–output
relation. MILP relaxation performs the equivalent transformation and thus the
tightest among all the three relaxations.

of �xi and �xi−1, respectively. If the output range estimation
is too conservative, we will refine the relations to be lin-
ear. That is, γ̂i(�xi−1, �xi) is represented as �xi ≤ A �xi−1 + b,
which is a set of linear constraints and referred to as LP
relaxation. As γi(�xi−1, �xi) ⇒ �xi ≤ A �xi−1 + b, the over-
approximation property holds. If the obtained output range is
still too conservative, we may further refine the constraints by
introducing new integer variables to more accurately describe
the operation relations, which is referred to as MILP relax-
ation. That is, given a binary array ��i that shares the same
dimension with �yi and represents the number of integer vari-
ables for an element-wise operation, γ̂i(�xi−1, �xi) is represented
as �xi ≤ A �xi−1 + C �zi−1 + b, where �zi is the binary array
and its dimension is determined by �i. And it satisfies
γi(�xi−1, �xi)⇒ �xi ≤ A �xi−1+C �zi−1+b. We repeat this process
until we obtain a reasonably accurate output estimation.

An example of the interval relaxation, LP relaxation, and
MILP relaxation for the ReLU relation y = max(0, x) is shown
in Fig. 4. And we find that the tightness is improved from
interval relaxation to MILP relaxation.

A. Interval Relaxation

The initial interval relaxation can be obtained using the tech-
nique of IBP [15]. That is, starting from the interval range
X for �x0, we evaluate an interval range for �x1 based on the
operation mapping �x0 to �x1 using optimization techniques. We
repeat this for all the operations. The procedure is shown
in Algorithm 1. The obtained ranges build a valid interval
relaxation of the original optimization problem.

Proposition 1: Let �i be the exact range of �xi. The interval
range I in the ith iteration is at least an overapproximation of
the exact range of �xi: �i ⊆ I.

It is worth noting that a good initial solution will aid the con-
vergence of iterative methods. Existing CP-based approaches
do not scale well to large networks. For instance, for a ReLU
FC with 10 000 neurons, an MILP-encoding would contain
20 000 integer variables and is thus beyond the capability of
current solvers. In addition, to obtain the ranges of the neu-
rons in the intermediate layers, CP-based approaches need
to solve a constrained optimization problem for each neu-
ron, which further exacerbates the computational cost. On the
other hand, the SIP-based approaches in general can more effi-
ciently compute the ranges for every neurons in the neural
network with a single forward propagation. Among all the
SIP-based approaches, ERAN [10] has good performance and

Algorithm 1: Construction of Interval Relaxation
Data: Relations for the operations γ1, . . . , γn, X
Result: Interval relaxation I

1 I← (X ≤ �x0 ≤ X);
2 B← X ;
3 for i← 1 to n do
4 Compute an interval range Ii for �xi based on

�xi = γi(�xi−1) and �xi−1 ∈ B:
Ii = min�xi−1∈B,�xi=γi(�xi−1) �xi,
Ii = max�xi−1∈B,�xi=γi(�xi−1) �xi;

5 I← I ∧ (Ii ≤ �xi ≤ Ii);
6 B← Ii;
7 end
8 return I;

efficiency and has been used quite extensively [34]–[36]. Thus,
in addition to using IBP, we also use ERAN for initialization.
Specifically, we use the intersection of the ranges computed by
IBP and ERAN for each neuron as the initial solution. Since
both IBP and ERAN compute the relaxation of the exact range
�x, their intersection is also a valid relaxation.

B. LP Relaxation

If the interval relaxation could not give us a reasonably tight
overapproximation for the output range, we may tighten the
constraints to linear forms, such that the optimization problem
for finding an upper or lower bound in an output dimension
becomes an LP problem. The LP relaxation will carry the
dependencies from the previous layers and refine the output
range from the interval relaxation. The refined range after each
operation can be updated and generates tighter range for the
output.

From the operation relations shown in Section III, only the
max pooling and the activation functions are nonlinear. We
show their linear relaxations below.

Max Pooling: Assume that the interval relaxation for a max-
pooling operation is given by Bx ≤ �x ≤ Bx ∧ By ≤ �y ≤ By,
where �x represents the input and y represents the output, the
linear relaxation of the max-pooling relation can be obtained
as �LP

MaxP(�x, �y) =∧
i,j,k(h(�x, �y)[i][j][k] ≤ 0), where

h(�x, �y)[i][j][k] ≤ 0 :
(
Bx ≤ �x ≤ Bx

) ∧
(

By ≤ �y ≤ By

)
∧

∧

1≤i′≤IF
1≤j′≤JF

(�y[i][j][k] ≥ �x[(i− 1)SW+i′, (j− 1)SH+j′, k
])

.

(3)

Lemma 1 (Validity of LP Relaxation for MaxP): Assume
that the interval relaxation for a max-pooling operation is given
by Bx ≤ �x ≤ Bx ∧ By ≤ �y ≤ By, where �x represents the input
and y represents the output. Let � be the exact range of �x and
h(�x, �y)[i][j][k] be defined as (3). We have

{(�x, �y) | �y = MaxP(�x) ∧ �x ∈ �} ⊆ {
(�x, �y) |�LP

MaxP(�x, �y)}.
Activation Function: We consider three types of activation

functions: ReLu, sigmoid, and tanh, which are all nonlinear.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

3328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

(a) (b) (c)

Fig. 5. LP relaxation for ReLU: (a) LP relaxation [red area, as well as
(b) and (c)] when b ≤ 0. (b) LP relaxation when a<0<b ∧ σ ′[a,b]>σ ′+(a) ∧
σ ′[a,b]≤σ ′−(b). (c) Relaxation when a ≥ 0.

First, given an interval [a, b], the LP relaxation of the acti-
vation function differs with respect to the value of a and b.
Let σ ′[a,b] = (σ (b) − σ(a))/(b − a) be the slope between the
points (a, σ (a)) and (b, σ (b)).

If b ≤ 0, notice that ReLU, sigmoid, and tanh are all convex
over the interval [a, b]. Thus, we can leverage the left/right
derivative to derive the LP relaxation

g[a,b](x, y) ≤ 0 :
(−y+ σ ′+(a)(x− a)+ σ(a) ≤ 0

)

∧ (−y+ σ ′−(b)(x− b)+ σ(b) ≤ 0
)

∧ (
y− σ ′[a,b](x− a)− σ(a) ≤ 0

)
. (4)

If a ≥ 0, notice that ReLU, sigmoid, and tanh are all con-
cave over the interval [a, b]. Similar to the case b ≤ 0, we
have

g[a,b](x, y) ≤ 0 :
(
y− σ ′+(a)(x− a)− σ(a) ≤ 0

)

∧ (
y− σ ′−(b)(x− b)− σ(b) ≤ 0

)

∧ (−y+ σ ′[a,b](x− a)+ σ(a) ≤ 0
)
. (5)

If a < 0 < b, let Ca = (0, ya) be the intersection between
the y-axis and the tangent line of σ at a, where ya = σ(a)−
aσ ′+(a). Let Cb = (0, yb) be the intersection between the y-axis
and the tangent line of σ at b, where yb = σ(b)− bσ ′−(b). To
make sure the relaxation is convex, our LP relaxation differs
with respect to the value of σ ′[a,b] as follows:

g[a,b](x, y) ≤ 0:⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

−y+ σ ′[a,b](x− a)+ σ(a) ≤ 0 σ ′[a,b] ≤ σ ′+(a){−y+ σ ′+(a)(x− a)+ σ(a) ≤ 0
−y+ σ(b)−ya

a x+ σ(a)+ ya ≤ 0
σ ′[a,b] > σ ′+(a)

⎧
⎨

⎩

−y+ σ ′[a,b](x− a)+ σ(a) ≥ 0 σ ′[a,b] ≤ σ ′−(b){−y+ σ ′−(b)(x− b)+ σ(b) ≥ 0
−y+ σ(a)−yb

b x+ σ(a)+ yb ≥ 0
σ ′[a,b] > σ ′−(b).

(6)

Figs. 5 and 6 demonstrate examples of how our LP relax-
ation works on ReLU and tanh activation function under
different cases of input interval respectively.

Lemma 2 (Validity of LP Relaxation for Activation
Function): Assume that the interval relaxation for an activa-
tion function σ is given by a ≤ x ≤ b ∧ σ(a) ≤ σ(b) ≤ uy,
where x represents the input, y represents the output, and σ

can be ReLu, sigmoid, or tanh. Let g[a,b](x, y) ≤ 0 be the LP
relaxation and � be the exact range of x. We have

{(x, y) | y = σ(x) ∧ x ∈ �} ⊆ {
(x, y) | g[a,b](x, y) ≤ 0

}
.

(a) (b) (c)

Fig. 6. LP relaxation for tanh: (a) LP relaxation [red area, as well as (b) and
(c)] when b ≤ 0. (b) LP relaxation when a<0<b∧ σ ′[a,b] > σ ′+(a)∧ σ ′[a,b] >

σ ′−(b). (c) Relaxation when a ≥ 0.

C. MILP Relaxation

Due to the high nonlinearity of the deep neural networks,
only using LP relaxation may be hard to capture the true
mapping and provide tight enough output range for safety
verification. Thus, based on the construction of the LP relax-
ation, we further tighten the relaxation by introducing integer
variables to capture the nonlinear mappings in deep neural
networks like activation and pooling. We form this relaxation
as an MILP problem. With more integer variables added, the
relaxation approaches the exact mapping gradually. We utilize
this property to refine the range after every operation by adding
integer variables and update the range to tighten the relaxation.
We show the convergence result at the end of this section.
The following are the detailed MILP encoding methods for
nonlinear operations in deep neural networks.

Max Pooling: Assume that the interval relaxation for a max-
pooling operation is given by Bx ≤ �x ≤ Bx ∧ By ≤ �y ≤ By,
where �x represents the input and �y represents the output. We
can use the classical Big-M method [37] to construct the MILP
transformation, which can be also found in [23]. Specifically,
given the number of integer variables ω ≥ IF · JF , the MILP
relaxation of the max-pooling relation can be obtained as
�MILP

MaxP(�x, �y, ω) =∧
i,j,k(h

ω(�x, �y)[i][j][k] ≤ 0), where

hω(�x, �y)[i][j][k] ≤ 0:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bx ≤ �x ≤ Bx, By ≤ �y ≤ By

�y[i][j][k] ≥ �x[(i− 1)SW+i′, (j− 1)SH+j′, k
]

1 ≤ i′ ≤ IF, 1 ≤ j′≤JF

�y[i][j][k] ≤ M
(
1− z[i′][j′][k]

)

+ �x[(i− 1)SW+i′, (j− 1)SH+j′, k
]

1≤i′≤IF, 1≤j′≤JF∑
1≤i≤IF,1≤j≤JF

z[i, j, r] = 1
z is a binary matrix.

(7)

Lemma 3 (Equivalence of MILP Relaxation for MaxP):
Assume that the interval relaxation for a max-pooling oper-
ation is given by Bx ≤ �x ≤ Bx ∧ By ≤ y ≤ By, where �x
represents the input and �y represents the output. Let � be the
exact range of �x and h(�x, �y)[i][j][k] be defined as (3). We have

{(�x, �y) | y = MaxP(�x) ∧ �x ∈ �} = {
(�x, �y) |�MILP

MaxP(�x, �y, ω)
}
.

Activation Function: Let the number of binary variables of
the activation function be ω ≥ 1, we can use the following
MILP relaxation:

g[a,b](x, y, ω) ≤ 0 :
∧

1≤i≤ω

(
g[ai,ai+1](x, y) ≤ M(1−z[i])

)

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3329

(a) (b) (c)

Fig. 7. MILP relaxation for tanh over [a, b] by (8): (a) MILP relaxation [red
area, as well as (b) and (c)] with one integer variable (i.e., LP relaxation).
Cases for (b) two and (c) three integer variables.

∧
(

ai=a+i
b− a

ω

)
∧

ω∑

i=0

z[i] = 1. (8)

In particular, for ReLU activation function, we can change
the setting of ai by letting a certain ai = 0. Then, (8) is
a equivalent conversion. Note that similar MILP formulation
for ReLU is also found in [12] and can be considered as a
special case of our relaxation.

Lemma 4 (Validity of MILP Relaxation for Activation
Function): Assume that the interval relaxation for an activa-
tion function σ is given by a ≤ x ≤ b ∧ σ(a) ≤ σ(b) ≤ uy,
where x represents the input, y represents the output, and σ

can be ReLu, sigmoid, or tanh. Let � be the exact range of
x, and g[a,b](x, y, ω) ≤ 0 be the MILP relaxation. We have

{(x, y) | y = δ(x) ∧ x ∈ �} ⊆ {
(x, y) | g[a,b](x, y, ω) ≤ 0

}
.

When the number of slack integer variables increases, finer
polygons are used for approximation. As a result, the area of
the polygon becomes smaller and in the limit will converge to
the actual nonlinear activation function. An example of MILP
relaxation for tanh over [a, b] with different number of integer
variables can be found in Fig. 7. Intuitively, given any point
x0 ∈ [a, b] and ω ≥ 1, we know that x0 ∈ [ai, ai+1], where i =
�[((x0 − a)ω)/(b− a)]�. Let Pi be the polygon determined
by g[ai,ai+1](x, y) ≤ 0. Then, we know the relaxation error
ε = max(x0,y)∈Pi |y − δ(x0)| is smaller than δ(ai+1) − δ(ai).
Thus, when ω→∞, δ(ai+1)−δ(ai)→ 0, the relaxation error
converges to zero.

Lemma 5 (Convergence of MILP Relaxation for Activation
Function): Assume that the interval relaxation for an activation
function σ is given by a ≤ x ≤ b ∧ σ(a) ≤ σ(b) ≤ uy, where
x represents the input, y represents the output, and σ can be
ReLu, sigmoid, or tanh. Let � be the exact range of x, and
g[a,b](x, y, ω) ≤ 0 be the MILP relaxation. We have

{(x, y) | y = δ(x) ∧ x ∈ �} → {
(x, y) | g[a,b](x, y, ω) ≤ 0

}

when ω→∞.
Now given the number of slack binary variables for all the

variables ω, we can define the corresponding MILP problem
as follows:

max(�y[1]) s.t.�y = �xn ∧ γ̂n(�xn−1, �xn)

∧ · · · ∧ γ̂1(�x0, �x1) ∧ �x0 ∈ X (9)

where γ̂i is defined as

γ̂i =
⎧
⎨

⎩

�MILP
MaxP(�xi−1, �xi,�i), max pooling

g(�xi−1, �xi,�i) ≤ 0, activation function
γi, otherwise.

Combined with Lemma 3 and Lemma 4, we can derive the
relation between yMILP(�) and yNLP.

Theorem 1 (Soundness): Given a neural network with the
input domain X , let yNLP and yMILP(�) be the two optimal val-
ues for the optimization problems in (1) and (9), respectively,
we have

yMILP(�) ≥ yNLP. (10)

Benefiting from Lemma 3 and Lemma 5, the convergence
of the optimal value can be guaranteed.

Theorem 2 (Convergence): Given a neural network with
the input domain X , let yNLP and yMILP(�) be the two
optimal values for the optimization problems in (1) and (9),
respectively, we have

lim
�→∞ yMILP(�) = yNLP. (11)

V. PROPAGATION BY SLIDING WINDOW

While the aforementioned MILP relaxation shows theo-
retical guarantees on convergence, solving the optimization
problem in (9) could still be challenging due to two issues.
The first is the number of integer variables. Note that the range
computed based on IBP in the initialization phase can be rather
loose and a large number of integer variables may be needed
to obtain a good approximation for the MILP in (9), which
greatly increases the complexity. The second issue is the over-
all scale of the programming problem. Even if we reduce �

to 1, which means the MILP in (9) degenerates to an LP, the
polynomial complexity of LP is still a challenging issue for
large neural networks.

Thus, instead of the “global” coding scheme in (9), we adopt
a “local” MILP formulation in this section to alleviate the
computation burden brought by the two challenges above. To
control the number of integer variables, we refine the vari-
able range in the hidden layers before computing the range of
the output layers. With a smaller range, fewer integer variable
are needed to achieve the similar approximation precision for
a variable. To control the scale of the programming problem
for refining a variable, we only encode the constraints in the
previous limited operations rather than all the previous opera-
tions. In addition, we only refine part of the variables in each
operation to further reduce the number of the integer variables
considered in each programming problem.

Our overall algorithm is shown in Algorithm 2. We first
initialize the number of binary slack variables for all the
variables (line 1). Then, we iteratively refine selected vari-
ables operation-by-operation for J iterations (lines 2–10).
Specifically, a heuristic approach is proposed to rank the
importance of the variables in each operation, and select the
top ranking variables with the number determined by the given
percentage parameter p (line 4). For each selected variable that
needs to be refined, we first increase the binary slack variables
by 1 (line 6), and then use a sliding-window-based approach to
only encode partial constraints of the network (line 7). Finally,
we obtain the upper bound of y[1] (line 16). The key issues
are how to refine the variable range by sliding window and
how to choose the most important variables to be refined.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

3330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Algorithm 2: Propagation by Sliding Window
Data: Relations for the operations γ1, . . . , γn, input

space X , interval relaxation I, iterations J,
refinement percentage p, sliding window s

Result: Upper bound of the output y[1]
// Initialize the number of integer

variables
1 �← 1
// Propagate intervals by sliding

window
2 for j← 1 to J do
3 for i← 1 to n do
4 refineList ← Strategy(I,�i, p);
5 for v ∈ refineList do
6 �i[v]← �i[v]+ 1;
7 Ii[v] ← UpdateRange(γi : γi−s, �i : �i−s,I,

v);
8 end
9 end

10 end
11 return IN[1];

We first show how to refine the variable range. Specifically,
consider the variable �xi[v], following (1), we can use the
following NLP to compute its exact upper bound:

max(�xi[v]) s.t. γi(�xi−1, �xi) ∧ · · · ∧ γ1(�x0, �x1) ∧ �x0∈X . (12)

Let γ̂i be defined as

γ̂i =
⎧
⎨

⎩

�MILP
MaxP(�xi−1, �xi,�i), max pooling

g(�xi−1, �xi,�i) ≤ 0, activation function
γi, otherwise.

Given the length of the sliding window of layers that consist
of s operations, the number of slack binary variables �, and
the interval relaxation I, we know that

(
γ̂i−s(�xi−s−1, �xi−s) ∧ · · · ∧ γ̂1(�x0, �x1) ∧ �x0 ∈ X) ⊆ Ii−s.

Following (9), we can use the following MILP to compute an
upper bound of �xi[v]:

max(�xi[v]) s.t. γ̂n(�xi−1, �xi) ∧ · · · ∧ γ̂n(�xi−s+1, �xi−s) ∧ Ii−s.

(13)

Proposition 2: Given a neural network with the input
domain X , let xNLP and xSMILP(�) be the two optimal values
for the optimization problems in (12) and (13), respectively,
we have

xSMILP(�) ≥ xNLP. (14)

Now, we introduce how to choose variables by heuristics
for refinement. In this article, we only perform refinement
for activation functions, as no relaxation is needed for lin-
ear operations and max pooling (which can be equivalently
transformed into linear constraints). Note that our heuristic
approach to choose neurons to be refined for activation func-
tions could be extended to max-pooling operation, but requires
a more sophisticated manner. We will leave it as future work.

Specifically, we define the “importance” of a variable xi[v]
by the following heuristic ranking function:

rank(xi[v]) =
{

(bi[v]−ai[v])/�i[v] Conv. layer
(bi[v]−ai[v])/�i[v]·Wi+1[v] FC layer

(15)

where ai[v] and bi[v] denote the two ends of the range, �i[v]
denotes the number of slack integer variables for the variable,
and Wi+1[v] denotes the weight in the next linear transforma-
tion. Intuitively, (bi[v]−ai[v])/�i[v] describes the granularity
of the partition and Wi+1[v] describes the impact of the vari-
able on the following operations. Given a hyperparameter p,
we always pick the top p% variables in each operation with
respect to the value of the ranking function to perform the
refinement.

Remark 1: Note that for each variable, the length of its
range is finite and is not larger than the one given by the
initial interval relaxation. Thus, each variable has the chance
to be refined for enough iterations. For instance, consider
an activation function in a convolution layer with m vari-
ables and their ranges are defined as [a1, b1], . . . , [am, bm],
let [a′, b′] be the smallest range. Then, we can see that after
J ≥∑m

i=1�(bi − ai)/(b′ − a′)�, every variable is refined for at
least once.

Remark 2: If the length of the sliding window s is large
enough, that is, MILP in (13) encodes all the constraints in the
previous operations for each variable, convergence is still guar-
anteed since each variable will be refined when the iteration J
is big enough (as explained in Remark 1). However, conver-
gence is no longer maintained when s < n. It is due to the loss
of dependencies of the operations that the constraints are not
encoded. In the experiments, we can find such treatment will
not greatly influence the output range precision in practice.

VI. EXPERIMENTS

We implement our approach in a tool called LayR (stands for
Layerwise Refinement). We evaluate the output range improve-
ment of LayR over the range provided in initial estimation and
compare the width of output range with NNV [16], [17]. Most
of the output range analysis tools for neural network is com-
patible with our approach and can provide initial estimation
for our approach. Here, we choose ERAN [10], [13], [18] as
the initialization method due to its generality on supporting
different activation functions and its efficiency.

Evaluation Datasets: We use the popular image datasets
MNIST and CIFAR-10 in our experiment. MNIST contains
grayscale images of size 28 × 28 pixels, whereas CIFAR-10
contains RGB images of 32× 32 with three channels.

Neural networks: Table I shows seven different MNIST and
CIFAR-10 feedforward networks (FNNs) and convolutional
networks (CNNs) with heterogeneous activations in our exper-
iment. We train all networks with cross-entropy loss, which is
often used in classification tasks [2]. The largest networks in
our experiments contain > 87K neurons whereas the deepest
network contains ten layers.

Machine Configuration: All experiments were ran on a
3.6-Hz 12 core Intel Core i7-6850K CPU with 128 GB of
main memory. MILP problems are solved using Gurobi [38].

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3331

TABLE I
NEURAL NETWORK SETTING AND EXPERIMENTAL RESULTS: WE DO THE EXPERIMENTS ON DATASETS: MNIST AND CIFAR. FOR EACH NEURAL

NETWORK #, Type DENOTES THE NEURAL NETWORK TYPE, Neurons DENOTES THE TOTAL NUMBER OF NEURONS OF THE DEEP NEURAL NETWORKS,
Layers DENOTES THE NUMBER OF FULLY CONNECTED LAYERS (FC) AND CONVOLUTIONAL LAYERS (CONV), AND Activation DENOTES THE TYPE OF

ACTIVATION FUNCTIONS USED IN THE NETWORK. WE PICK THE FIRST FOUR TEST IMAGES IN EACH DATASET AND FOR EACH IMAGE, WE

CONSTRUCT AN INPUT SET AS A BOX WITH THE CENTER ON EACH IMAGE. THE LENGTH OF THE EDGE IS DEFINED AS 2× PERTURBATION. FOR

MNIST, THE PERTURBATION IS ε = 0.01, AND FOR CIFAR-10, THE PERTURBATION IS ε = 0.001. THE INITIALIZATION Time SHOWS THE

COMPUTATION TIME FOR THE PICKED INITIALIZATION METHOD. UNDER OUR APPROACH, p IS THE PERCENTAGE OF THE REFINED NEURONS OUT OF

TOTAL NUMBER OF NEURONS IN EACH LAYER. WE ALSO DENOTE THE NUMBER OF REFINED NEURONS BENEATH THE PERCENTAGE NUMBER. s IS

THE TRACEBACK LAYER NUMBER. J IS THE NUMBER OF ITERATIONS CHOSEN. WE SHOW THE RESULT AS THE RANGE IMPROVEMENT AFTER

REFINEMENT AFTER FIRST ITERATION, IT-1 RANGE IMPROVEMENT, AND THE FINAL REFINED RANGE, FINAL RANGE IMPROVEMENT. THE RUNTIME

OF THE REFINEMENT PROCESS IS SHOWN UNDER THE COLUMNS OF IT-1 TIME AND TOTAL ITERATION TIME IN SECONDS

A. Effectiveness of Layer-Wise Refinement

We focus on the range of the dimension of ground-truth
logit (dimension corresponding to the true class) since it con-
tains the most important information in classification tasks.
Experimental results are shown in Table I. After the first
iteration, LayR can already achieve a significant improvement
over the initial estimation, and in most cases, such improve-
ment of range volume continuously grows after four iterations.
We show that bridging the propagation-based methods with
programming-based method in a dividing and sliding man-
ner is efficient and can bring tighter range than the pure
propagation-based method. An interesting phenomenon is that
the first iteration provides more significant improvement than
the following iterations. One reason is that the most important
neurons are selected and refined in the first iteration. It is also
worthy noting that for the largest CNN considered here, i.e.,
ConvSuper for the CIFAR dataset, the improvement is rela-
tively minor. The reason is that in order to control scale of
the programming for the large network, we only select two
traceback layers to refine (fewer than the other networks).
The impact of the hyperparameters, including the iterations

and refinement percentage, as well as the length of sliding
window will be elaborated later.

We can also observe that LayR costs more time than the
symbolic-propagation-based approach ERAN (used as initial-
ization) in some cases. The large number of neurons that
are refined in each iteration brings this computation over-
head. Especially when processing the final iteration, refining
a neuron may need to solve an MILP with hundreds of inte-
ger variables. Even though the number of integer variables is
much smaller than directly encoding the whole neural network
as (9), it still needs some time for computation with the current
optimization techniques.

B. Comparison With NNV

We also compare LayR with the neural network verification
tool NNV [16] on the same set of benchmarks. Note that most
of other tools are limited to neural networks with a specific
type of activation functions (e.g., [23] can only handle ReLU
networks) and/or do not provide capability for dealing with
convolutional layers. The comparison results with NNV are
shown in Table II. We only include the results for MNIST I,

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

3332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE II
COMPARISON WITH NNV [16]. WE COMPARE NNV AND OUR METHOD

BY SHOWING THE WIDTH OF THE ESTIMATED RANGE ON THE

GROUND-TRUTH LOGIT OBTAINED FROM BOTH METHODS. THE

COMPUTATION TIME IS SHOWN IN SECONDS FOR BOTH METHODS

II, and III, since NNV did not terminate for the other networks
(MNIST IV-V and CIFAR VI-VII) with a timeout of 24 h,
while the longest running time of our method is around 5 h
on the same machine.

Experimental results across the benchmarks show 10.55%
(Network II, NNIST-3) to 94.69% (Network II, NNIST-4)
improvement on output range estimation by our approach
against NNV. In [16], NNV considers a special kind of pixel
brightening attacks, where the brightness of a small number
of pixels can be independently varied. In our experiments, we
consider L∞-norm-bounded perturbations, which is a preva-
lent model in adversarial attack literature [10], [15]. We refer
to the variables that are used to express the input interval
range X under this perturbation model as perturbation vari-
ables. Under L∞-norm-bounded perturbations, we need the
same number of perturbation variables as the number of image
pixels to describe X , which is significantly more than the
number of perturbation variables considered in the brightening
attack in [16]. We speculate that the image-star representa-
tion used in [16] may result in a more conservative estimate
when the number of such variables is large, which explains
the observed difference in output range estimation as shown
in Table II.

In addition, when the neural networks become larger, the
efficiency of NNV degrades quickly—NNV finished network
I and # II in seconds, # III in around an hour, but did not
terminate for any of the other larger networks within 24 h. In
our case, the proposed “divide and slide” mechanism allows us
to limit the size of each optimization problem and effectively
cope with larger networks.

VII. DISCUSSION

A. Effectiveness of LP Refinement

As aforementioned, the MILP-based layer-wise refinement
(we use MILP refinement for short in this section) solves the

Fig. 8. Output volume and runtime comparison between LP refinement and
MILP refinement on MNIST.

optimization with a large number of integer variables when
refining a neuron range, which is the efficiency bottleneck for
our approach. It thus motivates the question of how effec-
tive an LP refinement would be, i.e., applying Algorithm 2
without line 6. Below, we compare LP refinement with MILP
refinement while keeping the rest of our algorithm intact.

The experimental results on the MNIST dataset are shown
in Fig. 8. Without introducing integer variable, the complexity
of LP refinement is significantly lower than MILP refine-
ment. On the other hand, while LP refinement works well
on shallow networks (ConvSmall), its performance degrades
(compared to MILP refinement) when the neural networks
become deeper (ConvMed and ConvBig). This is because LP
relaxation captures less interlayer dependencies than the MILP
relaxation.

B. Impact of Hyperparameters

In LayR, there are three hyperparameters that need to be
determined in advance: 1) the percentage of neurons to be
refined in each layer p; 2) the length of the sliding win-
dow/traceback number s; and 3) the iteration number J. In
theory, each parameter would improve the performance when
increasing. However, increasing the value of these parameters
also makes our approach more time consuming. In this sec-
tion, we demonstrate the tradeoff between the precision and
computation time empirically. In each set of experiments, we
tune one parameter and fix the other two. The results under
different settings of hyperparameters on output range analysis
of CNNs trained on the MNIST dataset can be found in Fig. 9.

Fig. 9(a)–(c) shows the tradeoff with respect to the iteration
number, the length of sliding window, and neuron selection
percentage of each layer, respectively. In terms of the out-
put range precision, the output range is getting tighter with
a larger hyperparameter in most cases. We can also observe
that the computation time grows largely with larger values
of each hyperparameter. Such phenomenon conforms to our
expectations, since the number of integer variables grows lin-
early with each hyperparameter increasing. It is worth noting

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3333

(a)

(b)

(c)

Fig. 9. Impact of each hyperparameter on the precision and computation
time for CNNs trained on the MNIST dataset. (a) Output volume com-
parison for different iterations. The blue bar denotes the volume of the
initial range. The orange/green/red/purple bar denotes the refined range after
the first/second/third/fourth iteration, respectively. (b) Output range volume
comparison with different numbers of the length of the sliding window or
traceback layers. The blue bar denotes the volume of the initial range. The
orange/green/red bar denotes the refined range with the traceback layers equal-
ing the one/two/three, respectively. (c) Output range volume comparison with
different numbers of refined neurons. The blue bar denotes the volume of
the initial range. The orange/green/red bar denotes the refined range while
refining (1/4)/(1/2)/1 of the neurons comparing to the original setting in
Table I.

that for ConvSmall on MNSIT, each iteration costs similar
time [Fig. 9(a)]. We speculate that this is due to that most
integer variables are removed by the presolve mechanism of

the MILP solver in Gurobi, which implies that our heuristic
neuron selection algorithm does not pick the most important
neurons.

Although the large values of these hyperparameters lead to
tighter relaxation and better refinement, we can also observe
that if we only use the programming-based method, the com-
putation overhead will be extremely large and hard to solve.
However, accompanying the propagation-based idea using the
sliding window and iteratively solving the problem signifi-
cantly reduce the size of the programming. The results also
show that our approach generate much tighter range than the
pure propagation-based approach. Even when the convergence
guarantee is missing here, empirically the propagation by slid-
ing window and iterative refinement gain great benefits in
terms of computation and precision.

C. Limitations

Observing the experimental results shown in the above sec-
tions, we can see that the main weakness of our approach
is the efficiency. Though more iterations, larger refinement
percentage and length of sliding window can help improve
the performance, the aforementioned results show that we can
hardly enlarge those hyperparameters too much. The funda-
mental problem behind is that it would introduce too many
integer variables, which is an important factor on the com-
plexity of MILP. A potential improvement is to come up with
finer variable selection strategy. One direction is to group and
characterize the variables based on their impact on the output.
Better the variables’ range can be refined, fewer integer vari-
ables are needed. We will explore this direction in our future
work.

VIII. CONCLUSION

In this article, we proposed an iterative method for the out-
put range analysis of deep neural networks. The approach is
based on the proposed convex polygonal relaxation for nonlin-
earity in networks, which enables MILP with the capability to
tune the tightness of the relaxation by introducing more integer
variables. In the initialization phase, we compute the primary
range by IBP. In each iteration, our approach iteratively iden-
tifies neurons to refine the relaxation. To better manage the
growth of the number of integer variables as the refinement
progresses, when refining a variable, we encode only partial
constraints by tracebacking a few previous layers, rather than
all the layers. We showed the overall framework is sound and
provides a valid overapproximation. Our future work includes
exploring other tools for initialization and better heuristics to
identify the important neurons for refinement.

ACKNOWLEDGMENT

The authors would like to thank Hoang-Dung Tran and
Taylor T. Johnson (Vanderbilt University, Nashville, TN, USA)
for their help with running NNV on our benchmarks for com-
parison. They would also like to thank Gagandeep Singh (ETH
Zurich, Zürich, Switzerland) for sharing and explaining their
code in ERAN, which helps them to integrate ERAN in their
tool for initialization.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

3334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

REFERENCES

[1] W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of
deep neural networks with provable guarantees,” in Proc. Int. Joint Conf.
Artif. Intell., 2018, pp. 2651–2659.

[2] C. Szegedy et al., “Intriguing properties of neural networks,” 2013.
[Online]. Available: arXiv:1312.6199.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014. [Online]. Available: arXiv:1412.6572.

[4] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2613–2621.

[5] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “ReachNN: Reachability
analysis of neural-network controlled systems,” ACM Trans. Embedded
Comput. Syst., vol. 18, no. 5s, pp. 1–22, 2019.

[6] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in
Proc. Hybrid Syst. Comput. Control (HSCC), 2019, pp. 157–168.

[7] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network con-
trollers,” in Proc. 22nd ACM Int. Conf. Hybrid Syst. Comput. Control,
2019, pp. 169–178.

[8] W. Xiang and T. T. Johnson, “Reachability analysis and safety verifi-
cation for neural network control systems,” 2018. [Online]. Available:
arXiv:1805.09944.

[9] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in Proc. USENIX
Security Symp., 2018, pp. 1599–1614.

[10] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 10802–10813.

[11] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Proc. Int. Conf. Comput.-Aided Verification, 2017, pp. 97–117.

[12] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in Proc. NASA Formal
Methods Symp., 2018, pp. 121–138.

[13] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “AI2: Safety and robustness certification of neural networks
with abstract interpretation,” in Proc. IEEE Symp. Security Privacy (SP),
2018, pp. 3–18.

[14] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set computa-
tion and safety verification for neural networks with RELU activations,”
2017. [Online]. Available: arXiv:1712.08163.

[15] H. Zhang, P. Zhang, and C.-J. Hsieh, “Recurjac: An efficient recur-
sive algorithm for bounding jacobian matrix of neural networks and
its applications,” in Proc. AAAI Conf. Artif. Intell. (AAAI), Dec. 2019,
pp. 5757–5764.

[16] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of deep
convolutional neural networks using imagestars,” in Proc. Int. Conf.
Comput.-Aided Verification, 2020, pp. 18–42.

[17] H.-D. Tran et al., “NNV: The neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems,”
in Proc. 32nd Int. Conf. Comput.-Aided Verification (CAV), Jul. 2020,
pp. 3–17.

[18] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “Boosting robustness
certification of neural networks,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2019, p. 6.

[19] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Proc. Int. Conf. Comput.-Aided Verification,
2017, pp. 3–29.

[20] C.-H. Cheng, G. Nöhrenberg, and H. Ruess, “Maximum resilience
of artificial neural networks,” in Proc. Int. Symp. Autom. Technol.
Verification Anal., 2017, pp. 251–268.

[21] M. Fischetti and J. Jo, “Deep neural networks as 0–1 mixed inte-
ger linear programs: A feasibility study,” 2017. [Online]. Available:
arXiv:1712.06174.

[22] A. Lomuscio and L. Maganti, “An approach to reachability analysis
for feed-forward RELU neural networks,” 2017. [Online]. Available:
arXiv:1706.07351.

[23] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in Proc. Int. Conf. Learn.
Represent., 2019, p. 6.

[24] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Proc. Int. Symp. Autom. Technol. Verification Anal., 2017,
pp. 269–286.

[25] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 5286–5295.

[26] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A
dual approach to scalable verification of deep networks,” in Proc. UAI,
vol. 1, 2018, p. 2.

[27] R. Bunel et al., “Lagrangian decomposition for neural network verifica-
tion,” 2020. [Online]. Available: arXiv:2002.10410.

[28] A. Raghunathan, J. Steinhardt, and P. S. Liang, “Semidefinite relaxations
for certifying robustness to adversarial examples,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 10877–10887.

[29] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidef-
inite programming,” 2019. [Online]. Available: arXiv:1903.01287.

[30] P. Prabhakar and Z. R. Afzal, “Abstraction based output range analysis
for neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 15762–15772.

[31] J. Fan, C. Huang, W. Li, X. Chen, and Q. Zhu, “ReachNN*: A tool
for reachability analysis of neural-network controlled systems,” in Proc.
Int. Symp. Autom. Technol. Verification Anal. (ATVA), 2020.

[32] J. Fan, C. Huang, W. Li, X. Chen, and Q. Zhu, “Towards verification-
aware knowledge distillation for neural-network controlled systems,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2019,
pp. 1–8.

[33] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition:
A convolutional neural-network approach,” IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jan. 1997.

[34] M. Balunovic, M. Baader, G. Singh, T. Gehr, and M. Vechev, “Certifying
geometric robustness of neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 15287–15297.

[35] X. Huang and L. Zhang, “Analyzing deep neural networks with symbolic
propagation: Towards higher precision and faster verification,” in Proc.
Stat. Anal. 26th Int. Symp. (SAS), vol. 11822. Porto, Portugal, Oct. 2019,
p. 296.

[36] M. Balunovic and M. Vechev, “Adversarial training and provable
defenses: Bridging the gap,” in Proc. Int. Conf. Learn. Represent., 2020.

[37] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[38] Gurobi Optimization. (2020). Gurobi Optimizer Reference Manual.
[Online]. Available: http://www.gurobi.com

Chao Huang received the Ph.D. degree in computer
science from Nanjing University, Nanjing, China, in
2018.

He is currently a Postdoctoral Fellow with
the ECE Department, Northwestern University,
Evanston, IL, USA. His current research interests
include verification and design toward safety and
security for cyber-physical systems, including but
not limit to learning-enabled systems.

Jiameng Fan (Graduate Student Member, IEEE)
is currently pursuing the Ph.D. degree in electrical
engineering with the Department of Electrical and
Computer Engineering, Boston University, Boston,
MA, USA.

His research interests lie in the intersection of
machine learning, formal methods (verification and
synthesis), and robotics.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DIVIDE AND SLIDE: LAYER-WISE REFINEMENT FOR OUTPUT RANGE ANALYSIS OF DEEP NEURAL NETWORKS 3335

Xin Chen received the Doctor rerum naturalium
(Doctor of natural sciences) degree from RWTH
Aachen University, Aachen, Germany, in 2015.

He is currently an Assistant Professor of com-
puter science with the University of Dayton, Dayton,
OH, USA. His research interests mainly focus on
solving the safety and security problems for the
dynamical systems equipped with AI controllers
using numerical and formal methods.

Wenchao Li received the Ph.D. degree in elec-
trical engineering and computer science from the
University of California at Berkeley, Berkeley, CA,
USA, in 2013.

He is currently an Assistant Professor of electrical
and computer engineering with Boston University,
Boston, MA, USA. His research interests lie broadly
in the area of dependable computing, with a recent
focus at the intersection of formal methods and
machine learning, and with applications to cyber-
physical systems, design automation, and AI safety.

Qi Zhu received the Ph.D. degree in electrical engi-
neering and computer science from the University
of California at Berkeley, Berkeley, CA, USA, in
2008.

He is currently an Associate Professor of elec-
trical and computer engineering with Northwestern
University, Evanston, IL, USA. His research
interests include design automation for cyber-
physical systems (CPS) and Internet of Things,
cyber-physical security, safe and secure machine
learning for CPS, and system-on-chip design, with

applications in domains, such as automotive electronic systems, connected
vehicles, and energy-efficient buildings.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 24,2024 at 16:24:14 UTC from IEEE Xplore. Restrictions apply.

	Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks
	Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks

