A Synthesis of finite difference methods and the jump process arising in the pricing of Contingent Claim

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/189
A synthesis of finite difference method and jump process

Dan Zhang
Advisor: Paul W Ello

Abstract

It is demonstrated that approximation of the solution of the Black-Scholes partial differential equation by using a finite difference method is equivalent to approximating the diffusion process by a jump process and therefore the finite difference approximation is a type of numerical integration. In particular, we establish that the explicit finite difference approximation is equivalent to approximating the diffusion process by a jump process, initially introduced by Cox and Ross, while the implicit finite difference approximation amounts to approximating the diffusion process by a more general type of jump process. This work has been introduced by Brennan and Schwartz, The Journal of Financial and Quantitative Analysis, [13] (1978).

Introduction

In mathematics, finite-difference methods are numerical methods for approximating the solutions to differential equations using finite difference equations to approximate derivatives. The Black-Scholes model is a mathematical model of a financial market containing certain derivative investment instruments.

In 1973, Black and Scholes published the paper "The Pricing of Option and Corporate Liabilities" and the Black-Scholes Model was first introduced.

\[
\frac{1}{2} \sigma^2 S^2 H_{ss} + rS H_s + H_t + H = 0
\]

We use the log transform of Black-Scholes equation. We define \(y=\ln S \), \(W(y,t)=H(s,t) \) and get the log transform of Black-Scholes partial differential equation

\[
\frac{1}{2} \sigma^2 W_{yy} + (r - \frac{1}{2} \sigma^2) W_y + W_t - rW = 0
\]

Explicit Finite Difference Method

\[
W(y,t)=W(y,h,0)=W_{i,j}
\]
\[
W_y=(W_{i+1,j} - W_{i-1,j})/2h
\]
\[
W_{yy}=(W_{i+1,j+1} - 2W_{i,j+1} + W_{i-1,j+1})/h^2
\]
\[
W_t=(W_{i,j+1} - W_{i,j})/kh
\]

We make the substitution so that the corresponding difference equation is

\[
W_{ij}(1+rk)=aW_{i-1,j+1}+bW_{ij}+cW_{i+1,j+1}
\]

where

\[
a=[\frac{1}{2} \sigma^2/h^2 - \frac{1}{2}(r - \frac{1}{2} \sigma^2)/h]k
\]
\[
b=1 - \frac{\sigma^2}{h^2}k
\]
\[
c=[\frac{1}{2} \sigma^2/h^2 + \frac{1}{2}(r - \frac{1}{2} \sigma^2)/h]k
\]

If we choose

\[
h \leq \sigma^2/[(r - \frac{1}{2} \sigma^2)^2] \quad \text{and} \quad k \leq \sigma^2/(r - \frac{1}{2} \sigma^2)^2
\]

We can consider \(a, b, c \) are probabilities and the log transform of the stock price follow the jump process.

\[
E[dy] = h[p + p] = (r - \frac{1}{2} \sigma^2)k
\]
\[
V(dy) = \sigma^2 k - (r - \frac{1}{2} \sigma^2)^2 k^2
\]

According to the mean and variance of the jump process. We can write

\[
dy = (r - \frac{1}{2} \sigma^2)dt + \sigma dz
\]

The jump process approximate the diffusion process.

Implicit Finite Difference Method

\[
W(y,t)=W(y,h,0)=W_{i,j}
\]
\[
W_y=(W_{i+1,j} - W_{i-1,j})/2h
\]
\[
W_{yy}=(W_{i+1,j+1} - 2W_{i,j+1} + W_{i-1,j+1})/h^2
\]
\[
W_t=(W_{i,j+1} - W_{i,j})/kh
\]

So that the corresponding equation is

\[
W_{ij+1}(1-rk)=aW_{i-1,j}+bW_{ij}+cW_{i+1,j}
\]

Where

\[
a=[-\frac{1}{2} \sigma^2/h^2 + \frac{1}{2}(r - \frac{1}{2} \sigma^2)/h]k
\]
\[
b=1 + \frac{\sigma^2}{h^2}k
\]
\[
c=[-\frac{1}{2} \sigma^2/h^2 - \frac{1}{2}(r - \frac{1}{2} \sigma^2)/h]k
\]

This system of equations may be written in matrix form as \(AW=f \). We solve the system using Gaussian elimination.

\[
W_{ij} = (1 - rk) \sum_{n=-\infty}^{\infty} P_n \ast W_{i+n,j+1}
\]

\[\approx \frac{1}{1+rk} \sum_{n=-\infty}^{\infty} P_n \ast W_{i+n,j+1}\]

The expected value of the claim at the next instant is obtained by assuming that \(y \), the logarithm of the stock price follows the jump process. We obtain the mean and the variance of \(dy \).

\[
E[dy] = (r - \frac{1}{2} \sigma^2)k
\]
\[
V(dy) = \sigma^2 k - (r - \frac{1}{2} \sigma^2)^2 k^2
\]
\[
dy = (r - \frac{1}{2} \sigma^2)dt + \sigma dz
\]

The jump process approximate the diffusion process.