
University of Dayton University of Dayton

eCommons eCommons

Computer Science Faculty Publications Department of Computer Science

8-2021

Verification of Piecewise Deep Neural Networks: A Star Set Verification of Piecewise Deep Neural Networks: A Star Set

Approach with Zonotope Pre-filter Approach with Zonotope Pre-filter

Hoang-Dung Tran

Neelanjana Pal

Diego Manzanas Lopez

Patrick Musau

Xiaodong Yang

See next page for additional authors

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

 Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer Sciences

Commons

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/cps_fac_pub
https://ecommons.udayton.edu/cps
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages

Author(s) Author(s)
Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet
Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson (0000-0001-8021-9923)

https://doi.org/10.1007/s00165-021-00553-4
BCS © 2021
Formal Aspects of Computing (2021) 33: 519–545

Formal Aspects
of Computing

Verification of piecewise deep neural networks:
a star set approach with zonotope pre-filter
Hoang-Dung Tran1, Neelanjana Pal2, Diego Manzanas Lopez2, Patrick Musau2,

Xiaodong Yang2, Luan Viet Nguyen3, Weiming Xiang4, Stanley Bak5 and

Taylor T. Johnson 2

1University of Nebraska Lincoln, NE, USA
2Vanderbilt University, TN, USA
3University of Dayton, OH, USA
4Augusta University, GA, USA
5Stony Brook University, NY, USA

Abstract. Verification has emerged as a means to provide formal guarantees on learning-based systems incorpo-
rating neural network before using them in safety-critical applications. This paper proposes a new verification
approach for deep neural networks (DNNs) with piecewise linear activation functions using reachability analysis.
The core of our approach is a collection of reachability algorithms using star sets (or shortly, stars), an effective
symbolic representation of high-dimensional polytopes. The star-based reachability algorithms compute the out-
put reachable sets of a networkwith a given input set before using them for verification. For a neural networkwith
piecewise linear activation functions, our approach can construct both exact and over-approximate reachable sets
of the neural network. To enhance the scalability of our approach, a star set is equipped with an outer-zonotope
(a zonotope over-approximation of the star set) to quickly estimate the lower and upper bounds of an input
set at a specific neuron to determine if splitting occurs at that neuron. This zonotope pre-filtering step reduces
significantly the number of linear programming optimization problems that must be solved in the analysis, and
leads to a reduction in computation time, which enhances the scalability of the star set approach. Our reacha-
bility algorithms are implemented in a software prototype called the neural network verification tool, and can
be applied to problems analyzing the robustness of machine learning methods, such as safety and robustness
verification of DNNs. Our experiments show that our approach can achieve runtimes twenty to 1400 times faster
than Reluplex, a satisfiability modulo theory-based approach. Our star set approach is also less conservative than
other recent zonotope and abstract domain approaches.

Keywords: Formal verification · Safety · Robustness · Neural network verification · Neural networks

1. Introduction

Learning-based systems using deep neural networks (DNNs) have become popular choices for solving many
complicated problems in practice such as image processing, natural language translation, market prediction
[LKB+17, HDY+12, LWL+17]. Recently, these systems have appeared in safety critical applications such as
autonomous vehicles [BDTD+16] and air traffic collision avoidance systems [JKO18]. Utilizing NNs is promising

Correspondence to: Huang-Dung Tran, e-mail: trhoangdung@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00553-4&domain=pdf
http://orcid.org/0000-0001-8021-9923

520 H.-D. Tran et al.

but may put the system at a high risk which is unacceptable for safety critical applications. Notably, it has been
proved that well-trained NNs are vulnerable to adversarial attacks where a slight change in the input can lead to
a huge change at the output [MDFF16]. Recent incidents in autonomous driving (e.g., Tesla [Hei20] and Uber
[Muo17]) raises an urgent need for techniques and tools that can formally verify the safety and robustness of
NNs before utilizing them in safety-critical applications.

Safety verificationand robustness certificationofDNNshaveattractedahugeattention fromdifferent commu-
nities such as machine learning [LM17, KL18, ALMP18, SGM+18, AKLP19, WPW+18b, WZC+18, ZWC+18],
formal methods [PT10, KBD+17, TML+19a, XTJ19, XTJ17, HKWW17, DJST17, XTJ18], and security
[GMDC+18, WPW+18b, WPW+18a], and a recent survey of the area is available [XMW+18]. Analyzing the
behavior of a DNN can broadly be categorized into exact and over-approximate analyses. For the exact anal-
ysis, the SMT-based [KBD+17] and polyhedron-based approaches [TML+19a, XTJ17] are notable representa-
tives. For the over-approximate analysis, the mixed-integer linear program (MILP) [DJST17], interval arithmetic-
[WPW+18b,WPW+18a], zonotope- [SGM+18], input partition- [XTJ19], linearization- [WZC+18], and abstract-
domain- [SGPV19] based are fast and efficient approaches. While the over-approximate analysis is usually faster
and more scalable than the exact analysis, it guarantees only the soundness of the result. In contrast, the exact
analysis is usually more time-consuming and less scalable. However, it guarantees both the soundness and com-
pleteness of the result [KBD+17]. Although the over-approximate analysis is fast and scalable, it is unclear how
good the over-approximation is in term of conservativeness since the exact result is not available for comparison.
Importantly, if an over-approximation approach is too conservative for neural networks with small or medium
sizes, it will potentially produce huge conservative results for DNNs with a large number of layers and thousands
of neurons since the over-approximation error is accumulated quickly over layers. Therefore, a scalable, exact
reachability analysis is crucial not only for formal verification of DNNs, but also for estimating the conservative-
ness of current and up-coming over-approximation approaches.

Recently, a novel approach for verification of DNNs using star set has been proposed in [TML+19b]. Star fits
perfectly for the reachability analysis of DNNs due to its following essential characteristics: (1) an efficient (exact)
representation of large input sets; (2) fast and cheap affine mapping operations; 3) inexpensive intersections with
half-spaces and checking empty. By using star sets, we avoid the expensive affine mapping operation in polyhedron-
based approach [TML+19a] and thus, reduce the verification time significantly. The star set approach performs
reachability analysis for feedforward DNNs layer-by-layer. For DNNs with piecewise linear activation functions,
we can perform both exact analysis and over-approximate analysis. In the case of exact analysis, the output
reachable set of each layer is a union of a set of stars. Based on this observation, the star-based exact reachability
algorithm naturally can be designed for efficient execution on multi-core platforms where each layer can handle
multiple input sets at the same time. In the case of over-approximate analysis, the output reachable set of each
layer is a single star which can be constructed by doing point-wise over-approximation of the reachable set at all
neurons of the layer. Notably, the star set approach is the first approach that can visualize the exact behavior of a
DNN with piecewise linear activation functions. Additionally, by exploiting the power of parallel computing, the
star set approach is applicable for real-world applications.

In this paper, we enrich the original star set method [TML+19b] in following directions. Firstly, we improve
the computation time and scalability of the star set approach using zonotope pre-filtering. Secondly, we extend
the star set approach to new classes of piecewise activation functions such as saturating linear activation function
(or shortly, satlin), symmetric saturating linear activation functions (or shortly, satlins), and leaky ReLUs. Lastly,
we re-evaluate the improved star set approach on safety verification of all 45 ACAS XU networks [JKO18] and
robustness verification of a collection of image classification DNNs.

Verification of neural networks using star sets 521

The improvement is based on a zonotope pre-filtering method [BTHJ20] in which a star set is equipped with
an outer-zonotope to estimate quickly the lower and upper bounds of the star input set at specific neuron to
determine if splitting occurs at that neuron without needing to solve LP optimizations. In the original star set
method, these bounds are determined by solving two LP problems. Thus, if the number of neurons is large, the
number of LP problems increases quickly. Moreover, in the exact analysis, the number of LP problems increases
exponentially as the number of stars in the reachable set grows exponentially [TML+19b]. Therefore, minimizing
the number of LP problems is crucial for scalability of the star-set approach.

We evaluate the improved reachability algorithms compared to the original star set approach [TML+19b],
Reluplex [KBD+17], the zonotope approach [SGM+18], and the abstract domain approach [SGPV19]. The
experimental results show that the improved algorithms is several times faster the original algorithms. It can
achieve 20× to 1408× faster than Reluplex while can visualize the precise behavior of the ACAS Xu networks
and can construct the complete set of counter example inputs in the case that a safety property is violated.
Our over-approximate reachability algorithm is also much less conservative than the zonotope and new abstract
domain approaches. It successfully verifies many safety properties of ACASXu networks while the zonotope and
abstract domain approaches fail due to their large over-approximation errors. Our over-approximate reachability
algorithm also provides a better robustness certification for image classification DNN in comparison with the
zonotope and abstract domain approaches.

In summary, themain contributions of this paper are: 1) propose novel, fast and scalablemethods for the exact
and over-approximate reachability analysis ofDNNswith popular classes of piecewise linear activation functions;
2) implement the proposed methods in NNV toolbox that is available online for evaluation and comparison; 3)
provide a thorough evaluation of the new methods via real-world case studies.

2. Preliminaries

2.1. Machine learning models and symbolic verification problem

A feed-forward neural network (FNN) consists of an input layer, an output layer, and multiple hidden layers
in which each layer comprises of neurons that are connected to the neurons of preceding layer labeled using
weights. Given an input vector, the output of an FNN is determined by three components: the weight matrices
Wk , representing the weighted connection between neurons of two consecutive layers k −1 and k , the bias vectors
bk of each layer, and the activation function f applied at each layer. Mathematically, the output of a neuron i is
defined by:

yi � f (�n
j�1ωij xj + bi),

where xj is the j th input of the i th neuron, ωij is the weight from the j th input to the i th neuron, bi is the
bias of the i th neuron. In this paper, we are interested in FNN with ReLU activation functions defined by
ReLU (x) � max (0, x).

522 H.-D. Tran et al.

Definition 2.1 (Reachable Set of FNN) Given a bounded convex polyhedron input set defined as I � {x | Ax ≤
b, x ∈ R

n }, and an k -layers feed-forward neural network F � {L1, · · · ,Lk }, the reachable set F (I) � RLk
of the

neural network F corresponding to the input set I is defined incrementally by:

RL1 � {y1 | y1 � f1(W1x + b1), x ∈ I},
RL2 � {y2 | y2 � f2(W2y1 + b2), y1 ∈ RL1},

...

RLk
� {yk | yk � fk (Wkyk−1 + bk), yk−1 ∈ RLk−1},

where Wk , bk and fk are the weight matrix, bias vector and activation function of the k th layer Lk , respectively.
The reachable setRLk

contains all outputs of the neural network corresponding to all input vectors x in the input
set I.
Definition 2.2 (Safety Verification of FNN) Given a k -layers feed-forward neural network F , and a safety speci-
fication S defined as a set of linear constraints on the neural network outputs S � {yk | Cyk ≤ d}, the neural
network F is called to be safe corresponding to the input set I, we write F (I) � S , if and only ifRLk

∩ ¬S � ∅,
where RLk

is the reachable set of the neural network with the input set I, and ¬S is the complement of the set
S . Otherwise, the neural network is called to be unsafe F (I) � S .

2.2. Generalized star sets

Definition 2.3 (Generalized Star Set [BD17]) A generalized star set (or simply star) � is a tuple 〈c,V ,P〉 where
c ∈ R

n is the center, V � {v1, v2, · · · , vm} is a set of m vectors in R
n called basis vectors, and P : R

m → {
,⊥}
is a predicate. The basis vectors are arranged to form the star’s n ×m basis matrix. The set of states represented
by the star is given as:

��� � {x | x � c + �m
i�1(αivi) such that P (α1, · · · , αm) �
}. (1)

Sometimes we will refer to both the tuple � and the set of states ��� as �. In this work, we restrict the predicates
to be a conjunction of linear constraints, P (α) � Cα ≤ d where, for p linear constraints, C ∈ R

p×m , α is the
vector of m-variables, i.e., α � [α1, · · · , αm]T , and d ∈ R

p×1. A star is an empty set, i.e., � � ∅ if and only if
the predicate P (α) is infeasible. In other words, we can say the predicate polyhedron P (α) is an empty set, i.e.,
P (α) � ∅.
Proposition 2.1 Any (bounded/unbounded) convex polyhedron P � {x | Cx ≤ d , x ∈ R

n} can be represented
as a star.

Proof. The polyhedron P is equivalent to the star set � with the center c � [0, 0, · · · , 0]T , the basic vectors
V � {e1, e2, · · · , en } in which ei is the i th basic vector of R

n , and the predicate P (α) � Cα ≤ d . �
Proposition 2.2 [Affine Mapping of a Star] Given a star set � � 〈c,V ,P〉, an affine mapping of the star � with
the affine mapping matrixW and offset vector b defined by �̄ � {y | y � Wx + b, x ∈ �} is another star with
the following characteristics.

�̄ � 〈c̄, V̄ , P̄〉, c̄ � Wc + b, v̄ � {Wv1,Wv2, · · · ,Wvm}, P̄ ≡ P .

Proof. From the definition of a star, we have �̄ � {y | y � Wc+b+�m
i�1(αiWvi), such that P (α1, · · · , αm) �
}

which implies that �̄ is another star with the center c̄ � Wc + b, basic vectors V̄ � {Wv1,Wv2, · · · ,Wvm } and
the same predicate P as the original star �. �

Verification of neural networks using star sets 523

Proposition 2.3 (Star and Half-space Intersection) The intersection of a star � � 〈c,V ,P〉 and a half-space
H � {x | Hx ≤ g} is another star with following characteristics.

�̄ � � ∩ H � 〈c̄, V̄ , P̄〉, c̄ � c, V̄ � V , P̄ � P ∧ P ′,

P ′(α) � (H × Vm)α ≤ g − H × c,Vm � [v1 v2 · · · vm].

Proof. For any x ∈ �∩H, wehave x � c +�m
i�1(αivi)∧Hx ≤ g , or equivalently, x � c+�m

i�1(αivi)∧H×Vm×α ≤
g − H × c which implies that the intersection is another star with the same center c and basic vectors V as �,
and an updated predicate P̄ � P ∧ P ′,P ′(α) � H × Vm × α ≤ g − H × c. �
Remark 1 We note that in our implementation, a generalized star set � is equipped with a zonotope Z defined
below. This zonotope Z is an over-approximation of the star set. It is used to estimate quickly the ranges of a
state x [j] in a star set in the analysis. Mathematically, we write � � 〈c,V ,P ,Z 〉.
Definition 2.4 (Zonotope) A zonotope Z is a tuple 〈l ,G〉 where l ∈ R

n is the center, G � {g1, g2, · · · , gm } is a set
of m generators in R

n . The set of states represented by a zonotope is given as:

Z � {x | x � l + �m
i�1(αigi) such that − 1 ≤ αi ≤ 1}. (2)

A zonotope is basically a star set in which all predicate variables in the ranges of [−1, 1]. The affine mapping
of a zonotope is another zonotope. However, the intersection of a zonotope and a half-space generally is not a
zonotope. One advantage of a zonotope compared with a star set is that we can compute quickly the ranges of a
state in a zonotope without solving LP optimization. For example, the range of the state x (j) in a zonotope is:

l (j) − �m
i | gi (j) |≤ x (j) ≤ l (j) + �m

i | gi (j) | .

3. Reachability of FNNs with ReLU activation functions
3.1. Exact and complete analysis

In this section, we investigate the exact and complete analysis of FNNs with ReLU activation functions. Since
any bounded convex polyhedron can be represented as a star (Proposition 2.1), we assume the input set I of
an FNN is a star set. From Definition 2.1, one can see that the reachable set of an FNN is derived layer-by-
layer. Since the affine mapping of a star is also a star (Proposition 2.2), the core step in computing the exact
reachable set of a layer with a star input set is applying the ReLU activation function on the star input set, i.e.,
compute ReLU (�), � � 〈c,V ,P〉. For a layer L with n neurons, the reachable set of the layer can be computed
by executing a sequence of n stepReLU operations as follows RL � ReLUn (ReLUn−1(· · ·ReLU1(�))), where
ReLUi (·) denotes the stepReLU opeartion at i th neuron.

Fig. 1. An example of a stepReLU operation on a layer with two neurons

524 H.-D. Tran et al.

The stepReLU operation, i.e., ReLUi (·), works as follows. First, the input star set � is decomposed into
two subsets �1 � � ∧ xi ≥ 0 and �2 � � ∧ xi < 0. Note that from Proposition 2.3, �1 and �2 are also
stars. Let assume that �1 � 〈c,V ,P1〉 and �2 � 〈c,V ,P2〉. Since the later set has xi < 0, applying the
ReLU activation function on the element xi of the vector x � [x1 · · · xi xi+1 · · · xn]T ∈ �2 will lead to the
new vector x ′ � [x1 x2 · · · 0 xi+1 · · · xn]T . This procedure is equivalent to mapping �2 by the mapping matrix
M � [e1 e2 · · · ei−1 0 ei+1 · · · en]. Also, applying the ReLU activation function on the element xi of the vector
x ∈ �1 does not change the set since we have xi ≥ 0. Consequently, the result of the stepReLU operation on
input set � at the i th neuron is a union of two star sets ReLUi (�) � 〈c,V ,P1〉 ∪ 〈Mc,MV ,P2〉. A concrete
example of the first stepReLU operation on a layer with two neurons is depicted in Fig. 1. We note that in our
approach, we do not explicitly define the union operation of two stars. In reachability analysis, if a star set is split
into two new stars, we say the reachable set is the union of two stars, which are simply stored in an array. If the
reachable set is the union ofN star sets, it is simply an array containingN star sets. By doing that, we can explore
the power of parallel computing for reachability analysis of a neural network.

The number of stepReLU operation can be reduced if we know beforehand the ranges of all states in the
input set. For example, if we know that xi is always larger than zero, then we have ReLUi (�) � �, or in other
words, we do not need to execute the stepReLU operation on the i th neuron. Therefore, to minimize the number
of stepReLU operations and the computation time, we first determine the ranges of all states in the input set by
solving n-linear programming problems.

Lemma 3.1 The worst-case complexity of the number of stars in the reachable set of an N -neurons FNN is O(2N).

Proof. Given a star input set, each stepReLU operation produces at most two more stars which leads to the total
number of stars in the worst case of one layer is 2nL where nL is the number of neurons in the layer. For an FNN,
the output reachable sets of one layer is the inputs of the next layer. Therefore, in the worst-case, the total number
of stars in the reachable set of an k -layers and N -neurons FNN is 2nL1 × · · · × 2nLk � 2nL1+···+nLk � 2N .

Lemma 3.2 The worst-case complexity of the number of constraints of a star in the reachable set of an N -neuron
FNN is O(N).

Proof. From the stepReLU sub-procedure, we can see that given a star input set �, each stepReLU operation
produces one or two stars that have at most one more constraint than the star input set. Therefore, with a layer
of n neurons, at most n- stepReLU operations are executed which result star reachable sets in which each one
has at most n constraints more than the star input set. Consequently, the number of constraints in a star input
set increases linearly over layers, and thus, the worst-case complexity of the number of constraints of a star in the
reachable set of an N -neurons FNN is O(N).

Theorem 3.1 (Verification complexity)Let F be anN -neuron FNN, � be a star set with p linear constraints andm-
variables in the predicate, S be a safety specification with s linear constraints. In the worst case, the safety verification
or falsification of the neural network F (�) |� S ? is equivalent to solving 2N feasibility problems in which each has
N + p + s linear constraints and m-variables.

Proof. From Lemma 3.1, there are at most 2N stars in the reachable set of the neuron network. Also, from
Lemma 3.2, each star has at mostN +p constraints. To verify or falsify the safety of the neural network, we need
to check if each star in the reachable set intersects with the negation (complement) of the safety specification,
i.e., the unsafe region, which is a union of half-spaces. Assume that the safety specification S is a set of k linear
constraints written as S � H1 ∩ H2 · · · ∩ Hk , where Hj is the j th half-space corresponding to the j th constraint.
Using theDeMorgan’s law, the unsafe region canbe derived as,¬S � ¬H1∪¬H2∪. . . ¬Hk . FromProposition 2.3,
the intersection of each star in the reachable set with the unsafe region creates k new stars with at mostN + p + s
constraints. Note that the number of variables m in the predicate of a star does not change over stepReLU
operations or in the intersection operation with the half-space. Therefore, the new star has m-variables and at
most N + p + s linear constraints, and checking the intersection is equivalent to checking if the new star is an
empty set which is a feasibility linear programming problem which can be solved efficiently in polynomial time.

Verification of neural networks using star sets 525

Remark 2 Although in the worst-case, the number of stars in the reachable set of an FNN is 2N , in practice, the
actual number of stars is usually much smaller than the worst-case result, which enhances the applicability of
the star-based exact reachability analysis for practical DNNs. For example, in the ACAS Xu case study used in
the evaluation section, each network has 300 neurons. Therefore, in the worst case, the number of stars in the
reachable set is 2300. However, depending on the size of the input set, the number of stars may vary from tens to
millions instead of 2300.

Theorem 3.2 (Safety and complete counter input set)Let F be an FNN, � � 〈c,V ,P〉 be a star input set, F (�) �
∪k
i�1 �i , �i � 〈ci ,Vi ,Pi 〉 be the reachable set of the neural network, and S be a safety specification. Denote

�̄i � �i ∩ ¬S � 〈ci ,Vi , P̄i 〉, i � 1, · · · , k . The neural network is safe if and only if P̄i � ∅ for all i . If the neural
network violates its safety property, then the complete counter input set containing all possible inputs in the input
set that lead the neural network to unsafe states is C� � ∪k

i�1〈c,V , P̄i 〉, P̄i �� ∅.
Proof. Safety The exact reachable set is a union of stars. It is trivial that the neural network is safe if and only if all
stars in the reachable set do not intersect with the unsafe region, i.e., �̄i is an empty set for all i , or equivalently,
the predicate P̄i is empty for all i (Definition 2.3).

Complete counter input set Note that all star sets in computation process are defined on the same predicate
variable α � [α1, · · · , αm]T which is unchanged in the computation (only the number of constraints on α

changes). Therefore, when P̄i �� ∅, it contains values of α that makes the neural network unsafe. It is worth
noticing that from the basic predicate P , new constraints are added over stepReLU operations, thus, P̄i contains
all constraints of the basic predicate P . Consequently, the complete counter input set containing all possible
inputs that make the neural network unsafe is defined by C� � ∪k

i�1〈c,V , P̄i 〉, P̄i �� ∅.

3.2. Over-approximate analysis

Although the exact and complete analysis can compute the exact reachable sets of a ReLU FNN, the number
of stars grows exponentially with the number of layers and leads to an increase in computation cost that limits
scalability. In this section, we investigate an over-approximation reachability algorithm for ReLUFNNs in which
at each layer, only a single star is constructed by using the following approximation rule.

Lemma 3.3 For any input x ∈ [l , u], the output set Y � {y | y � ReLU (x)} satisfies:
– If l ≥ 0, then y � x .
– If u ≤ 0, then y � 0.

– If l < 0 and u > 0, then Y ⊂ Ȳ � {y | y ≥ 0, y ≤ u(x−l)
u−l

, y ≥ x }.

526 H.-D. Tran et al.

The over-approximation rules for the ReLU activation function of different approaches are depicted in Fig. 2
which shows that our approximation rule is less conservative than the zonotope’s [SGM+18] and new abstract
domain’s rules [SGPV19]. The zonotope-based approach [SGM+18] over-approximates the ReLU activation
function by aminimal parallelogramwhile the abstract-domain approach [SGPV19] over-approximates theReLU
activation function by a triangle. Our star-based approach also over-approximates the ReLU activation function
with a triangle as in the abstract-domain approach. However, the new abstract-domain approach only uses
lower bound and upper bound constraints for the output yi � ReLU (xi) to avoid the state space explosion
[SGPV19], for example, in Fig. 2, these constraints are yi ≥ 0, yi ≤ ui (xi − li)/(ui − li). Notably, the zonotope
and the new abstract domain approaches construct the reachable set based on estimated ranges which is usually
very conservative. Consequently, these approaches obtain coarse a over-approximation of the actual reachable
set which will be shown in the later section. To obtain a tighter over-approximation, our star set approach uses
three constraints for the output yi instead. Additionally, it constructs the reachable set using the ranges computed
from solving LP problems.

Similar to the exact approach, the over-approximate reachable set of a Layer with n neurons can be computed
by executing a sequence of n approximate-stepReLU operations that work as follows. First, we compute the lower
bound and upper bound of the input at the i th neuron. This can be done by solving the following LP optimization
problem:

min(max)(x [i]) : x [i] � c[i] + �m
j�1αj vj [i], subject to Cα ≤ d .

If the lower bound is not negative, the approximate-stepReLU operation returns a new intermediate reachable set
which is exactly the same as its input set. If the upper bound is not positive, the approximate-stepReLU operation
returns a new intermediate reachable set which is the same as its input set except the i th state variable is zero. If
the lower bound is negative and the upper bound is positive, the approximate-stepReLU operation introduces a
new variable αm+1 to capture the over-approximation of ReLU function at the i th neuron. We remind that m is
the number of predicate variables of the current star input set. As a result, the obtained intermediate reachable set
has one more variable and three more linear constraints in the predicate in comparison with the corresponding
input set. Therefore, in the worst case, the over-approximate reachability algorithm will obtain a reachable set
with N + m0 variables and 3N + n0 constraints in the predicate, where m0, n0 respectively are the number of
variables and linear constraints of the predicate of the input set andN is the total number of neurons of the FNN.

Verification of neural networks using star sets 527

Fig. 2. The star set approach is less conservative than the zonotope [SGM+18] and new abstract-domain approaches [SGPV19]

Similar to the exact method, to verify the network’s safety, we check the intersection between the obtained
over-approximate reachable set and the unsafe region (specified in the half-space form). If the over-approximate
reachable set does not intersectwith the unsafe region, the network is safe. If it intersectswith the unsafe region, the
safety of the network is unknown due to the over-approximation error. One can see that, in the over-approximate
method, only soundness is guaranteed.

3.3. Zonotope pre-filter

One can see that, computing the ranges of all states in a star set is an important step in our star set approach that
requires solving a set of LP optimization problems. In the exact analysis, the number of LP problems increase
exponentially since the number of star sets grows exponentially as proved in Lemma 3.1. Therefore, to optimize
the computation time and enhance the scalability of the star set approach, we need to minimize the number of
LP problems solved in the analysis. Fortunately, for exact analysis, we do not need to know the exact range of a
state of the input to a specific neuron to compute the exact reachable set. The only information we need to know
is whether the range contains the zero point. If this is the case, then the star set is split into two new stars which
can constructed efficiently without using the range information. If the range does not contain the zero point, the
new star set is constructed even more easily. If the zero point relies on the left hand side of the range, i.e., the
input is larger than zero, the output star set at the neuron is equal to the input star set. If the zero point relies on
the right hand side of the range, i.e., the input is smaller than zero, the output star set is a projection of the input
star set in which the neuron output is projected to zero. In the over-approximate analysis, the range information is
needed to construct an over-approximate reachable set at a specific neuron if and only if it contains the zero point.

Based on above important observation, we propose a zonotope pre-filtering step [BTHJ20] in which a star
set is equipped with an outer-zonotope which is an over-approximation of the star set. This outer-zonotope helps
to estimate quickly the range of a state in a star set when doing reachability analysis as a zonotope is efficient
for this task. Using this estimated range, we neglect all neurons in the layer that do not affect the analysis. If
the estimated range contains the zero point, we solve two LP problems to get the actual range of this specific
input. We reexamine whether the actual range contain the zero point to perform an appropriate operation, i.e.,
splitting the input set in the exact analysis or constructing an over-approximation of the reachable set using the
range information in the over-approximate analysis. We note that, the new constructed star set inherits the outer-
zonotope from its preceptor. Importantly, this outer-zonotope is also updated through the analysis. We note that
the zono-tope pre-filtering technique has been introduced in [BTHJ20] for only the exact reachability analysis.
In this paper, we extend this technique to the approximate reachability analysis.

528 H.-D. Tran et al.

3.4. Reachability algorithms (code)

The improved star-based exact reachability algorithm using zonotope pre-filtering given in Algorithm 3.1 works
as follows. The layer takes the star output sets of the preceding layer as input sets I � [�1, · · · , �N]. The main
procedure in the algorithm is layerReach which processes the input sets I in parallel. On each input element
�i � 〈ci ,Vi ,Pi ,Zi 〉, the main procedure maps the element with the layer weight matrix W and bias vector b
which results a new star I1 � 〈Wci + b,WVi ,Pi ,WZi 〉, where Zi is the outer-zonotope of the star input set.
The reachable set of the layer corresponding to the element �i is computed by reachReLU sub-procedure which
executes a minimized sequence of stepReLU/approxStepReLU operations on the new star I1, i.e., iteratively calls
stepReLU /approxStepReLU sub-procedure. Note that that the stepReLU sub-procedure is designed to handle
multiple star input sets since the number of star sets may increase after each stepReLU operation.

Remark 3 The star-based reachability analysis algorithm is much faster and more reliable than the polyhedron-
based algorithm [TML+19a, Ehl17] because the affine mapping step in reachable set computation can be done
efficiently by matrix-vector multiplications while in the polyhedron-based approach, this step is very expensive
especially for a layer with a large number of neurons since it may need to compute all vertices of the polyhedron
input set [KGBM04].

4. Dealing with other piecewise activation functions

The star set method can be extended to FNNs with other classes of piecewise activation functions such as
satlin, satlins and leaky ReLU. In this section, we present the extension of the star set method for these type of
activation functions. Similar to a ReLU layer, a reachable set of a layer with satlin, satlins, and leaky ReLU can
be constructed by performing a sequence of step reachability operations. These step operations can produce an
exact or over-approximate reachable set at specific neurons.

4.1. Reachability of a satlin layer

The satlin activation function is defined by:

f (x) �
⎧
⎨

⎩

0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1

The star-based reachability algorithm with zonotope pre-filtering for a satlin layer is given in Algorithm 4.2.
Similar to a ReLU layer, we use a zonotope pre-filter to determine all neurons where splitting cannot happen. We
update quickly the reachable set at these neurons, i.e., project the output to zero or one. Then, we consider the
neurons where the splitting may occur. For those neurons, we solve LP optimization to determine their actual
ranges to split the input set (in the exact analysis) or to construct an over-approximate reachable set (in the over
approximate analysis).

4.2. Reachability of a satlins layer

The satlins activation function is defined by:

f (x) �
⎧
⎨

⎩

−1 if x ≤ −1
x if −1 ≤ x ≤ 1
1 if x ≥ 1

The reachability algorithms for a satlins layer is given in Algorithm 4.3.

https://github.com/verivital/nnv/blob/faoc2021/code/nnv/engine/nn/funcs/PosLin.m

Verification of neural networks using star sets 529

Algorithm 3.1 Improved star-based reachability with zonotope pre-filtering.
Input: I � [�1 · · · �N],W , b � star input sets, weight matrix, bias vector
Output: R � exact reachable set
1: procedure R = LayerReach(I ,W , b,method)
2: R � ∅
3: parfor i � 1 : N do � parallel for loop
4: I1 � W ∗ �i + b � 〈Wci + b,WVi ,Pi ,WZi 〉
5: R1 � reachReLU (I1, method), R � R ∪ R1
6: end parfor
7: procedure R1 = reachReLU(I1, method)
8: In � I1
9: [lb,ub] � In.Z .getRanges � estimate ranges of all input variables

10: map � find(ub < 0) � list of neglected neurons
11: In.c(map, 1) � 0, In.V (map, :) � 0 � update the input star set
12: In.Z .l(map, 1) � 0, In.Z .G(map, :) � 0 � update the outer-zonotope
13: map � find(lb < 0 & ub > 0) � construct computation map
14: m � length(map) � minimized number of step operations
15: for i � 1 : m do
16: if method � exact then
17: In � stepReLU (In,map(i)) � stepReLU operation
18: else if method � approx then
19: In � approxStepReLU (In,map(i)) � approxStepReLU operation

20: R1 � In

21: procedure R̃ = stepReLU(Ĩ , i)
22: R̃ � ∅, Ĩ � [�̃1 · · · �̃k] � intermediate star input and output sets
23: for j � 1 : k do
24: [lbi , ubi] � �̃j .getRange(i) � get exact range of the j th input
25: R1 � ∅, M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
26: if lbi ≥ 0 then R1 � �̃j � 〈c̃j , Ṽj , P̃j , Z̃j 〉
27: if ubi ≤ 0 then R1 � M ∗ �̃j � 〈Mc̃j ,MṼj , P̃j ,MZ̃j 〉
28: if lbi < 0 & ubi > 0 then
29: �̃′

j � �̃j ∧ x [i] ≥ 0 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

30: �̃′′
j � �̃j ∧ x [i] < 0 � 〈c̃j , Ṽj , P̃

′′
j , Z̃j 〉

31: R1 � �̃′
j ∪ M ∗ �̃′′

j

32: R̃ � R̃ ∪ R1

33: procedure R̃ = approxStepReLU(Ĩ , i)
34: Ĩ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
35: [l,u] � �̃.getRange(i) � get actual range of the ith input
36: M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
37: if l ≥ 0 then R̃ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
38: if u ≤ 0 then R̃ � M ∗ �̃ � 〈Mc̃,MṼ , P̃ ,MZ̃ 〉

39: if l < 0 & u > 0 then

40: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate

41: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

42: C1 � [0 0 · · · 0 -1], d1 � 0 � αm+1 ≥ 0 ⇔ C1α
′ ≤ d1

43: C2 � [˜V (i, :) -1], d2 � −c̃[i] � αm+1 ≥ x [i] ⇔ C2α
′ ≤ d2

44: C3 � [−u
u−l × ˜V (i, :) 1], d3 � ul

u−l × (1 − c̃[i]) � αm+1 ≤ u(x [i]−l)
u−l ⇔ C3α

′ ≤ d3

45: C0 � [C̃ 0m×1], d0 � d̃

46: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]

47: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate

48: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � ReLU (x [i]) � αm+1

49: R̃ � 〈c′,V ′,P ′, Z̃ 〉

530 H.-D. Tran et al.

Algorithm 4.2 Improved star-based reachability for a satlin layer.
Input: I � [�1 · · · �N],W , b � star input sets, weight matrix, bias vector
Output: R � exact reachable set
1: procedure R = LayerReach(I ,W , b,method)
2: R � ∅
3: parfor i � 1 : N do � parallel for loop
4: I1 � W ∗ �i + b � 〈Wci + b,WVi ,Pi ,WZi 〉
5: R1 � reachSatlin(I1, method), R � R ∪ R1
6: end parfor
7: procedure R1 = reachSatlin(I1, method)
8: In � I1
9: [lb,ub] � In.Z .getRanges � estimate ranges of all input variables

10: map � find(ub ≤ 0) � list of neglected neurons
11: In.c(map, 1) � 0, In.V (map, :) � 0 � update the input star set
12: In.Z .l(map, 1) � 0, In.Z .G(map, :) � 0 � update the outer-zonotope
13: map � find(lb ≥ 1) � list of neglected neurons
14: In.c(map, 1) � 1, In.V (map, :) � 0 � update the input star set
15: In.Z .l(map, 1) � 1, In.Z .G(map, :) � 0 � update the outer-zonotope
16: map � find(lb < 1 || ub > 0) � construct computation map
17: m � length(map) � minimized number of step operations
18: for i � 1 : m do
19: if method � exact then
20: In � stepSatlin(In,map(i)) � stepSatlin operation
21: else if method � approx then
22: In � approxStepSatlin(In,map(i)) � approxStepSatlin operation

23: R1 � In

24: procedure R̃ = stepSatlin(Ĩ , i)
25: R̃ � ∅, Ĩ � [�̃1 · · · �̃k] � intermediate star input and output sets
26: for j � 1 : k do
27: [lbi , ubi] � �̃j .getRange(i) � get exact range of the j th input
28: R1 � ∅, M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
29: if lbi ≥ 0 & ubi ≤ 1 then R1 � �̃j � 〈c̃j , Ṽj , P̃j , Z̃j 〉
30: if lbi ≥ 1 then
31: c̃′

j � c̃j , c̃
′
j (i) � 1, Ṽ ′

j � Ṽj , Ṽ
′
j (i, :) � 0

32: Z̃ ′
j � Z̃j , Z̃

′
j .l(i) � 1, Z̃ ′

j .G(i, :) � 0

33: R1 � 〈c̃′
j , Ṽ

′
j , P̃

′
j , Z̃

′
j 〉

34: if ubi ≤ 0 then R1 � M ∗ �̃j � 〈Mc̃j ,MṼj , P̃j ,MZ̃j 〉
35: if lbi < 0 & ubi ≤ 1 then
36: �̃′

j � �̃j ∧ x [i] ≥ 0 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

37: �̃′′
j � �̃j ∧ x [i] < 0 � 〈c̃j , Ṽj , P̃

′′
j , Z̃j 〉

38: R1 � �̃′
j ∪ M ∗ �̃′′

j

39: if 0 ≤ lbi ≤ 1 & ubi ≥ 1 then
40: �̃′

j � �̃j ∧ x [i] ≤ 1 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

41: �̃′′
j � �̃j ∧ x [i] ≥ 1 � 〈c̃′′

j , Ṽ ′′
j , P̃ ′′

j , Z̃ ′′
j 〉

42: c̃′′
j � c̃j , c̃

′′
j (i) � 1, Ṽ ′′

j � Ṽj , Ṽ
′′
j (i, :) � 0,

43: Z̃ ′′
j � Z̃j , Z̃

′′
j .l(i) � 1, Z̃ ′′

j .G(i, :) � 0

44: R1 � �̃′
j ∪ �̃′′

j

45: if lbi ≤ 0 & ubi ≥ 1 then
46: �̃′

j � �̃j ∧ 0 ≤ x [i] ≤ 1 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉

47: �̃′′
j � �̃j ∧ x [i] < 0 � 〈c̃j , Ṽj , P̃

′′
j , Z̃j 〉

48: �̃′′′
j � �̃j ∧ x [i] ≥ 1 � 〈c̃′′′

j , Ṽ ′′′
j , P̃ ′′′

j , Z̃ ′′′
j 〉

49: c̃′′′
j � c̃j , c̃

′′′
j (i) � 1, Ṽ ′′′

j � Ṽj , Ṽ
′′′
j (i, :) � 0,

50: Z̃ ′′′
j � Z̃j , Z̃

′′′
j .l(i) � 1, Z̃ ′′′

j .G(i, :) � 0

51: R1 � �̃′
j ∪ M ∗ �̃′′

j ∪ �̃′′′
j

52: R̃ � R̃ ∪ R1

Verification of neural networks using star sets 531

53: procedure R̃ = approxStepSatlin(Ĩ , i)
54: Ĩ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
55: [l,u] � �̃.getRange(i) � get actual range of the ith input
56: M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
57: if l ≥ 0 & u ≤ 1 then R̃ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
58: if l ≥ 1 then
59: c̃′ � c̃, c̃(i) � 1, Ṽ ′ � Ṽ , Ṽ (i, :) � 0, Z̃ ′ � Z̃ , Z̃ .l(i) � 1, Z̃ .G(i, :) � 0
60: R̃ � �̃′ � 〈c̃′, Ṽ ′, P̃ , Z̃ ′〉
61: if u ≤ 0 then R̃ � M ∗ �̃ � 〈Mc̃,MṼ , P̃ ,MZ̃ 〉
62: if l < 0 & 0 < u ≤ 1 then
63: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
64: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

65: C1 � [0 0 · · · 0 -1], d1 � 0 � αm+1 ≥ 0 ⇔ C1α
′ ≤ d1

66: C2 � [˜V (i, :) -1], d2 � −c̃[i] � αm+1 ≥ x [i] ⇔ C2α
′ ≤ d2

67: C3 � [−u
u−l × ˜V (i, :) 1], d3 � ul

u−l × (1 − c̃[i]) � αm+1 ≤ u(x [i]−l)
u−l ⇔ C3α

′ ≤ d3

68: C0 � [C̃ 0m×1], d0 � d̃
69: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]
70: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
71: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlin(x [i]) � αm+1

72: R̃ � 〈c′,V ′,P ′, Z̃ 〉
73: if 0 ≤ l < 1 & u > 1 then
74: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
75: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

76: C1 � [0 0 · · · 0 1], d1 � 1 � αm+1 ≤ 1 ⇔ C1α
′ ≤ d1

77: C2 � [− ˜V (i, :) 1], d2 � c̃[i] � αm+1 ≤ x [i] ⇔ C2α
′ ≤ d2

78: C3 � [1−l
u−l × ˜V (i, :) -1], d3 � l(1−l)

u−l c̃(i) − l � αm+1 ≥ (1−l)(x [i]−l)
u−l + l ⇔ C3α

′ ≤ d3

79: C0 � [C̃ 0m×1], d0 � d̃
80: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]
81: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
82: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlin(x [i]) � αm+1

83: R̃ � 〈c′,V ′,P ′, Z̃ 〉
84: if l < 0 & u > 1 then
85: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
86: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

87: C1 � [0 0 · · · 0 -1], d1 � 0 � αm+1 ≥ 0 ⇔ C1α
′ ≤ d1

88: C2 � [0 0 · · · 0 1], d2 � 1 � αm+1 ≤ 1 ⇔ C2α
′ ≤ d2

89: C3 � [− ˜V (i, :) 1], d3 � c̃[i]
1−l − l

1−l � αm+1 ≤ x [i]
1−l − l

1−l ⇔ C3α
′ ≤ d3

90: C4 � [1u × ˜V (i, :) -1], d4 � − 1
u c̃(i) � αm+1 ≥ x [i]

u ⇔ C4α
′ ≤ d4

91: C0 � [C̃ 0m×1], d0 � d̃
92: C ′ � [C0; C1; C2; C3; C4], d ′ � [d0; d1; d2; d3; d4]
93: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
94: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlin(x [i]) � αm+1

95: R̃ � 〈c′,V ′,P ′, Z̃ 〉

532 H.-D. Tran et al.

Algorithm 4.3 Improved star-based reachability for a satlins layer.
Input: I � [�1 · · · �N],W , b � star input sets, weight matrix, bias vector
Output: R � exact reachable set
1: procedure R = LayerReach(I ,W , b,method)
2: R � ∅
3: parfor i � 1 : N do � parallel for loop
4: I1 � W ∗ �i + b � 〈Wci + b,WVi ,Pi ,WZi 〉
5: R1 � reachSatlin(I1, method), R � R ∪ R1
6: end parfor
7: procedure R1 = reachSatlins(I1, method)
8: In � I1
9: [lb,ub] � In.Z .getRanges � estimate ranges of all input variables

10: map � find(ub ≤ −1) � list of neglected neurons
11: In.c(map, 1) � −1, In.V (map, :) � 0 � update the input star set
12: In.Z .l(map, 1) � −1, In.Z .G(map, :) � 0 � update the outer-zonotope
13: map � find(lb ≥ 1) � list of neglected neurons
14: In.c(map, 1) � 1, In.V (map, :) � 0 � update the input star set
15: In.Z .l(map, 1) � 1, In.Z .G(map, :) � 0 � update the outer-zonotope
16: map � find(lb < 1 || ub > −1) � construct computation map
17: m � length(map) � minimized number of step operations
18: for i � 1 : m do
19: if method � exact then
20: In � stepSatlins(In,map(i)) � stepSatlins operation
21: else if method � approx then
22: In � approxStepSatlins(In,map(i)) � approxStepSatlins operation

23: R1 � In

24: procedure R̃ = stepSatlins(Ĩ , i)
25: R̃ � ∅, Ĩ � [�̃1 · · · �̃k] � intermediate star input and output sets
26: for j � 1 : k do
27: [lbi , ubi] � �̃j .getRange(i) � get exact range of the j th input
28: R1 � ∅, M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
29: if lbi ≥ −1 & ubi ≤ 1 then R1 � �̃j � 〈c̃j , Ṽj , P̃j , Z̃j 〉
30: if lbi ≥ 1 then
31: c̃′

j � c̃j , c̃
′
j (i) � 1, Ṽ ′

j � Ṽj , Ṽ
′
j (i, :) � 0

32: Z̃ ′
j � Z̃j , Z̃

′
j .l(i) � 1, Z̃ ′

j .G(i, :) � 0, R1 � �̃′
j � 〈c̃′

j , Ṽ
′
j , P̃j , Z̃

′
j 〉

33: if ubi ≤ −1 then
34: c̃′

j � c̃j , c̃
′
j (i) � −1, Ṽ ′

j � Ṽj , Ṽ
′
j (i, :) � 0

35: Z̃ ′
j � Z̃j , Z̃

′
j .l(i) � −1, Z̃ ′

j .G(i, :) � 0, R1 � �̃′
j � 〈c̃′

j , Ṽ
′
j , P̃j , Z̃

′
j 〉

36: if lbi < −1 & ubi ≤ 1 then
37: �̃′

j � �̃j ∧ x [i] ≥ −1 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

38: �̃′′
j � �̃j ∧ x [i] < −1 � 〈c̃′′

j , Ṽ ′′
j , P̃ ′′

j , Z̃ ′′
j 〉

39: c̃′′
j � c̃j , c̃

′′
j (i) � −1, Ṽ ′′

j � Ṽj , Ṽ
′′
j (i, :) � 0

40: Z̃ ′′
j � Z̃j , Z̃

′′
j .l(i) � −1, Z̃ ′′

j .G(i, :) � 0, R1 � �̃′
j ∪ �̃′′

j

41: if −1 ≤ lbi ≤ 1 & ubi ≥ 1 then
42: �̃′

j � �̃j ∧ x [i] ≤ 1 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

43: �̃′′
j � �̃j ∧ x [i] ≥ 1 � 〈c̃′′

j , Ṽ ′′
j , P̃ ′′

j , Z̃ ′′
j 〉

44: c̃′′
j � c̃j , c̃

′′
j (i) � 1, Ṽ ′′

j � Ṽj , Ṽ
′′
j (i, :) � 0,

45: Z̃ ′′
j � Z̃j , Z̃

′′
j .l(i) � 1, Z̃ ′′

j .G(i, :) � 0, R1 � �̃′
j ∪ �̃′′

j

46: if lbi < −1 & ubi > 1 then
47: �̃′

j � �̃j ∧ −1 ≤ x [i] ≤ 1 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉

48: �̃′′
j � �̃j ∧ x [i] < −1 � 〈c̃′′

j , Ṽ ′′
j , P̃ ′′

j , Z̃ ′′j 〉
49: c̃′′

j � c̃j , c̃
′′
j (i) � −1, Ṽ ′′

j � Ṽj , Ṽ
′′
j (i, :) � 0,

50: Z̃ ′′
j � Z̃j , Z̃

′′
j .l(i) � −1, Z̃ ′′

j .G(i, :) � 0

51: �̃′′′
j � �̃j ∧ x [i] ≥ 1 � 〈c̃′′′

j , Ṽ ′′′
j , P̃ ′′′

j , Z̃ ′′′
j 〉

52: c̃′′′
j � c̃j , c̃

′′′
j (i) � 1, Ṽ ′′′

j � Ṽj , Ṽ
′′′
j (i, :) � 0,

53: Z̃ ′′′
j � Z̃j , Z̃

′′′
j .l(i) � 1, Z̃ ′′′

j .G(i, :) � 0, R1 � �̃′
j ∪ �̃′′

j ∪ �̃′′′
j

54: R̃ � R̃ ∪ R1

Verification of neural networks using star sets 533

55: procedure R̃ = approxStepSatlins(Ĩ , i)
56: Ĩ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
57: [l,u] � �̃.getRange(i) � get actual range of the ith input
58: M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
59: if l ≥ −1 & u ≤ 1 then R̃ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
60: if l ≥ 1 then
61: c̃′ � c̃, c̃(i) � 1, Ṽ ′ � Ṽ , Ṽ (i, :) � 0, Z̃ ′ � Z̃ , Z̃ .l(i) � 1, Z̃ .G(i, :) � 0
62: R̃ � �̃′ � 〈c̃′, Ṽ ′, P̃ , Z̃ ′〉
63: if u ≤ −1 then
64: c̃′ � c̃, c̃(i) � −1, Ṽ ′ � Ṽ , Ṽ (i, :) � 0, Z̃ ′ � Z̃ , Z̃ .l(i) � −1, Z̃ .G(i, :) � 0
65: R̃ � �̃′ � 〈c̃′, Ṽ ′, P̃ , Z̃ ′〉
66: if l < −1 & 0 < u ≤ 1 then
67: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
68: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

69: C1 � [0 0 · · · 0 -1], d1 � 1 � αm+1 ≥ −1 ⇔ C1α
′ ≤ d1

70: C2 � [Ṽ (i, :) -1], d2 � −c̃(i) � αm+1 ≥ x [i] ⇔ C2α
′ ≤ d2

71: � αm+1 ≤ (u+1)(x [i]−u)
u−l + u ⇔ C3α

′ ≤ d3

72: C3 � [−u−1
u−l × Ṽ (i, :) 1], d3 � −u(u+1)

u−l × c̃[i] + u

73: C0 � [C̃ 0m×1], d0 � d̃
74: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]
75: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
76: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlins(x [i]) � αm+1

77: R̃ � 〈c′,V ′,P ′, Z̃ 〉
78: if −1 ≤ l < 1 & u > 1 then
79: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
80: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

81: C1 � [0 0 · · · 0 1], d1 � 1 � αm+1 ≤ 1 ⇔ C1α
′ ≤ d1

82: C2 � [−Ṽ (i, :) 1], d2 � c̃(i) � αm+1 ≤ x [i] ⇔ C2α
′ ≤ d2

83: C3 � [1−l
u−l × Ṽ (i, :) -1], d3 � l(1−l)

u−l c̃(i) − l � αm+1 ≥ (1−l)(x [i]−l)
u−l + l ⇔ C3α

′ ≤ d3

84: C0 � [C̃ 0m×1], d0 � d̃
85: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]
86: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
87: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlins(x [i]) � αm+1

88: R̃ � 〈c′,V ′,P ′, Z̃ 〉
89: if l < −1 & u > 1 then
90: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
91: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

92: C1 � [0 0 · · · 0 -1], d1 � 1 � αm+1 ≥ −1 ⇔ C1α
′ ≤ d1

93: C2 � [0 0 · · · 0 1], d2 � 1 � αm+1 ≤ 1 ⇔ C2α
′ ≤ d2

94: C3 � [− 2
1−l Ṽ (i, :) 1], d3 � 2c̃[i]

1−l − 1 � αm+1 ≤ 2x [i]
1−l − 1 ⇔ C3α

′ ≤ d3

95: C4 � [2
u+1 × Ṽ (i, :) -1], d4 � − 2

u+1 c̃(i) + 1 � αm+1 ≥ 2(x [i]+1)
u+1 − 1 ⇔ C4α

′ ≤ d4

96: C0 � [C̃ 0m×1], d0 � d̃
97: C ′ � [C0; C1; C2; C3; C4], d ′ � [d0; d1; d2; d3; d4]
98: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
99: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � satlins(x [i]) � αm+1

100: R̃ � 〈c′,V ′,P ′, Z̃ 〉

534 H.-D. Tran et al.

4.3. Reachability of a leaky ReLU layer

The leaky ReLU activation function is defined by:

f (γ, x) �
{

γ x if x ≤ 0
x if −1 ≤ x ≤ 0

The reachability algorithms for a leaky ReLU layer is given in Algorithm 4.4. These algorithms are similar to the
ones for a ReLU layer except for the case that when the input to a specific neuron is smaller than zero, the output
is proportional to the input with a coefficient γ instead of being set by zero.

5. Evaluation

In this section, we evaluate the improved star set reachability algorithms compared to Marabou [KHI+19],
which is an improvement of Reluplex [KBD+17], the zonotope method [SGM+18], and the abstract domain
method [SGPV19] implemented in our NNV tool [TYL+20]. The implementation of the zonotope and new
abstract domain methods allows us to the visualize of the over-approximate reachable set of these approaches
to intuitively evaluate their conservativeness. All results presented in this section and their corresponding scripts
are available online.1

5.1. Safety verification for ACAS Xu DNNs

The ACAS Xu networks are DNN-based advisory controllers that map the sensor measurements to advisories
in the Airborne Collision Avoidance System X [JKO18]. It is a set of 45 feedforward neural networks that map
input variables to actions for horizontal maneuvers. The output means the command to the UAV to follow, and
this can be: clear of conflict (COC), weak left, weak right, strong left, or strong right. All the networks have 6
fully connected layers with a total of 300 neurons, 5 inputs and 5 outputs, with all ReLU activation functions.
The inputs are:

– ρ: distance from ownship to intruder (feet)
– θ : angle to intruder relative to ownship heading direction (radians)
– ψ : heading angle of intruder relative to ownship heading direction (radians)
– vown : speed of ownship (feet per second)
– vint : speed of intruder (feet per second)

Two other variables, τ , time until loss of vertical separation (seconds), and aprev , previous advisory, are discretized
and used to generate the 45 neural networks mentioned.

The following safety properties are used to re-evaluate the performance of different methods.

– Property φ3.

• If the intruder is directly ahead and ismoving towards the ownship, the score forCOC will not beminimal.
• The desired output property is that the score for COC is not the minimal score.
• It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤ | 0.06 |, ψ ≥ 3.10, vown ≥ 980, vint ≥ 960.

– Property φ4.

• If the intruder is directly ahead and is moving away from the ownship but at a lower speed than that of
the ownship, the score for COC will not be minimal.

• The desired output property is that the score for COC is not the minimal score.
• It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤ | 0.06 |, ψ = 0, vown ≥ 1000, 700 ≤ vint ≤ 800.

1https://github.com/verivital/nnv/tree/faoc2021/code/nnv/examples/Submission/FM2019_Journal which is also archived via Zenodo at
https://doi.org/10.5281/zenodo.4765886.

https://github.com/verivital/nnv/tree/faoc2021/code/nnv/examples/Submission/FM2019_Journal
https://doi.org/10.5281/zenodo.4765886

Verification of neural networks using star sets 535

Algorithm 4.4 Improved star-based reachability for a leaky ReLU layer.
Input: I � [�1 · · · �N],W , b � star input sets, weight matrix, bias vector
Output: R � exact reachable set
1: procedure R = LayerReach(I ,W , b, γ,method)
2: R � ∅
3: parfor i � 1 : N do � parallel for loop
4: I1 � W ∗ �i + b � 〈Wci + b,WVi ,Pi ,WZi 〉
5: R1 � reachLeakyReLU (I1, γ, method), R � R ∪ R1
6: end parfor
7: procedure R1 = reachLeakyReLU(I1, γ, method)
8: In � I1,Mi � [e1 e2 · · · ei−1 γ × ei ei+1 · · · en]
9: [lb,ub] � In.Z .getRanges � estimate ranges of all input variables

10: map � find(ub < 0) � list of neglected neurons
11: In.c � MmapIn.c, In.V � MmapIn.V � update the input star set
12: In.Z .l � MmapIn.Z .l, In.Z .G � MmapIn.Z .G � update the outer-zonotope
13: map � find(lb < 0 & ub > 0) � construct computation map
14: m � length(map) � minimized number of step operations
15: for i � 1 : m do
16: if method � exact then
17: In � stepLeakyReLU (In,map(i)) � stepLeakyReLU operation
18: else if method � approx then
19: In � approxStepLeakyReLU (In,map(i)) � approxStepLeakyReLU operation

20: R1 � In

21: procedure R̃ = stepLeakyReLU(Ĩ , i, γ)
22: R̃ � ∅, Ĩ � [�̃1 · · · �̃k] � intermediate star input and output sets
23: for j � 1 : k do
24: [lbi , ubi] � �̃j .getRange(i) � get exact range of the j th input
25: R1 � ∅, M � [e1 e2 · · · ei−1 γ × ei ei+1 · · · en]
26: if lbi ≥ 0 then R1 � �̃j � 〈c̃j , Ṽj , P̃j , Z̃j 〉
27: if ubi ≤ 0 then R1 � M ∗ �̃j � 〈Mc̃j ,MṼj , P̃j ,MZ̃j 〉
28: if lbi < 0 & ubi > 0 then
29: �̃′

j � �̃j ∧ x [i] ≥ 0 � 〈c̃j , Ṽj , P̃
′
j , Z̃j 〉,

30: �̃′′
j � �̃j ∧ x [i] < 0 � 〈c̃j , Ṽj , P̃

′′
j , Z̃j 〉

31: R1 � �̃′
j ∪ M ∗ �̃′′

j

32: R̃ � R̃ ∪ R1

33: procedure R̃ = approxStepLeakyReLU(Ĩ , i, γ)
34: Ĩ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
35: [l,u] � �̃.getRange(i) � get actual range of the ith input
36: M � [e1 e2 · · · ei−1 γ × ei ei+1 · · · en]
37: if l ≥ 0 then R̃ � �̃ � 〈c̃, Ṽ , P̃ , Z̃ 〉
38: if u ≤ 0 then R̃ � M ∗ �̃ � 〈Mc̃,MṼ , P̃ ,MZ̃ 〉
39: if l < 0 & u > 0 then
40: P̃ (α) � C̃α ≤ d̃ , α � [α1, α2, · · · , αm]T � input set’s predicate
41: α′ � [α1, · · · , αm , αm+1]T � new variable αm+1

42: C1 � [Ṽ (i, :) -1], d1 � −γ c̃(i) � αm+1 ≥ γx [i] ⇔ C1α
′ ≤ d1

43: C2 � [Ṽ (i, :) -1], d2 � −c̃[i] � αm+1 ≥ x [i] ⇔ C2α
′ ≤ d2

44: C3 � [−u
u−l × Ṽ (i, :) 1], d3 � ul

u−l × (1 − c̃[i]) � αm+1 ≤ u(x [i]−l)
u−l ⇔ C3α

′ ≤ d3

45: C0 � [C̃ 0m×1], d0 � d̃
46: C ′ � [C0; C1; C2; C3], d ′ � [d0; d1; d2; d3]
47: P ′(α′) � C ′α′ ≤ d ′ � output set’s predicate
48: M � [e1 e2 · · · ei−1 0 ei+1 · · · en]
49: c′ � Mc̃, V ′ � MṼ , V ′ � [V ′ ei] � y [i] � leakyReLU (x [i]) � αm+1

50: R̃ � 〈c′,V ′,P ′, Z̃ 〉

536 H.-D. Tran et al.

Fig. 3. Vertical view of a generic example of the ACAS Xu benchmark set.[KBD+17]

Properties φ3 and φ4 require that the COC is not the minimal score. Therefore, if COC is the minimal
score, the networks violate their safety specification. Mathematically, the unsafe specification can be written as
COC ≤ WeakLeft ∧ COC ≤ WeakRight ∧ COC ≤ StrongLeft ∧ COC ≤ StrongRight .

Our experiments are done on a laptop with the following configuration: Intel Core i7-8850H CPU@ 2.6GHz
8 core Processor, 32 GB Memory, and 64-bit Windows 10 OS.2 The verification results are presented in Tables 1
and 2. We used 6 cores for the exact reachability analysis of the ACAS Xu networks using the polyhedron- and
star- based approaches, and only 1 core for the over-approximate reachability analysis approaches.

Verification results and timing performance Safety verification using star-based reachability algorithms consists
of two major steps. The first step constructs the whole reachable set of the networks. The second step checks the
intersection of the constructed reachable set with the unsafe region. The verification time (VT) in our approach
is the sum of the reachable set computation time (RT) and the safety checking time (ST). The reachable set
computation time dominates (averagely 95% of) the verification time in all cases and the verification time varies
for different properties. In the following, we use ‘×’ to state the timing improvement of our approach compared
with Marabou or Reluplex.

Star set approach The experimental results show that the improved exact star method is on average 12× times
faster than Marabou. It is also 27× and 29.8× times faster than Reluplex on property φ3 and φ4 respectively
when we use parallel computing. Impressively, the approximate star method can achieve on average 769× (or
1408×) (for property φ3) and 544× (or 961×) (for property φ4) faster than Marabou (or Reluplex). This notable
improvement illustrates the efficiency of star set in the reachability analysis and verification of piecewise linear
DNNs where the affine mapping and half-space intersection operations can be done quickly. The improvement
also come from the utilization of the zonotope pre-filtering step. In comparison with the original star set method,
the improved exact method reduces the total verification time by 5× for property φ3 and by 2.6× for property
φ4 (the original exact method verifies 45 networks with 7457 seconds for φ3 and 1157 seconds for φ4). Similarly,
the improved approximate method reduces the total verification time by 3.7× for property φ3 and by 2.5× for
property φ4 (the original approximate method verifies 45 networks with 52 seconds for φ3 and 30 seconds for
φ4). We note that due to these essential characteristics of a star set, the exact star-based method is also much
more efficient and scalable than the polyhedron-based approach [TML+19a] whose the verification results are
not presented in this paper. For example, when verifying property φ3, the polyhedron method reaches time-out
set as 30 minutes on more than 20 networks.

Figure 4 describes the benefits of parallel computing which can be exploited naturally with the star set
approach. The figure shows that when a single core is used for verifying property φ4 on N13, our approach
takes 525.8 seconds which is 2.2× faster than Reluplex (with 1150 seconds). With only 2 cores, our verification
time drops quickly to 86.7 seconds which is 13.3× faster than Reluplex. When 4 cores are used, the verification
time decreases to 42 seconds which is 27.4× faster than Reluplex. The figure shows that fact that when we use
more cores for verification, the verification time may not be improved much. This is because the communication
overhead between different cores becomes larger which affects directly to the verification time.

2In [TML+19b], this experiment was done using Amazon Web Services Elastic Computing Cloud (EC2), on a powerful m5a.24xlarge
instance with 96 cores and 384 GB of memory.

Verification of neural networks using star sets 537

Table 1. Verification results for property φ3 on 45 ACAS Xu networks in whichVT is the verification time in seconds. The exact-star method
is on average 12× faster than Marabou (27× faster than Reluplex which is not presented here). The approx-star is on average 769× faster
than Marabou (1408× faster than Reluplex). It can verify 29/45 networks while the zonotope can verify only 2/45 networks, and the new
abstract domain approaches cannot verify any networks.

ID Marabou Exact-Star Approx-Star Zonotope Abstract Domain

Res. VT Res. VT Imp. Res. VT Imp. Res. VT Imp. Res. VT Imp.

N11 SAFE 3636 SAFE 383.68 9.5× UNK 1.16 3135× UNK 0.04 90925× UNK 0.10 36370×
N12 SAFE 3418 SAFE 244.63 14× UNK 0.86 3974× UNK 0.02 170900× UNK 0.06 56957×
N13 SAFE 1795 SAFE 55.96 32.1× UNK 0.95 1889× UNK 0.02 89750× UNK 0.07 25643×
N14 SAFE 187 SAFE 13.68 13.7× SAFE 0.17 1100× UNK 0.02 9350× UNK 0.08 2338×
N15 SAFE 124 SAFE 18.25 6.8× SAFE 0.24 517× UNK 0.02 6200× UNK 0.06 2067×
N16 SAFE 37 SAFE 4.60 8× SAFE 0.09 411× UNK 0.02 1850× UNK 0.07 529×
N17 UNSAFE 5 UNSAFE 2.17 2.3× UNK 0.07 71× UNK 0.02 250× UNK 0.05 100×
N18 UNSAFE 2 UNSAFE 1.73 1.2× UNK 0.05 40× UNK 0.02 100× UNK 0.04 50×
N19 UNSAFE 2 UNSAFE 1.55 1.3× UNK 0.03 67× UNK 0.01 200× UNK 0.05 40×
N21 SAFE 1001 SAFE 67.63 14.8× UNK 0.55 1820× UNK 0.02 50050× UNK 0.06 16683×
N22 SAFE 480 SAFE 22.24 21.6× UNK 0.36 1333× UNK 0.02 24000× UNK 0.05 9600×
N23 SAFE 1103 SAFE 38.68 28.5× UNK 0.66 1671× UNK 0.02 55150× UNK 0.05 22060×
N24 SAFE 22 SAFE 1.71 12.9× SAFE 0.05 440× UNK 0.02 1100× UNK 0.05 440×
N25 SAFE 58 SAFE 8.45 6.9× SAFE 0.26 223× UNK 0.02 2900× UNK 0.06 967×
N26 SAFE 23 SAFE 1.64 14× SAFE 0.10 230× UNK 0.02 1150× UNK 0.06 383×
N27 SAFE 57 SAFE 4.16 13.7× SAFE 0.12 475× UNK 0.02 2850× UNK 0.07 814×
N28 SAFE 13 SAFE 1.74 7.5× SAFE 0.06 217× UNK 0.02 650× UNK 0.05 260×
N29 SAFE 2 SAFE 1.21 1.7× SAFE 0.02 100× SAFE 0.01 200× UNK 0.03 67×
N31 SAFE 97 SAFE 19.99 4.9× SAFE 0.22 441× UNK 0.02 4850× UNK 0.05 1940×
N32 SAFE 1973 SAFE 210.03 9.4× UNK 0.86 2294× UNK 0.02 98650× UNK 0.07 28186×
N33 SAFE 344 SAFE 35.06 9.8× SAFE 0.62 555× UNK 0.02 17200× UNK 0.05 6880×
N34 SAFE 106 SAFE 8.64 12.3× UNK 0.78 136× UNK 0.02 5300× UNK 0.07 1514×
N35 SAFE 41 SAFE 3.96 10.4× SAFE 0.13 315× UNK 0.02 2050× UNK 0.05 820×
N36 SAFE 120 SAFE 7.90 15.2× UNK 0.34 353× UNK 0.02 6000× UNK 0.07 1714×
N37 SAFE 8 SAFE 1.11 7.2× SAFE 0.04 200× UNK 0.02 400× UNK 0.06 133×
N38 SAFE 57 SAFE 2.87 20× SAFE 0.17 335× UNK 0.02 2850× UNK 0.06 950×
N39 SAFE 55 SAFE 4.83 11.4× SAFE 0.11 500× UNK 0.02 2750× UNK 0.05 1100×
N41 SAFE 94 SAFE 8.77 10.7× UNK 0.22 427× UNK 0.02 4700× UNK 0.04 2350×
N42 SAFE 1724 SAFE 83.21 20.7× UNK 0.52 3315× UNK 0.02 86200× UNK 0.06 28733×
N43 SAFE 1257 SAFE 121.59 10.3× UNK 0.82 1533× UNK 0.02 62850× UNK 0.06 20950×
N44 SAFE 19 SAFE 2.19 8.7× SAFE 0.07 271× UNK 0.02 950× UNK 0.06 317×
N45 SAFE 14 SAFE 1.40 10× SAFE 0.06 233× UNK 0.02 700× UNK 0.04 350×
N46 SAFE 118 SAFE 11.27 10.5× SAFE 1.01 1168× UNK 0.02 5900× UNK 0.07 1686×
N47 SAFE 54 SAFE 3.50 15.4× SAFE 0.09 600× UNK 0.02 2700× UNK 0.06 900×
N48 SAFE 36 SAFE 2.66 13.5× SAFE 0.07 514× UNK 0.02 1800× UNK 0.06 600×
N49 SAFE 33 SAFE 4.03 8.2× SAFE 0.19 174× UNK 0.02 1650× UNK 0.06 550×
N51 SAFE 764 SAFE 34.87 21.9× UNK 0.47 1626× UNK 0.02 38200× UNK 0.05 15280×
N52 SAFE 120 SAFE 7.28 16.5× SAFE 0.22 546× UNK 0.02 6000× UNK 0.03 4000×
N53 SAFE 146 SAFE 8.53 17.1× SAFE 0.39 374× UNK 0.02 7300× UNK 0.05 2920×
N54 SAFE 42 SAFE 3.02 13.9× SAFE 0.14 300× UNK 0.02 2100× UNK 0.06 700×
N55 SAFE 27 SAFE 4.36 6.2× SAFE 0.24 113× UNK 0.02 1350× UNK 0.06 450×
N56 SAFE 81 SAFE 4.75 17.1× SAFE 0.24 338× UNK 0.02 4050× UNK 0.06 1350×
N57 SAFE 5 SAFE 0.89 5.6× SAFE 0.02 250× SAFE 0.02 250× UNK 0.04 125×
N58 SAFE 157 SAFE 9.14 17.2× SAFE 0.18 872× UNK 0.02 7850× UNK 0.06 2617×
N59 SAFE 8 SAFE 1.05 7.6× SAFE 0.05 160× UNK 0.01 800× UNK 0.02 400×
VT 19466 1480.60 14.01 0.84 2.56

SAFE 42/45 42/45 29/45 2/45 0/45

Imp. 12× 769× 19622× 6731×
Bold values indicate runtime improvement and summary statistics of the methods

538 H.-D. Tran et al.

Table 2. Verification results for property φ4 on 45 ACAS Xu networks in whichVT is the verification time in seconds. The exact-star method
is on average 12× faster than Marbou (and 29.8× faster than Reluplex). The approx-star is on average 544× faster than Marabou (and
961× faster than Reluplex). It can verify 32/45 networks while the zonotope can verify only 1/45 networks, and the new abstract domain
approaches cannot verify any networks.

ID Marabou Exact-Star Approx-Star Zonotope Abstract Domain

Res. VT Res. VT Imp. Res. VT Imp. Res. VT Imp. Res. VT Imp.

N11 SAFE 1929.00 SAFE 76.95 25× UNK 0.42 4643× UNK 0.02 111334× UNK 0.04 47639×
N12 SAFE 2012.00 SAFE 47.54 42× UNK 0.54 3709× UNK 0.02 120003× UNK 0.05 37812×
N13 SAFE 956.00 SAFE 36.29 26× UNK 0.61 1571× UNK 0.02 47960× UNK 0.06 16898×
N14 SAFE 79.00 SAFE 3.51 23× UNK 0.14 571× UNK 0.02 4455× UNK 0.06 1360×
N15 SAFE 299.00 SAFE 26.58 11× UNK 0.21 1434× UNK 0.02 18200× UNK 0.03 8772×
N16 SAFE 201.00 SAFE 12.80 16× SAFE 0.24 850× UNK 0.02 12201× UNK 0.05 3965×
N17 UNSAFE 2.00 UNSAFE 2.03 1× UNK 0.05 37× UNK 0.01 141× UNK 0.04 45×
N18 UNSAFE 2.00 UNSAFE 2.10 1× UNK 0.06 32× UNK 0.01 133× UNK 0.04 50×
N19 UNSAFE 1.00 UNSAFE 1.94 1× UNK 0.04 23× UNK 0.02 65× UNK 0.03 39×
N21 SAFE 239.00 SAFE 15.69 15× UNK 0.42 566× UNK 0.02 14571× UNK 0.05 4535×
N22 SAFE 273.00 SAFE 14.79 18× UNK 0.40 687× UNK 0.02 16097× UNK 0.06 4615×
N23 SAFE 47.00 SAFE 3.23 15× SAFE 0.12 406× UNK 0.02 2871× UNK 0.03 1447×
N24 SAFE 23.00 SAFE 3.55 6× SAFE 0.22 106× UNK 0.02 1312× UNK 0.03 702×
N25 SAFE 95.00 SAFE 11.95 8× SAFE 0.42 226× UNK 0.02 5401× UNK 0.05 1840×
N26 SAFE 71.00 SAFE 5.65 13× SAFE 0.37 192× UNK 0.02 3749× UNK 0.07 1090×
N27 SAFE 25.00 SAFE 2.47 10× SAFE 0.12 208× UNK 0.02 1413× UNK 0.07 376×
N28 SAFE 121.00 SAFE 8.41 14× UNK 1.24 97× UNK 0.02 6042× UNK 0.07 1764×
N29 SAFE 6.00 SAFE 1.29 5× SAFE 0.04 160× UNK 0.01 429× UNK 0.03 215×
N31 SAFE 220.00 SAFE 14.23 15× SAFE 0.32 686× UNK 0.02 12501× UNK 0.05 4407×
N32 SAFE 237.00 SAFE 27.10 9× SAFE 0.21 1117× UNK 0.02 14725× UNK 0.03 7339×
N33 SAFE 36.00 SAFE 3.70 10× SAFE 0.12 308× UNK 0.02 2271× UNK 0.03 1228×
N34 SAFE 32.00 SAFE 4.18 8× SAFE 0.13 248× UNK 0.02 2020× UNK 0.03 958×
N35 SAFE 212.00 SAFE 16.68 13× SAFE 0.71 300× UNK 0.02 11232× UNK 0.05 4514×
N36 SAFE 50.00 SAFE 5.57 9× SAFE 0.31 163× UNK 0.02 2713× UNK 0.07 702×
N37 SAFE 49.00 SAFE 4.07 12× SAFE 0.11 436× UNK 0.02 2314× UNK 0.07 753×
N38 SAFE 48.00 SAFE 2.98 16× UNK 0.28 174× UNK 0.02 2124× UNK 0.05 1062×
N39 SAFE 144.00 SAFE 13.04 11× SAFE 0.44 330× UNK 0.02 6914× UNK 0.06 2307×
N41 SAFE 30.00 SAFE 2.73 11× SAFE 0.07 405× SAFE 0.02 1933× UNK 0.03 1182×
N42 SAFE 77.00 SAFE 4.96 16× SAFE 0.32 240× UNK 0.02 4698× UNK 0.05 1632×
N43 SAFE 163.00 SAFE 9.79 17× SAFE 0.32 503× UNK 0.02 9874× UNK 0.05 3491×
N44 SAFE 52.00 SAFE 4.94 11× UNK 0.57 91× UNK 0.02 2786× UNK 0.06 920×
N45 SAFE 53.00 SAFE 3.91 14× SAFE 0.22 242× UNK 0.02 3086× UNK 0.07 788×
N46 SAFE 18.00 SAFE 7.96 2× SAFE 0.30 59× UNK 0.02 983× UNK 0.06 327×
N47 SAFE 16.00 SAFE 1.26 13× SAFE 0.09 169× UNK 0.02 968× UNK 0.06 288×
N48 SAFE 68.00 SAFE 6.10 11× SAFE 0.18 382× UNK 0.02 3787× UNK 0.06 1144×
N49 SAFE 51.00 SAFE 8.74 6× SAFE 0.17 295× UNK 0.02 3190× UNK 0.05 1038×
N51 SAFE 174.00 SAFE 19.88 9× SAFE 0.22 782× UNK 0.02 9626× UNK 0.05 3733×
N52 SAFE 48.00 SAFE 13.37 4× SAFE 0.15 318× UNK 0.02 3066× UNK 0.04 1306×
N53 SAFE 39.00 SAFE 5.16 8× SAFE 0.27 144× UNK 0.02 2301× UNK 0.05 823×
N54 SAFE 43.00 SAFE 3.61 12× SAFE 0.19 225× UNK 0.02 2497× UNK 0.04 1043×
N55 SAFE 61.00 SAFE 5.29 12× SAFE 0.16 371× UNK 0.02 3646× UNK 0.06 1102×
N56 SAFE 55.00 SAFE 3.01 18× SAFE 0.19 294× UNK 0.02 3300× UNK 0.04 1359×
N57 SAFE 8.00 SAFE 1.13 7× SAFE 0.07 114× UNK 0.02 478× UNK 0.05 163×
N58 SAFE 48.00 SAFE 3.09 16× SAFE 0.28 172× UNK 0.02 2642× UNK 0.06 742×
N59 SAFE 57.00 SAFE 3.77 15× SAFE 0.14 404× UNK 0.02 3266× UNK 0.05 1084×
VT 8470 477.01 12.20 0.78 2.19

SAFE 42/45 42/45 32/45 1/45 0/45

Imp. 12× 544× 10785× 3969×
Bold values indicate runtime improvement and summary statistics of the methods

Verification of neural networks using star sets 539

1 2 3 4 5 6
N

0

200

400

600

800

1000

1200

VT
 (s

ec
)

Star
Reluplex

Fig. 4. Verification times for property φ4 on N13 network with different number of cores

Zonotope-based method The experimental results show that the over-approximate, zonotope-based method
[SGM+18] is faster than exact methods. In some cases, it can verify the safety of the networks with a small
verification time, for example, the zonotope-based method successfully verifies property φ4 on N41 network in
0.02 seconds. Although the zonotope-based method is very time-efficient, it is unable to verify the safety of most
of networks due to its large over-approximation error. The zonotope approach can verify only 2/45 (≈ 4.44%)
networks for property φ3 and 1/45 (≈ 2.22%) networks for property φ4. In comparison with our approximate star
method, we can verify 29/45 (≈ 64.44%) networks for property φ3 and 32/45 (≈ 71.11%) networks for property
φ4. This shows that the star set method is significantly less conservative than the zonotope approach.

Abstract-domainbasedmethod Similar to zonotopemethod, theabstract-domain is very time-efficient [SGPV19].
However, it is the most conservative approach since it cannot verify any networks for both properties. We note
that in [TML+19b], we implemented an improved version of the new abstract domain method in which we still
solve LP optimization problems to find the lower and upper bounds of an input to a specific neuron and use
these bounds to construct the reachable set. In this paper, to have a fair comparison, we re-implement the original
abstract domain method in which the lower and upper bounds are found using “back-tracking” method. We
have experienced that the lower and upper bounds obtained by the new abstract-domain method may be very
conservative.

540 H.-D. Tran et al.

Fig. 5. Reachable sets of N41 network w.r.t property φ4 with different methods

Benefits of computing the reachable set The computed reachable sets are useful for intuitively observing the
complex behavior of the network. For example, Fig. 5 describes the behaviors of N51 network corresponding
to property φ4 requiring that the output COC is not the minimal score. From the figure, one can see that the
COC > StrongRight and thus, property φ4 holds on N41 network. Importantly, as shown in the figure, via
visualization, one can intuitively observe the conservativeness of different over-approximation approaches in
comparison to the exact ones which is impossible if we use ERAN [SGPV19], a C -Python implementation of
the zonotope and new abstract domain methods. We note that the reachable set obtained by the new abstract
domain method is neglected for visualization because it is too large. Last but not least, the reachable set is useful
in the case that we need to verify a set of safety properties corresponding to the same input set. In this case, once
the reachable set is obtained, it can be re-used to check different safety properties without rerunning the whole
verification procedure as Reluplex does, and thus helps saving a significant amount of time.

Complete counter example input set construction Another strong advantage of our approach in comparison
with other existing approaches is, in the case that a neural network violates its safety specification, our exact
star method can construct a complete counter input set that leads the neural network to the unsafe region. The
complete counter input set can be used as a adversarial input generator [GSS14, BIL+16] for robust training of the
network. We note that finding a single counter input falsifying a safety property of a neural network can be done
efficiently using only random simulations. However, constructing a complete counter input set that contains all
counter inputs is very challenging because of the non-linearity of a neural network. To the best of our knowledge,
our exact star-based approach is the only approach that can solve this problem. For example, assume that we
want to check the following property φ′

4 � ¬(COC ≥ 15.8 ∧ StrongRight ≤ 15.09) on N2 8 network with the
same input constraints as in property φ4. Using the available reachable set of N2 8 network, we can verify that
the above property φ′

4 is violated in which 60 stars in 421 stars of the reachable set reach the unsafe region. Using
Theorem 3.2, we can construct a complete counter input set which is a union of 60 stars in 0.9893 seconds. This
counter input set depicted in Fig. 6 is a part of the input set that contains all counter inputs that make the neural
network unsafe.

Verification of neural networks using star sets 541

Fig. 6. The (normalized) complete counter input set for property φ′
4 on N2 8 network is a part of the normalized input set (red boxes)

5.2. Robustness certification of image classification ReLU DNNs under adversarial attacks

Robustness certification of DNNs becomes more and more important as many safety-critical applications using
image classificationDNNs can be fooled easily by slightly perturbing a correctly classified input. A network is said
to be δ-locally-robust at input point x if for every x ′ such that

∥
∥x − x ′∥∥

∞ ≤ δ, the network assigns the same label
to x and x ′. In this case study, instead of proving the robustness of a network corresponding to a given robustness
certification δ, we focus on finding the maximum robustness certification value δmax that a verification method
can provide a robustness guarantee for the network. We investigate this interesting problem on a set of image
classification DNN with different architectures trained (with an accuracy of 98%) using the well-knownMNIST
data set consisting of 60,000 images of handwritten digits with a resolution of 28× 28 pixels [LeC98] (50,000 are
used for training, while 10,000 are used for testing). The trained networks have 784 inputs and a single output
with expected value from 0 to 9. We trained a variety of feed-forward neural networks with varying sizes. The
number of neurons that we considered ranged from 140 Neurons to 4000 neurons. Throughout our experiments,
we used a fixed number of neurons for each layer. We utilized mean squared error as the loss function and utilized
the Adam optimization algorithm for training.3 On average, it took 12 epochs for the training to converge to
an accuracy greater than 95%. We find the maximum robustness verification value δmax for the networks on an
image of digit one with the assumption that there is a δmax -bounded disturbance modifying the (normalized)
values of the input vector x at all pixels of the image, i.e., | x [i]−x ′[i] |≤ δmax . The result are presented in Table 3.
We note that the polyhedron and Reluplex approaches are not applicable for these networks because they cannot
deal with a high-dimensional input space. The table shows that our approximate star approach produces larger
upper bounds of the robustness values of the networks with many layers. For single layer networks, our approach
gives the same results as the zonotope [SGM+18] and the abstract domain [SGPV19] methods. The exact-star
method can prove that the network N1 is robust with the bounded disturbance δ � 0.0058. When δ > 0.0058,
we ran into the “out of memory” issue in parallel computation since the number of the reachable sets becomes
too large. The exact star method reaches timeout (set as 1 h) when finding the maximum robustness value for the
other networks.

3The hyperparameters we utilized were β1 � 0.9, β2 � 0.999, lr � 0.001.

542 H.-D. Tran et al.

Table 3.Maximum robustness values (δmax) of image classification networks with different methods in which k
is the number of hidden layers of the network, N is the total number of neurons, Tol is the tolerance error in
searching.

Net Parameters Tol δmax

Zonotope Approximate-Star Abstract-Domain Exact-Star

N1 k= 5, N=140 0.0001 0.0046 0.0048 0.0025 ≥0.0058

N2 k= 5, N=250 0.0001 0.0087 0.0101 0.0042 TimeOut

N3 k= 2, N=1000 0.0001 0.0072 0.0089 0.0052 TimeOut

N4 k= 1, N=2000 0.0001 0.0027 0.0027 0.0027 TimeOut

N5 k= 1, N=4000 0.0001 0.0035 0.0035 0.0035 TimeOut

5.3. Robustness certification of image classification DNNs with LeakyReLU, SatLin, and SatLins
activation functions

We further evaluate our method on DNNs with LeakyReLU, Satlin, and Satlins activation function via verifying
the robustness of image classification DNNs under brightening attack [TBXJ20]. We train three image classifica-
tion networks on the MNIST data set using Matlab Deep Learning Toolbox. Each network has 784 (flattening
each imagewith 28X28 resolution) input neurons and gives ten output neurons (for ten different classes; each neu-
ron outputs corresponding to each of the classes; the max valued class being the prediction). The input dataset is
normalized withmean � 33.3184 and std � 1 for networks with LReLU activation, otherwise no normalization
is considered. The accuracy of each of the networks is between 96 and 98 percent.

To certify the robustness of the networks, we selected 100 images that are correctly classified by the respective
networks and performed the brightening attack on these images. Then we calculated the reachable output sets
for each of the perturbed images to determine if the correctly classified output always has the maximum value in
the set compared to the others. The output layer activation ′softmax ′ is ignored for the approximate reachable
set calculations.

In a brightening attack, some pixels are changed independently in the image to make it brighter or darker to
fool the network, i.e., to misclassify the image. In this case study, to implement this attack, the value of that pixel
xi is reduced to the new value x ′

i if it is greater than a threshold value d such that 0 ≤ x ′
i ≤ δ · xi . Here δ is a very

small number and indicates the size of the input set that can be created by a specific attack. When d is small, the
number of pixels in the image that are attacked is large and vice versa. The verification results of the networks
corresponding to different values of d and δ are presented in Tables 4, 5 and 6.

Table 4. Verification results of 5-layered LeakyReLU network.
Robustness Results (in Percent)

δ � 0.01 δ � 0.05 δ � 0.1

Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono

d � 254 91.00 91.00 91.00 90.00 88.00 87.00 86.00 82.00 82.00

d � 250 70.00 70.00 70.00 64.00 58.00 53.00 48.00 31.00 26.00

d � 245 66.00 66.00 66.00 57.00 49.00 47.00 45.00 27.00 22.00

Verification Times (in Seconds)

d � 254 1.17 49.38 1.34 3.98 55.07 1.35 18.07 57.89 0.86

d � 250 1.11 44.52 0.50 7.95 49.87 1.49 34.20 65.73 2.76

d � 245 1.13 43.12 0.65 9.25 50.15 1.80 44.23 74.60 3.17

Verification of neural networks using star sets 543

Table 5. Verification results of 4-layered Satlin network.
Robustness Results (in Percent)

δ � 0.01 δ � 0.05 δ � 0.1

Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono

d � 254 89.00 89.00 89.00 86.00 85.00 81.00 83.00 82.00 74.00

d � 245 60.00 60.00 59.00 48.00 47.00 26.00 37.00 33.00 7.00

d � 234 58.00 58.00 57.00 44.00 42.00 19.00 26.00 26.00 2.00

Verification Times (in Seconds)

d � 254 32.86 27.56 0.95 29.16 29.32 1.13 33.09 30.48 1.33

d � 245 22.05 21.67 0.83 32.16 32.17 2.56 37.68 28.54 5.50

d � 234 24.94 22.96 1.04 40.16 27.05 3.46 35.43 29.34 3.80

Table 6. Verification results of 5-layered Satlins network.
Robustness Results (in Percent)

δ � 0.01 δ � 0.05 δ � 0.1

Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono Approx-Star Abs-DomApprox-Zono

d � 254 86.00 86.00 82.00 83.00 83.00 66.00 80.00 80.00 51.00

d � 245 57.00 57.00 40.00 42.00 41.00 4.00 27.00 23.00 2.00

d � 234 51.00 51.00 34.00 40.00 37.00 1.00 19.00 14.00 0.00

Verification Times (in Seconds)

d � 254 50.14 49.36 1.55 59.87 52.35 1.69 56.43 50.81 2.26

d � 245 31.95 32.07 1.83 50.79 46.09 3.54 92.11 61.21 4.08

d � 234 31.21 30.36 1.98 56.34 49.65 3.58 80.83 65.43 3.79

From the comparative tables, we can infer that all the reachability approaches that were considered exhibit
almost similar robustness performance(in terms of the correct number of class predictions) when δ is very small,
i.e., when the attack on the pixel is minimal, when the threshold value d decreases and δ value increases the
robustness performance changes. It is important to emphasize that in this case study, we solve LP to find the
ranges of neurons of the networks for the new abstract domain approach (in the ACAS Xu case study, we use
only the estimated range for this method). Because the ranges of neurons are optimized, the abstract domain
method is more precise. However, at the same time, its verification time grows.

From the tables, we ascertain that the approximate star method is more robust compared to the abstract
domain and Zonotope in terms of prediction. Interestingly, for the LeakyReLU network, the approximate star
method is much faster than the abstract domain method. This impressive improvement is due to the optimization
in the implementation of the approximate reachability algorithm for the LeakyReLU network in which instead
of performing a sequence of approximate stepReLU operations, we perform these operations in parallel. Though
the zonotopemethod takes less time to analyze robustness, it is very clear that it can only predict 2% of the images
correctly when the brightening attack on pixels is higher(i.e., lesser d and higher δ). The prediction accuracy of
the abstract domain approach with optimized ranges of neurons is better than the Zonotope but lesser than
approx-star. Overall, the approx-star method achieves a more consistent level of robustness performance for
varying disturbance levels than others. Importantly, by parallelizing the approximate stepReLU operations, we
can speed up the approximate star method by several orders of magnitudes.

544 H.-D. Tran et al.

6. Conclusion and future work

Wehave proposed two reachability analysis algorithms forDNNswith piecewise linear activations using star sets,
one that is exact (sound and complete), but has scalability limitations, and one that over-approximates (sound)
with better scalability. The exact algorithm can compute and visualize the exact behaviors of DNNs. The exact
method is more efficient than standard polyhedra approaches, and faster than SMT-based approaches when
running onmulti-core platforms. The over-approximate algorithm is much faster than the exact one, and notably,
it is less conservative than recent zonotope and abstract-domain based approaches. Our algorithms are applicable
for real world applications as shown in the safety verification of ACAS Xu DNNs and robustness certification of
image classificationDNNs. In ongoing and futurework,we are extending the proposedmethods for convolutional
neural networks (CNNs) [TBXJ20, TPM+21] and recurrent neural networks (RNNs), improving scalability for
other types of activation functions, such as tanh and sigmoid, and continuing to improve the NNV software
framework [TYL+20].

Acknowledgements

The material presented in this paper is based upon work supported by the Air Force Office of Scientific Research
(AFOSR) through contract numbers FA9550-18-1-0122 and FA9550-19-1-0288, theDefenseAdvancedResearch
Projects Agency (DARPA) through contract number FA8750-18-C-0089, and the National Science Foundation
(NSF) through Grant Number 1910017. The U.S. government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and con-
clusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of AFOSR, DARPA, or NSF.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[AKLP19] AkintundeME,KevorchianA, Lomuscio A, Pirovano E (2019) Verification of RNN-based neural agent-environment systems.
In: Proceedings of the 33th AAAI conference on artificial intelligence (AAAI19). Honolulu, HI, USA. AAAI Press (to appear)

[ALMP18] Akintunde M, Lomuscio A, Maganti L, Pirovano E (2018) Reachability analysis for neural agent-environment systems. In:
Sixteenth international conference on principles of knowledge representation and reasoning

[BD17] Bak S, Duggirala PS (2017) Simulation-equivalent reachability of large linear systems with inputs. In: International conference
on computer aided verification. Springer, pp 401–420

[BDTD+16] Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J et al (2016)
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316

[BIL+16] Bastani O, Ioannou Y, Lampropoulos L, Vytiniotis D, Nori A, Criminisi A (2016) Measuring neural net robustness with
constraints. In: Advances in neural information processing systems, pp 2613–2621

[BTHJ20] Bak S, Tran H-D, Hobbs K, Johnson T (2020) Improved geometric path enumeration for verifying ReLU neural networks. In:
Proceedings of the 32nd international conference on computer aided verification. Springer

[DJST17] Dutta S, Jha S, Sanakaranarayanan S, Tiwari A (2017) Output range analysis for deep neural networks. arXiv preprint
arXiv:1709.09130

[Ehl17] Ehlers R (2017) Formal verification of piece-wise linear feed-forward neural networks. In: International symposium on auto-
mated technology for verification and analysis. Springer, pp 269–286

[GMDC+18] Gehr T, Mirman M, Drachsler-Cohen D, Tsankov P, Chaudhuri S, Vechev M (2018) Ai 2: safety and robustness certification
of neural networks with abstract interpretation. In: 2018 IEEE symposium on security and privacy (SP)

[GSS14] Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
[HDY+12] Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep

neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process
Mag 29(6):82–97

[Hei20] Heilweil R (2020) Tesla needs to fix its deadly Autopilot problem
[HKWW17] Huang X, Kwiatkowska M, Wang S, Wu M (2017) Safety verification of deep neural networks. In: International conference

on computer aided verification. Springer, pp 3–29
[JKO18] Julian KD, Kochenderfer MJ, Owen MP (2018) Deep neural network compression for aircraft collision avoidance systems.

arXiv preprint arXiv:1810.04240
[KBD+17] Katz G, Barrett C, Dill DL, Julian K, Kochenderfer MJ (2017) Reluplex: an efficient smt solver for verifying deep neural

networks. In: International conference on computer aided verification. Springer, pp 97–117
[KGBM04] Kvasnica M, Grieder P, Baotić M, Morari M (2004) Multi-parametric toolbox (MPT). In: International workshop on hybrid

systems: computation and control. Springer, pp 448–462

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1810.04240

Verification of neural networks using star sets 545

[KHI+19] Guy K, Derek AH, Duligur I, Kyle J, Christopher L, Rachel L, Parth S, Shantanu T, Haoze W, Aleksandar Z et al (2019) The
marabou framework for verification and analysis of deep neural networks. In: International conference on computer aided
verification. Springer, pp 443–452

[KL18] Kouvaros P, Lomuscio A (2018) Formal verification of cnn-based perception systems. arXiv preprint arXiv:1811.11373
[LeC98] LeCun Y (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
[LKB+17] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, GhafoorianM, van der Laak Jeroen AWM, Van Ginneken B, Sánchez

CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
[LM17] Lomuscio A, Maganti L (2017) An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint

arXiv:1706.07351
[LWL+17] LiuW,Wang Z, Liu X, ZengN, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications.

Neurocomputing 234:11–26
[MDFF16] Moosavi-Dezfooli S-M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2574–2582
[Muo17] Muoio D (2017) The self-driving Uber in the Arizona crash was hit crossing an intersection on yellowUber crashes
[PT10] Pulina L, Tacchella A (2010) An abstraction-refinement approach to verification of artificial neural networks. In: International

conference on computer aided verification. Springer, pp 243–257
[SGM+18] Singh G, Gehr T, Mirman M, Püschel M, Vechev M (2018) Fast and effective robustness certification. In: Advances in neural

information processing systems, pp 10825–10836
[SGPV19] Singh G, Gehr T, PüschelM, VechevM (2019) An abstract domain for certifying neural networks. Proc ACMProgrammLang

3(POPL):41
[TBXJ20] Tran H-D, Bak S, Xiang W, Johnson TT (2020) Verification of deep convolutional neural networks using imagestars. In: 32nd

international conference on computer-aided verification (CAV). Springer
[TML+19a] Tran H-D, Musau P, Lopez DM, Yang X, Nguyen LV, Xiang W, Johnson TT (2019) Parallelizable reachability analysis

algorithms for feed-forward neural networks. In: 7th international conference on formal methods in software engineering
(FormaliSE2019), Montreal, Canada

[TML+19b] Tran H-D, Musau P, Lopez DM, Yang X, Nguyen LV, XiangW, Johnson TT (2019) Star-based reachability analsysis for deep
neural networks. In: 23rd international symposisum on formal methods (FM’19). Springer

[TPM+21] Tran H-D, Pal N, Musau P, Yang X, Hamilton NP, Lopez DM, Bak S, Johnson TT (2021) Robustness verification of semantic
segmentation neural networks using relaxed reachability. In: Proceedings of the 33rd international conference on computer-
aided verification. Springer

[TYL+20] Tran H-D, Yang X, Lopez DM, Musau P, Nguyen LV, Xiang W, Bak S, Johnson TT (2020) NNV: the neural network
verification tool for deep neural networks and learning-enabled cyber-physical systems. In: 32nd international conference on
computer-aided verification (CAV)

[WPW+18a] Wang S, Pei K, Whitehouse J, Yang J, Jana S (2018) Efficient formal safety analysis of neural networks. In: Advances in neural
information processing systems, pp 6369–6379

[WPW+18b] Wang S, Pei K, Whitehouse J, Yang J, Jana S (2018) Formal security analysis of neural networks using symbolic intervals.
arXiv preprint arXiv:1804.10829

[WZC+18] Weng T-W, ZhangH, ChenH, Song Z, Hsieh C-J, BoningD,Dhillon IS, Daniel L (2018) Towards fast computation of certified
robustness for relu networks. arXiv preprint arXiv:1804.09699

[XMW+18] Xiang W, Musau P, Wild AA, Lopez DM, Hamilton N, Yang X, Rosenfeld JA, Johnson TT (2018) Verification for machine
learning, autonomy, and neural networks survey. CoRR arXiv:1810.01989

[XTJ17] Xiang W, Tran H-D, Johnson TT (2017) Reachable set computation and safety verification for neural networks with relu
activations. arXiv preprint arXiv:1712.08163

[XTJ18] XiangW, TranH-D, Johnson TT (2018) Output reachable set estimation and verification for multilayer neural networks. IEEE
Trans Neural Netw Learn Syst (99):1–7

[XTJ19] XiangW,TranH-D, JohnsonTT (2019) Specification-guided safety verification for feedforward neural networks. AAAI Spring
symposium on verification of neural networks

[ZWC+18] Zhang H, Weng T-W, Chen P-Y, Hsieh C-J, Daniel L (2018) Efficient neural network robustness certification with general
activation functions. In: Advances in neural information processing systems, pp 4944–4953

Received 10 April 2020
Accepted in revised form 29 May 2021 by Annabelle McIver, Maurice ter Beek and Cliff Jones
Published online 28 August 2021

http://arxiv.org/abs/1811.11373
http://yann. lecun. com/exdb/mnist/
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1712.08163

	Verification of Piecewise Deep Neural Networks: A Star Set Approach with Zonotope Pre-filter
	Author(s)

	Verification of piecewise deep neural networks: a star set approach with zonotope pre-filter
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Machine learning models and symbolic verification problem
	2.2 Generalized star sets

	3 Reachability of FNNs with ReLU activation functions
	3.1 Exact and complete analysis
	3.2 Over-approximate analysis
	3.3 Zonotope pre-filter
	3.4 Reachability algorithms (code)

	4 Dealing with other piecewise activation functions
	4.1 Reachability of a satlin layer
	4.2 Reachability of a satlins layer
	4.3 Reachability of a leaky ReLU layer

	5 Evaluation
	5.1 Safety verification for ACAS Xu DNNs
	5.2 Robustness certification of image classification ReLU DNNs under adversarial attacks
	5.3 Robustness certification of image classification DNNs with LeakyReLU, SatLin, and SatLins activation functions

	6 Conclusion and future work
	Acknowledgements
	References

