University of Dayton

eCommons

Biology Faculty Publications Department of Biology

12-2017

Lethal and Sublethal Effects of Novel Terrestrial Subsidies from
an Invasive Shrub (Lonicera maackii) on Stream
Macroinvertebrates

Ryan W. McEwan
University of Dayton, rmcewan1@udayton.edu

Kevin W. Custer
University of Dayton

Eric B. Borth
University of Dayton

Sean D. Mahoney
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/bio_fac_pub

0 Part of the Plant Biology Commons

eCommons Citation

McEwan, Ryan W.; Custer, Kevin W.; Borth, Eric B.; and Mahoney, Sean D., "Lethal and Sublethal Effects of
Novel Terrestrial Subsidies from an Invasive Shrub (Lonicera maackii) on Stream Macroinvertebrates"
(2017). Biology Faculty Publications. 220.

https://ecommons.udayton.edu/bio_fac_pub/220

This Article is brought to you for free and open access by the Department of Biology at eCommons. It has been
accepted for inclusion in Biology Faculty Publications by an authorized administrator of eCommons. For more
information, please contact friceT@udayton.edu, mschlangen1@udayton.edu.


https://ecommons.udayton.edu/
https://ecommons.udayton.edu/bio_fac_pub
https://ecommons.udayton.edu/bio
https://ecommons.udayton.edu/bio_fac_pub?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/bio_fac_pub/220?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

Lethal and sublethal effects of novel terrestrial subsidies

from an invasive shrub (Lonicera maackii) on
stream macroinvertebrates

Kevin W. Custer™?, Eric B. Borth™3, Sean D. Mahoney™*, and Ryan W. McEwan®®

'Department of Biology, University of Dayton, Dayton, Ohio 45469 USA

Abstract: The biology of headwater streams is intimately linked to that of the surrounding terrestrial environment
through organic matter subsidies. Lonicera maackii, an invasive shrub that is becoming abundant in headwater
stream riparian areas, deposits substantial quantities of organic matter into the aquatic system. This organic ma-
terial has allelopathic effects on terrestrial plants and insects, and a growing body of work suggests strong connec-
tions between L. maackii invasion and aquatic biota. Lonicera maackii deposits fruit and flowers in quantities and
timings that are unique, and we tested the hypothesis that these subsidies would negatively affect survival and
growth of laboratory-cultured Hyalella azteca and field-collected Anthopotamus verticis and Allocapnia spp. In-
vertebrates were exposed to a gradient of fruit (reference sediment + 0, 0.31, 0.62, 1.25, or 2.5 g dry mass [DM])
and flower (reference sediment + 0, 0.30, 0.60, 1.2, or 2.4 g DM) biomass in laboratory and field sediment exposure
tests. Hyalella azteca survival was significantly reduced by exposure to L. maackii fruit in the laboratory and in the
field exposures, and a negative effect was observed for A. verticis (p< 0.05). Lonicera maackii flower biomass was
associated with negative effects on survival of H. azteca in the field and laboratory exposures and of A. verticis in
the laboratory exposure. During the laboratory exposures, dissolved O, (DO) and pH were <2 mg/L and 5.5, re-
spectively. In the field exposures, DO and pH were comparable to stream conditions during fruit exposures, de-
clining significantly with increasing flower biomass. Our results suggest that L. maackii fruit and flowers, novel
subsidies in these systems, can negatively affect benthic organism survival and growth. Research focused on ver-
ifying this novel subsidy hypothesis for L. maackii and other species could enhance our understanding of invasion

biology and terrestrial-aquatic linkages.
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Organic-matter subsidies from the terrestrial environment
are a foundational resource for aquatic food webs in head-
water streams (Hawkins and Sedell 2009, Wallace et al.
2015). Aquatic microbial and macroinvertebrate communi-
ties use allochthonous inputs as nutrient and energy re-
sources and for habitat (Cummins and Klug 1979, Vannote
etal. 1980). Large-scale alterations in riparian plant commu-
nities can alter the exchange between aquatic and terrestrial
habitats (Naiman and Decamps 1997, Baxter et al. 2005) and
influence food webs and nutrient/energy cycling from local-
to-watershed scales (Tank et al. 2010). Terrestrial-aquatic
interactions are critical to broader biodiversity—ecosystem
function relationships (Naiman et al. 1993), and understand-
ing these linkages is important for watershed management
(Likens and Bormann 1974, Kominoski et al. 2011).
Headwater streams are a critical component of larger fresh-
water systems, and a growing body of evidence that suggests

the ecological health of freshwater systems is linked to func-
tions provided by headwater streams (Lowe and Likens 2005).
Headwater streams are tightly linked to the surrounding land-
scape through cross-system subsidies and are highly vulner-
able to disturbance (Cummins 1974, Vannote et al. 1980,
Baxter et al. 2005). For instance, aquatic macroinvertebrate
composition is strongly associated with allochthonous al-
terations of stream chemistry, and significant losses are asso-
ciated with acidification (Guerold et al. 2000). Aquatic biota
are highly responsive to influences associated with urbaniza-
tion and agricultural development, with diversity positively
associated with riparian forests and negatively associated
with impervious surfaces (Moore and Palmer 2005). Losses
of aquatic biota are a conservation concern and may influ-
ence foodweb dynamics (Baxter et al. 2005) and can result
in significant indirect effects (Wallace et al. 1989). Nega-
tive effects on headwater streams accumulate across larger
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areas and can create watershed-scale effects (Freeman et al.
2007).

Invasions by non-native plant species are an increasingly
prevalent feature of riparian areas of headwater streams
with potential for significant alterations of stream biota. In-
vasive species are associated with edge habitats, such as
those created by waterways, and fragmented riparian for-
ests near human habitation are particularly vulnerable (Yates
et al. 2004, Bartuszevige et al. 2006). Flowing streams may be
a dispersal pathway for some invasive species (Planchuelo
et al. 2016). Exotic species often possess a suite of unique
traits that enable their invasion (Callaway and Ridenour
2004). The creation of dense populations in the riparian ar-
eas of streams has substantial potential to influence aquatic
biota directly or as plant biomass exhibiting those unique
traits is transferred as a subsidy. For example, a significant
body of research has explored the potential role of riparian
invasion by Tamarix in a variety of alterations to aquatic
ecosystems (Shafroth et al. 2005, Hultine et al. 2010). Ripar-
ian invasion of the exotic shrub Elaeagnus angustifolia in-
fluences stream nitrogen dynamics (Mineau et al. 2011) and
has been associated with a 25x increase in litter that is much
more recalcitrant than native species (Mineau et al. 2012).
In contrast, Ailanthus altissima is an invasive tree that influ-
ences stream biology partially via deposition of leaf material
that decomposes rapidly (Swan et al. 2008). These studies,
among others, provide strong support for the concept that
riparian invasion has potential to alter headwater stream bi-
ota and suggest the mechanisms are complex and species
specific.

The deciduous shrub Amur honeysuckle (Lonicera ma-
ackii (Rupr.) Herder) is a non-native invasive plant that has
proliferated rapidly in eastern North America. Invasion by
this species can influence the biology and function of for-
ests (Luken and Thieret 1996, Hutchinson and Vankat 1997,
Gould and Gorchov 2000, McNeish and McEwan 2016). An
allelopathic relationship between this species and terrestrial
insects has been established in field and laboratory experi-
ments (McEwan et al. 2009, Lieurance and Cipollini 2012,
20134, b), and the leaf chemistry of foliage suggests higher
N content and lower lignin than native species (McEwan
et al. 2012). Lonicera maackii foliage breaks down rapidly
in both terrestrial (Arthur et al. 2012, Poulette and Arthur
2012, Trammell et al. 2012) and aquatic environments (Mc-
Neish et al. 2012). Colonization of experimental leaf packs
strongly indicated that L. maackii foliage supports a unique
macroinvertebrate community (McNeish et al. 2012), and
experimental riparian removal indicated a connection be-
tween riparian invasion and aquatic biota. Experimental mi-
crocosm assays indicated that Culex pipiens larvae survivor-
ship is enhanced by the presence of L. maackii foliar leachate
(Shewhart et al. 2014). In summary, a variety of data sources
suggest a link between L. maackii invasion and aquatic ma-
croinvertebrate community composition, but the mecha-
nism(s) of linkage remain unclear. Illuminating this relation-
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ship is important for advancing understanding of terrestrial—
aquatic linkages and for practical reasons because managing
the invasion of L. maackii is a primary concern for land man-
agers across vast areas of the American Midwest.

The objective of our study was to characterize selected
benthic macroinvertebrate responses to subsidies from L.
maackii. We assessed the influence of flowers and fruits
for several reasons. First, the deposition of these materials
is copious and is a unique feature of L. maackii invasion
because no native riparian species generates a similar sub-
sidy. Second, the timeline of fruit and flower deposition co-
incides with important periods in macroinvertebrate life cy-
cles. Last, the biology of L. maackii fruit is of particular
interest because it exhibited strong allelopathic effects on
seeds of native plants (McEwan et al. 2010). We used field
and laboratory microcosms containing natural sediments
to test the hypothesis (H;) that benthic macroinvertebrates
will respond to the presence of L. maackii subsidies with in-
creased mortality and decreased growth. We expected the
flow-through field microcosms to increase water exchange,
thereby affecting the concentration of materials compared
to the laboratory system. Therefore, we hypothesized (H,)
that field trials would yield lower negative effects than those
conducted in the laboratory. We chose Hyalella azteca (Am-
phipoda:Hyalellidae) because of its status as a model organ-
ism for sediment toxicity testing (USEPA 2000, Environ-
ment Canada 2013). We added 2 test taxa that are frequent
inhabitants of regional streams: Anthopotamus verticis (Ephe-
meroptera:Potamanthidae) and Allocapnia spp. (Plecoptera:
Capniidae). Given its status as a model organism, we hy-
pothesized (H3) that H. azteca would be the most sensitive
species in our trials.

METHODS
Lonicera maackii fruit and flower collection and storage
We collected L. maackii fruit and flowers from 1°*- or
2" order headwater stream riparian areas in southwest
Ohio, USA. We collected fruit between 1 October and 9 De-
cember 2015 and flowers between 9 May and 6 June 2016.
During these periods, we picked fruit and flowers from
branches overhanging the stream when their production
was high, stored them in plastic bags at 4°C, and used them
within 2 d of collection.

Exposures in the laboratory and field

We cultured H. azteca under controlled laboratory con-
ditions following recommendations by the USEPA (2000)
in dechlorinated City of Dayton tap water. Organisms were
between 7 and 14 d old upon exposure initiation. We col-
lected A. verticis from the Great Miami River, Ohio, USA
(Custer et al. 2016), and Allocapnia spp. from a headwater
stream in Englewood, Ohio. We transported all field-collected
organisms in coolers with site water, and we used native
leaves from the stream as substrate during transport. We in-
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troduced all organisms to exposure conditions (laboratory
or field) <2 h after collection. Laboratory organisms were
transported to the field in centrifuge tubes, and organisms
were temperature acclimated to £5°C of stream-water con-
ditions prior to placing them in the chambers.

Sediment-exposure experiments

Experimental design We added the same number of or-
ganisms to each replicate in laboratory and field exposures:
10 H. azteca, 5 A. verticis, and 5 Allocapnia spp. Each fruit
and flower sediment exposure had 4 treatments plus a ref-
erence. Each laboratory and in situ exposure had 4 and 3
replicates/treatment, respectively. From October to De-
cember 2015, we ran 6 fruit exposures (H. azteca labora-
tory and field, A. verticis laboratory and field, and Allocapnia
spp. 2 field), and in May and June 2016 we ran 5 flower ex-
posures (H. azteca 2 laboratory and 2 field, and A. verticis
laboratory). For analysis of organism survival and growth,
we used only results from exposures with >75% survival in
the reference treatment, but we used all exposures to ana-
lyze experimental conditions (temperature, dissolved O, spe-
cific conductivity, and pH), L. maackii biomass, and phys-
icochemical relationships.

Exposure sediments We collected sediments from a 2™-
order headwater stream at Englewood Metro Park. We used
a hand trowel to collect sediments, transported them to the
laboratory on ice, and stored them at 4°C until needed. We
measured sediment % solids and total organic C (TOC) fol-
lowing methods by Heiri et al. (2001) and Santisteban et al.
(2004). We dried sediments at 105°C for 24 + 2 h for % solid
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determination, and then estimated TOC by loss on ignition
(LOI) (550°C for 4 + 0.5 h). We used a correction factor of
0.38 to convert LOI to organic C (Redfield 1934). Sediments
were mainly cobble/gravel/sand substrates with 84 + 1.8%
as solids and a total organic C content of 1.3 + 0.08%. We
used them as the reference sediment for all fruit and flower
exposures because of high H. azteca survival rates (>90%)
based on current and previous laboratory sediment toxicity
tests (KWC and RWM, unpublished data).

Fruit and flower additions Prior to exposure, we weighed
all fruit and flowers to the nearest 0.01 g (wet mass) and
added them to beakers or chambers. We made dry mass (DM)
corrections by drying replicate samples of fruit and flowers at
105°C for 24 h, and weighing to the nearest 0.01 g. We used
this correction factor to present all L. maackii fruit and flower
biomass. Fruit and flower density estimates were based on
DM divided by the surface area (0.003 m?) of the beaker or
in situ chamber.

We loaded L. maackii wet fruit biomass into each bea-
ker/chamber at the equivalent of mean DM = 0.31, 0.62,
1.25, or 2.5 g (Table 1). We loaded wet flower biomass into
beakers/chambers at the equivalent of mean DM = 0.30,
0.60, 1.2, and 2.4 g DM (Table 2). For exposures carried
out later in the fruit and flower seasons, collecting enough
biomass that was attached to the shrubs at our established
collection sites became difficult. When we were unable to
obtain sufficient biomass, we reduced the number of rep-
licates from 6 to 4.

Laboratory exposures e exposed H. azteca and A. ver-
ticis in a standard laboratory sediment toxicity design (USEPA

Table 1. Mean (£SD) values of physicochemical variables in laboratory and field exposures during Lonicera maackii fruit sediment
exposures. Treatments are fruit dry mass added to microcosms (Reference = no fruit added). DO = dissolved O,, Cond = specific
conductivity, Ortho-P = orthophosphate, Fruit = dry mass of L. maackii fruit per area of the bottom of each mesocosm, Wiles = Wiles
Creek, nm = not measured.

Hardness Alkalinity =~ Temperature DO Cond Ortho-P Fruit
Treatment (mg/L CaCO3) (mg/L CaCOs3) (°C) (mg/L) (uS/cm) pH (mg/L) g/m>
Laboratory
Reference 156 + 16 97 £ 18 23.0 £ 0.4 7.00 £0.7 439 + 22 798 £0.13  0.02 +0.02 0
031g 209 + 65 161 + 64 229 +0.5 496 £1.8 496 + 80 757+032 175+1.14 105+ 0.7
062 g 249 £ 93 162 + 50 22.7 £ 0.4 452 +£22 525+116 7.25+0.50 1.80 % 0.50 209 £+ 0.8
125¢g 322 £163 177 £ 76 22,5+ 0.3 411 +£26 589 +£215 6.94+0.82 1.60+0.36 417 £ 1.1
250¢g 456 + 215 242 + 163 22.5+0.3 330+ 3.1 722 +389 642 +1.06 4.60 = 3.90 834 £2.0
Field
Reference 347 £ 29 367 £ 25 142+ 1.6 1017 +£0.72 1009 + 23 8.09+£0.05 0.23+0.12 0
03l¢g 357 £ 15 398 £98 139+ 1.6 9.81 +1.15 988 + 43 8.09+0.05 023+0.17 104 + 0.5
062 g 360 + 24 430 =72 141+£1.6 9.58 + 0.94 994 + 46 8.06 £0.10 0.23+0.19 208 = 0.9
125¢g 348 £ 29 372 £ 62 140+£1.6 9.03+£1.29 1011 +40 8.01+0.19 0.20 +0.08 417 £0.8
250¢g 359 +£23 362 £ 27 139+1.6 9.32+£1.29 1021 +26 8.00+0.17 0.17 £ 0.06 834 £ 0.7
Wiles 366 = 21 373 £11 13815 10.00 + 0.87 1040 £ 25 8.08 £0.07 0.28 £ 0.08 nm
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Table 2. Mean (+SD) values of physicochemical variables in laboratory and field exposures during Lonicera maackii flower sediment
exposures. Treatments are flower dry mass added to microcosms (Reference = no flowers added). DO = dissolved O,, Cond =

specific conductivity, Ortho-P = orthophosphate, Flowers = dry mass of L. maackii flowers per area of the bottom of each mesocosm,
Wiles = Wiles Creek, nm = not measured.

Hardness Alkalinity =~ Temperature DO Cond Ortho-P Flowers
Treatment (mg/L CaCO3) (mg/L CaCOs3) (°C) (mg/L) (uS/cm) pH (mg/L) (g/m?)
Laboratory
Reference 169 + 3 97 £ 18 23.1+0.5 6.31+£0.7 521 +12 768 £0.24 0.16 + 0.08 0
030g 176 £ 6 105 £ 15 23.0 £ 0.6 370+ 1.7 535+ 19 754 +011 0.15+0.08 98 £0.1
0.60 g 177 £ 8 116 £ 3 229 + 0.6 2.32+2.0 547 + 24 7.37 £0.14  0.14 £ 0.06 198 £ 0.9
120 g 180 + 12 111+ 15 22.8 £ 0.5 193 £1.7 566 + 35 708 £0.29 0.16 £0.16 394 £ 0.5
240 g 233 £ 47 157 £ 56 22.8 £ 0.4 1.74 £ 15 692 + 147 641 +046 0.69 £0.78 788 £ 1.0
Field
Reference 332+ 8 305+ 4 157 +1.7 10.38 £ 0.34 1017 +£ 10 8.04+£0.06 0.04+ 0.00 0
030g 333 +4 310+0 155+ 1.8 9.75 + 0.82 1016 + 8 8.04+0.06 0.14+0.16 99 £0.1
060 g 353 £14 326+ 8 154 +£1.8 10.00 £ 040 1017 £10 8.05+0.07 0.06 £ 0.05 198 £ 0.2
120 g 358 £13 332 £ 24 154 +£1.8 9.31 £ 0.63 1021 +9 799 £0.09 0.14+0.01 393 +£0.9
240 g 375+ 0 351+2 154+ 1.8 8.34 + 0.87 1022 £ 10 787016 0.16 £0.13 787 £ 0.8
Wiles 326 £23 293 £ 136 16.1 £2.1 10.26 + 0.28 1018 + 9 8.02 £0.04 0.05+0.01 nm

2000). Exposure duration was typically 4 d, with the excep-
tion of 1 laboratory exposure that ended after 2 d because of
high mortality after 24 h. Each organism was exposed in
300-mL beakers with ~100 mL of reference sediment (En-
glewood headwater stream; see below) and ~175 mL of over-
lying water. Each set of beakers received 2-L water changes
2x daily following the methods outlined in USEPA (2000).
During the laboratory exposures, we fed H. azteca ~0.5 mL
beaker ' d ™! of a slurry of wheatgrass and fish flake food
(TetraMin, Blacksburg, Virginia) and A. verticis ~0.5 mL
beaker ' d™' of a slurry of stream-conditioned Platanus
occidentalis (American sycamore) or Acer saccharum (sugar
maple) leaves. We used dechlorinated City of Dayton tap wa-
ter for all laboratory exposures (hardness = 144—180 mg/L
as CaCOy).

Field exposures We exposed H. azteca, A. verticis, and Al-
locapnia spp. in the field for 4 to 7 d in chambers (Chappie
and Burton 1997, Burton et al. 2005). A full description of
the chamber construction was published by Burton et al.
(2005). Each chamber had 2 windows covered with nylon
mesh (149 um) to allow water circulation and was capped
at both ends to contain the organisms. The chambers were
placed vertically to mimic a beaker design, with sediment
and subsidies loaded similarly to laboratory beakers. The
chambers were deployed at Wiles Creek, Englewood, Ohio,
USA (Aullwood Farm), a 2"%-order headwater stream.

Physicochemical monitoring
We monitored physicochemical variables during all lab-
oratory and field exposures. We collected water samples

from beakers and in situ chambers with 60-mL syringes be-
fore sediment processing for organism survival. In situ
chambers were equipped with tubing to enable us to sample
water in the chamber while it was deployed in the stream.
We measured temperature (°C), dissolved O, (DO) (mg/L),
specific conductivity (1S/cm), pH, and total dissolved solids
(TDS) (mg/L) daily with a YSI Pro Series meter (Yellow
Springs Instruments, Yellow Springs, Ohio). We measured
total orthophosphate (Ortho-P), hardness, and alkalinity
of the beaker or chamber water at the end of each laboratory
and field exposure. We analyzed Ortho-P within 48 h with a
Hach (Loveland, Colorado) DR 2800. We used titrations to
measure hardness and alkalinity, corrected to standards, and
presented as mg/L CaCO3 (APHA 1995). We used blanks,
standards, and method accuracy checks in Hach nutrient
analyses. A blank correction was applied when blank con-
centrations were higher than the detection limit, and these
data are presented as blank-corrected concentrations (mg/L).

Organism survival and growth

We recorded survival at the end of each exposure (2, 4,
or 7 d) and growth of survivors at the end of 4- and 7-d ex-
posures. We calculated % survival for each replicate by di-
viding the number of surviving organisms/number of organ-
isms at exposure initiation (n = 5 or 10), then multiplied
by 100. We calculated % mortality as the number of dead or-
ganisms/number of organisms at exposure initiation, then
multiplied by 100. We pooled surviving organisms in each
replicate and dried them at 105+ 2°C for 24 + 2 h to estimate
total DM + 0.01 mg/replicate and divided by the number of
organisms per replicate.
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Data analysis

We ran 1-way analyses of variance (ANOVAs) to test sur-
vival or growth of each species (H. azteca, A. verticis, and
Allocapnia spp.) for each fruit and flower exposure. Spe-
cies were not combined into beakers or chambers, and fruit
and flower exposures were run in different seasons. We
used Tukey’s multiple comparisons to compare treatment
means. We tested ANOVA assumptions with Ryan—Joiner
or Kolmogorov—Smirnov tests for normality, and Levene’s
tests for equal variances. If assumptions were violated, then
we used nonparametric Kruskal-Weallis tests. We used lin-
ear regression to assess relationships between selected phys-
icochemical parameters and L. maackii subsidy biomass
added. All statistical analyses were run on Minitab (ver-
sion 17; Minitab Inc., State College, Pennsylvania).

RESULTS
Aquatic macroinvertebrate responses to fruit

Hpyalella azteca responded negatively to increasing fruit
biomass in field (p < 0.001) and laboratory (p < 0.001) ex-
posures (Fig. 1A, B, Table S1). Mortality was greatest
(>93%) in the highest fruit biomass treatment in both field

100 - (A) field microcosms

80 -

60 -

40 -

100 - (B) laboratory microcosms

Mortality (%)

80 A

60 4

40 -
—&— Hyalella azteca

—O— Anthopotamus verticis
—— Allocapnia spp.

T T T T T

0 104 209 417 834

Lonicera maackii fruit biomass (dry wt (g)/m?)

Figure 1. Mean (+SD) % mortality of Hyalella azteca,
Anthopotamus verticis, and Allocapnia spp. in response to 4-d
field (A) and laboratory (B) sediment exposures to Lonicera
maackii fruit biomass. Anthopotamus verticis exposures were
terminated after 2-d because of 100% mortality.
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—O— Anthopotamus verticis
—@— Hyalella azteca, assay 1
80 - —@— Hyalella azteca, assay 2
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60 4
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0 98 197 373 788

Lonicera maackii flower biomass (dry wt (g)lmz)

Figure 2. Mean (+SD) % mortality of Hyalella azteca and
Anthopotamus verticis in response to 4-d field (A) and labora-
tory (B) sediment exposures to Lonicera maackii flower biomass.

and laboratory exposures (Fig. 1A, B). Anthopotamus ver-
ticis mortality differed between field and laboratory expo-
sures (Fig. 1A, B). During the laboratory exposures, mortal-
ity increased to 100% rapidly (p < 0.001), and the exposure
was terminated after 2 d (Fig. 1B). However, during the field
exposure, mortality was much lower (33%) and did not dif-
fer among fruit biomass treatments (p = 0.311; Fig. 1A).
Growth did not differ among fruit biomass treatments (Ta-
ble S1). Allocapnia spp. proved too sensitive for laboratory
exposures, and no successful laboratory exposures were
achieved. However, Allocapnia spp. mortality was low at all
fruit biomasses during 4- (p = 0.838) and 7-d (p = 0.903)
field exposures (Fig. 1A), and no growth effects were ob-
served during these exposures (Table S1).

Aquatic macroinvertebrate responses to flowers

Hyalella azteca and A. verticis responded negatively to
increasing flower biomass during both laboratory and field
exposures (Fig. 2A, B, Table S2). Hyalella azteca mortality
increased with increasing biomass during both laboratory
assays (p < 0.025); Fig. 2B). Hyalella azteca mortality also
tended to increase with flower biomass during a field expo-
sure (p = 0.059). Hyalella mortality was 53% in the highest
flower biomass treatment in the field exposure (Fig. 2A)



and 63 and 45% in the 2 laboratory exposures (Fig. 2B).
Anthopotamus verticis mortality was significantly higher
(100%) at the 3 higher flower biomasses than in the refer-
ence or the lowest flower biomass treatment in the labora-
tory exposure (p < 0.001; Fig. 2B). During this exposure,
one replicate in the reference treatment experienced 100%
mortality, unlike the other 2 replicates (0 and 20% mortal-
ity). Analyses were run with and without the replicate, and
p-values were both significant at o = 0.05 (p = 0.046 and
p < 0.001, respectively).

Sediment, water chemistry, and subsidy biomass
Concentrations of DO concentrations fell to <5.00 mg/L
during both fruit and flower laboratory exposures and the
lowest mean values in our experiments were 1.74 + 1.5 mg/L
in the laboratory flower trials (Tables 1, 2). DO was signif-
icantly negatively related to fruit biomass in laboratory ex-
posures (R* = 0.26 p = 0.004), but not in field exposures
(R* = 0.07, p = 0.153) (Fig. 3A). Mean DO concentrations
were higher (>9.03 mg/L) during fruit field exposures than
in the laboratory setting (Table 1). Concentrations of DO

(A)

DO (Field) = 9.89 - 0.08 Berry biomass

oR?=0.07p=0.153 o
3 o
o] 8
S ™
o o

[ ]
DO (Lab) = 6.00 - 0.32 Berry biomass
T~~.._ R=026p=0.004 °

pH (Field) = 8.09 - 0.01 Berry biomass  (B)
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Figure 3. Regressions for dissolved O, (DO) (A) and pH (B)
across all laboratory (lab) and field sediment exposures as func-
tions of Lonicera maackii fruit biomass treatments.
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Figure 4. Regressions for dissolved O, (DO) (A) and pH (B)
across all laboratory (lab) and field sediment exposures as func-
tions of Lonicera maackii flower biomass treatments.

were significantly negatively related to flower biomass in
both field (R> = 0.55, p < 0.001) and laboratory (R*> =
0.30, p < 0.001) exposures (Fig. 4A). In both the field and
laboratory flower assays, DO concentration in the highest
biomass treatment was lower than the reference; however,
this effect was much stronger in the laboratory (Table 2).

Relationships between pH and fruit and flower biomass
were similar to those observed with DO. pH declined sig-
nificantly with increasing fruit biomass during laboratory
exposures (R> = 0.46, p < 0.001; Fig. 3B), and mean pH
was lowest (6.42 + 1.06) in the highest fruit biomass treat-
ment (Table 1). pH was not related to fruit biomass in field
exposures (R> = 0.09, p = 0.111; Fig. 3B), but was signif-
icantly negatively related to flower biomass in both field
(R* = 0.33, p = 0.005) and laboratory (R* = 0.75, p < 0.001)
exposures (Fig. 4B). The lowest mean pH values (field:
7.87 + 0.16, laboratory: 6.41 + 0.46) were observed in the
highest flower biomass treatments (Table 2).

In laboratory exposures, conductivity, Ortho-P, hard-
ness, and alkalinity increased as fruit biomass increased
(Table 1), whereas conductivity, Ortho-P, hardness, and
alkalinity increased as flower biomass increased (Table 2).
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However, these water-quality variables were not statistically
tested against fruit or flower biomass.

DISCUSSION

Alterations of headwater streams are an increasingly
pressing conservation concern especially in relationship to
ongoing urbanization and other anthropogenic landscape
effects. Invasive species are a particularly complicated kind
of anthropogenic effect, wherein native riparian vegetation
is replaced by quasi-monocultures of exotic species that of-
ten possess a suite of unique traits. Riparian invasion can re-
sult in a virtual ‘trait monoculture’ that shifts the quantity,
chemistry, and physical structure of the terrestrial subsidies
that influence aquatic communities in headwater streams.
Riparian invasion by the exotic shrub L. maackii has been
linked to changes in the structure and function of aquatic
biota (McNeish et al. 2012, 2015). To our knowledge, we
are the first to identify novel subsidies from an invasive spe-
cies (fruits and flowers) as a negative linkage between ripar-
ian plant invasion and headwater stream biota.

Lonicera maackii fruit production is copious, and our
data suggest that fruit deposition into headwater streams
is a negative subsidy for macroinvertebrates. No known
native species in the region generates a pulse of fruit bio-
mass as large and as late in the season as that of L. maackii
(RWM, personal observation and unpublished data). Ter-
restrial vertebrate species that consume Lonicera fruits in-
clude rodents (Dutra et al. 2011), birds (Ingold and Craycraft
1983), and deer (Guiden et al. 2015). However, in invaded
forests, especially along habitat edges, fruit production is ex-
treme (Lieurance and Landsbergen 2016) and far exceeds
the capacity of these species to consume the fruit.

During both field and laboratory exposures, H. azteca
showed strong negative responses to L. maackii fruit. Neg-
ative effects of fruit on H. azteca survival and growth were
stronger in field than in laboratory exposures (refuting H,),
despite the fact that DO concentrations were higher in the
field than in the laboratory exposures. This result strongly
indicates a direct effect of L. maackii fruit on H. azteca
(discussed below). For reasons we could not ascertain and
that were beyond the scope of our study, Allocapnia spp.
had low reference survival rates during the laboratory ex-
posures. Therefore, we were unable to assess its response
to L. maackii fruit in a laboratory setting. In the field ex-
posures, Allocapnia spp. did not respond negatively to L.
maackii fruit. Responses by A. verticis differed strongly be-
tween the field and laboratory exposures. In the laboratory,
A. verticis did not survive >2 d in the presence of L. maackii
fruit and demonstrated strong negative effects during those
2 d. However, in the field, A. verticis showed no negative ef-
fects of exposure to fruit (supporting H,). In the laboratory,
the response of A. verticis was greater than that of H. azteca,
refuting H3 and suggesting the possibility of an indirect ef-
fect of the L. maackii fruit extract on both species.
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Flowers are a unique subsidy, and we found evidence
that L. maackii flower deposition into headwater streams
negatively affects macroinvertebrates. The timing of flower
deposition can differ from that of leaves, and although the
biomass may be relatively small in comparison to leaves or
other materials, high nutrient content and the timing of this
subsidy may make it disproportionately important (Abelho
and Graga 1998). In species that flower prolifically, the
pulse of rapidly decomposable and high-nutrient litter
could create a hot moment in the stream that influences
nutrient cycling and aquatic biota (Wantzen et al. 2009).

Our flower assays were limited in scope because the L.
maackii flowering season is much shorter than its fruiting
season. Our flower exposures indicated significant nega-
tive effects on H. azteca and A. verticis (in the laboratory).
Anthopotamus verticis trials exhibited 100% mortality with
increasing flower biomass, but we had difficulty collecting
the large number of A. verticis required for replicated serial-
dilution tests during the period of flower production. Flower
production of L. maackii is maximized in edge-habitat con-
ditions (Goodell et al. 2010) like those created along head-
water streams. The flowers are attractive to pollinators and
may positively affect seed set of synchronously flowering
nearby native plants (McKinney and Goodell 2011), but our
data suggest that spent flowers may be a negative subsidy
in headwater streams.

We hypothesize that the source of negative effects of
L. maackii is associated with 1 of the following 3 processes:
1) inherent chemical toxicity of the flowers and fruits, 2) sec-
ondary effects associated with changing water chemistry,
or 3) secondary microbial effects. Chemical toxicity of L.
maackii leaf material to invertebrates has been established
in a series of studies. In a laboratory assay, the highly po-
lyphagous caterpillar Lymantria dispar exhibited 100% mor-
tality in a no-choice feeding experiment (McEwan et al.
2009). In a series of papers, Lieurance and Cipollini (2012,
2013a, b) identified the possibility of anti-insect-herbivore
chemistry in L. maackii foliage and identified apigenin and
luteolin (flavones) and chlorogenic acid as compounds that
might be responsible. More generally, a suite of phenolic
compounds, some of which are likely to have anti-insect
properties, has been identified in the fruit of the genus Lo-
nicera (Jurikova et al. 2012). Lonicera japonica flowers have
been identified as having significant insecticidal chemistry
ostensibly associated with constituent compounds estragole
and linalool (Zhou et al. 2012). Zhou et al. (2012) found that
essential oil of L. japonica had contact and fumigant tox-
icity against weevils (Sitophilus zeamais Motschulsky) and
fumigant toxicity against booklouse (Liposcelis bostrycho-
phila Badonnel). Lonicera maackii is phylogenetically re-
lated to L. japonica, but we are unaware of any researchers
who have identified these compounds in fruit or flowers of
L. maackii, or what their function might be in an aquatic
system. However, the response of H. azteca in our trials sug-
gests some mode of direct chemical effect. Future work is



needed to verify this pattern and identify responsible com-
pounds.

A secondary mode of influence was suggested by the re-
sponse pattern of A. verticis to fruit. Mortality was high in
the laboratory exposures, but we found no discernable re-
sponse in the field (supporting H,). This pattern suggests
that changes to water chemistry may be a source of stress
in the laboratory assays. Water chemistry responded strongly
to increasing subsidy biomass in laboratory microcosms,
but was relatively unchanged in the flow-through in situ sys-
tem used in the field. In particular, we found strongly declin-
ing pH and DO in the laboratory fruit exposures and no sig-
nificant decline in either of these variables in the field. These
results suggest that macroinvertebrate responses may be tied
to secondary effects associated with changing chemistry in
the water system, which in a natural system would cause
L. maackii subsidy effects to be strongly associated with flow
rates in relationship to biomass inputs and most likely to be
consequential in pool habitats instead of riffles or runs.

A final potential mechanism for negative effects is micro-
bial activity. Lonicera maackii foliage supports a unique mi-
crobial community (Arthur et al. 2012), and fruit and flower
materials that entered our experimental system could very
possibly have been inoculated with this unique microbial
flora. During our exposures, we observed that sediments with
fruit additions were bubbling, and both fruit and flowers gave
off pungent odors as the duration of exposure increased. Fruit
exhibited vertical migration both in an upward and downward
movement in the beakers, and this movement continued
throughout the exposure period. This observation strongly
suggests some mode of microbial activity, but ascertaining
the biological agent(s) responsible was beyond the scope
of our study. Future work focused on the microbial ecology
of these subsidies probably would be highly illuminating.

In summary, our data suggest that flower and fruit sub-
sidies to headwater streams present a negative, and poten-
tially, toxic subsidy for selected macroinvertebrates. The
precise mechanism for this effect was not identified, and
more testing is needed across a broader suite of aquatic spe-
cies, but our data provide a basis for a new hypothesis link-
ing L. maackii and headwater streams. Even though the
temperate deciduous forests invaded by this species are
species rich, the flower and fruit inputs from L. maackii are
unique in terms of timing, quantity, and chemistry, and our
data suggest that these novel subsidies are a particularly im-
portant connection between the terrestrial and aquatic hab-
itats. Tests of this novel subsidy hypothesis for other species
may provide useful insight for categorizing and managing in-
vasive organisms and for broader understanding of terres-
trial—aquatic linkages.
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