Evaluation of Multiaxial Fatigue Models for Ti-6Al-4V

Christopher A. Buck

University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/226

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Evaluation of Multiaxial Fatigue Models for Ti-6Al-4V
Chris Buck
Advisors: Dr. Dennis Buchanan, Dr. Robert Brockman

Background

Ti-6Al-4V is commonly used in turbine engines.

Multiaxial fatigue is a design consideration for turbine engines.

AFRL recently purchased the MTS 809 Axial-Torsional Test System.

This test system produces reliable multiaxial fatigue data, which can be used to evaluate multiaxial fatigue life prediction models.

Testing

Axial fatigue tests were completed in a previous project.

Torsional fatigue tests used polished torsional fatigue specimens.

Torsional fatigue specimens were subjected to cyclic shear stress in MTS 809 until they fractured.

Modeling

Findley Model

\[\text{Findley Parameter} = \frac{\Delta \tau}{2} + k \sigma_{\text{max}} \]

Sines Model

\[\text{Goodman Parameter} = \sigma_a \left(\frac{S_y}{S_u - \sigma_m} \right) \]

SWT Parameter

\[\text{SWT Parameter} = \sqrt{\sigma_a (\sigma_a + \sigma_m)} \]

Evaluation of Models

Fractography

SEM images of the fracture surface confirm that fracture did not occur due to a stress concentration or surface defect.