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Abstract 
Excessive alcohol consumption is common in the United States, particularly among college campuses. 
Previous studies have shown that excessive drinking increases the risk of drug dependency, sexual assault 
and liver damage. Heavy drinking has also proven to  impact immune capabilities. Immune cell function 
and numbers have been shown to be negatively impacted by alcohol treatment. This research project used 
different cell cultures to model human cells and investigated how exposure to alcohol affects susceptibility 
to bacterial infection. Listeria monocytogenes, a common foodborne bacterium, was used as a model 
pathogen. A high alcohol preferring mouse model was also used to examine the complex organismal 
responses to alcohol consumption prior to infections. These experiments were done in order to better 
understand the effects of alcohol consumption on the function of the human immune system and to help 
identify strategies to combat negative consequences associated with excessive drinking.  
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Introduction 
 
 Excessive alcohol consumption can prove to be detrimental to health and 

wellness. When ingested in excess on a regular basis, alcoholic beverages have been 

known to cause a host of ailments from liver disease to alcoholism. It has been shown 

that there is an inversely proportional relationship between amount of alcohol consumed 

and life longevity. According to a paper published The Lancet, people who consume 0-

100g of alcohol per week can live 3-5 years longer than those who consume more than 

200g per week. Alcohol is the fourth leading preventable cause of death in the United 

States, following smoking tobacco, medical errors and overdoses, and obesity (Wood). 

Alcohol consumption is particularly common among college campuses as well. 

According to National Institute on Alcohol Abuse and Alcoholism, about “1 in 4 college 

students report academic consequences from drinking, including missing class, falling 

behind in class, doing poorly on exams or papers, and receiving lower grades overall” 

(College Drinking). Furthermore, alcohol consumption has been known to impair 

inhibitions, motor function, and critical reasoning—increasing the risk of sexual assault, 

theft, and unintentional injury such as motor vehicle accidents while intoxicated. 

Throughout my college career, I have witnessed many of my peers drink excessively 

every Thursday through Saturday night. The weekly consumption of potentially toxic 

levels of alcohol motivated me to pursue an honors thesis on the topic.  

Chronic alcohol consumption can lead to the development of dependence and 

addiction by altering serotonin release in the brain. Serotonin is a key compound in 

feelings of reward and pleasure. According to an article published in Brain Research, 

serotonin metabolism in the brain was significantly reduced during alcohol consumption, 
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resulting in increased serotonin concentration in the brain. This increased serotonin level 

in the brain gives an individual a sense of euphoria. After repeated ethanol consumptions 

paired with serotonin release, the brain’s reward pathway is modified so that the 

individual’s happiness and optimism becomes dependent on the consistent consumption 

of alcohol. (Palaić et. al) 

 Alcohol travels through the body much like other foods and beverages. Alcohol 

first begins its journey through the body by consumption of any alcoholic beverage. The 

ethanol in alcoholic beverages travels to the stomach where approximately half of the 

ethanol is degraded by stomach enzymes. The other fifty-percent of the alcohol present in 

the drink remains in the chyme that then travels to the duodenum of the small intestine. In 

the small intestine, the alcohol diffuses across the epithelial lining to the nearby capillary 

beds and enters the blood circulation. The alcohol in blood is subsequently filtered from 

blood inside the liver, where alcohol dehydrogenase breaks down ethanol into 

acetylaldehyde. From there acetyladehyde travels to individual cells where aldehyde 

dehydrogenase of the mitochondria convert it in acetate. Acetate is then used as an 

energy source by the cell. (Cederbaum) 

 Beliefs about health benefits from drinking held in popular culture are at times 

unfounded. In popular culture, there are many misconceptions about the health benefits 

associated with alcohol. In a 1993 study that asked 781 Michigan residents about the 

reasons they drank alcohol, most reported that environmental stress and social standards 

were the primary motivations for alcohol consumption (Abbey et. al). This research 

compliments a later 2008 survey of 34 community members from Woodland and Davis, 

California showed that health benefits were not among the reasons for buying alcoholic 
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beverages. Instead, participants reported that taste and brand loyalty were among the 

strongest reasons for buying alcohol. Despite these primary reasons for alcohol 

consumption, some participants reported the health benefits of antioxidants present in the 

wine they drank (Wright et. al). However, according to an article published in Food 

Chemistry, it was reported that during the process of winemaking, many of the strongest 

antioxidants found in the grapes were lost. Particular types of antioxidants, called 

anthocyanins, are found mostly in the skin of the grape. During winemaking, the skin is 

discarded in favor of the juices. These juices form the basis of the wine (Lingua et. al). 

As stated before, there are clear relationships between health outcomes and alcohol 

consumption. The results from both survey studies suggest that participants drink for 

environmental and pleasure-seeking reasons and used perceived health benefits of alcohol 

as a way of justifying their behavior. 

 Regular and excessive consumption of alcoholic beverages reduces the 

effectiveness of the immune system. The immune system prevents pathogens from being 

able to reproduce and spread in a manner sensitive to changes in their environment. The 

introduction of ethanol into the body has drastic effects on the function of immune cells, 

making them less efficient at both detecting pathogens as well as killing them. When 

cells from spleens, a key immune organ, were extracted from mice and treated with 

ethanol, they had significantly lower levels of killing Listeria monocytogenes and 

Borrelia burgdorferi (Pavia et. al.). In another experiment, lab mice were orally 

administered 10% (w/v) ethanol in drinking water for 6 weeks before their spleens were 

harvested and their immune cells were isolated. Overall splenic weight, populations of 

both CD4+ and CD8+ T cells were all drastically lower in ethanol-treated mice than 
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those in control mice. The proliferation of CD4+ and CD8+ T cells as well as cytokine 

release was also decreased upon ethanol treatment. Together, these results showed that 

ethanol decreased both growth and function of these immune cells. 

Drinking alcohol on a regular basis also harms the epithelial barrier. The small 

intestine is where nutrient absorption begins to take place on a large scale. The cells of 

the intestinal epithelium must be very tightly bound to prevent any unwanted compounds 

or pathogens from entering the blood stream. Because of this, cells of the small intestine 

have what are called tight junctions with neighboring cells. This ensures that the cells are 

sealed off from larger chemicals and pathogens. However, when a host introduces alcohol 

into their body, this barrier is compromised. Exposing intestinal cells to ethanol prevents 

them from forming a strong tight junction, allowing particles to freely pass between 

them. Researchers have shown that ethanol exposure increases the amount of dye that can 

pass between tight junction-forming cells. Furthermore, transepithelial resistance, a 

metric to determine the strength of a tight junction, was decreased significantly from 

control levels (Wang, et. al). These results show that ethanol prevents the intestinal 

epithelium from forming proper tight junctions, making them more likely to allow toxic 

compounds or a pathogen through into the blood stream, allowing it to infect the host 

body. 

Listeria monocytogenes is a foodborne pathogen that was used as a model 

organism in this honors thesis. Listeria is a facultative anaerobic, rod-shaped, gram-

positive bacterium. After ingesting contaminated food, Listeria can survive passing 

through the acidic stomach and travel to the duodenum of the small intestine. Once in the 

small intestine, Listeria can pass through the intestinal barrier into the blood stream. 
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Immune cells rapidly recognize Listeria as a pathogen and engulf it into a phagosome. 

However, Listeria produces a toxin, called Listeriolysin O (LLO), which helps it to break 

free of the phagosome. After it escapes into the cytosol of the immune cell, it quickly 

begins reproducing. The concentration of Listeria becomes so high in the immune cell 

that it eventually bursts, releasing many bacteria into the surrounding area to be 

recognized and taken in by other immune cells. Listeria’s ability to use immune cells as 

host rather than others makes it a novel type of pathogen. This ability also proved to be 

important in studying the effect of ethanol on the function and effectiveness of immune 

cells. 

The main goal of this research project is to establish the effects of ethanol on the 

immune health of human cells. 

Methods 
 
Hemolytic Assay 

 
Hemolytic assays were performed to quantify the activity of the secreted toxin, 

listeriolysin O, in the bacterial culture supernatant. Because of the ability of LLO to lyse 

red blood cells, higher levels of lysis are indicative of higher amounts of LLO produced 

by the bacteria. Listeria monocytogenes cultures were prepared by inoculating 1mL of 

BHI media with 1 bacterial colony from a spread plate. Prior to inoculation, BHI and 

ethanol were mixed to form concentrations of 0.05% or 0.20% ethanol (v/v). After 

inoculation, cultures were then placed in either an aerobic or anaerobic incubator for 18 

hours. After incubation, cultures were removed from their incubators and were measured 

for their optical density to quantify their growth. Samples of the cultures were then 
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placed in a centrifuge to separate the bacterial cells from supernatant, where the toxin of 

interest is. After centrifuging, each supernatant sample (100μL) was added to the top row 

of a 96 well plate, along with 5μL of 0.1M DTT, a reducing agent to maximize LLO 

activity. While incubating at room temperature with DTT, the remaining wells were filled 

with 100μL hemolytic assay buffer (HAB). After 10 minutes of incubation, 100μL of 

HAB was added to the supernatant sample, pipetted up and down repeatedly to mix, and 

100μL of the mixture was transferred to the next row down to continue to serially dilute 

the supernatant samples in 1:2 ratio. After dilutions, 100μL of defibrinated sheep blood 

was added to each well to a final concentration of 1% hematocrit. The plates were placed 

in an aerobic incubator for 30 minutes at 37°C. After incubation, plates were placed in 

the centrifuge to separate the intact blood cells from the supernatant. The supernatant was 

then transferred to a flat-bottom 96-well plate and the optical density was measured to 

determine the toxin activity of the Listeria monocytogenes culture. The activity levels 

among different cultures were normalized by the corresponding culture optical density. 

 
Caco-2 Colonic Epithelial Cell Infections 

 
This experiment was used to determine the differences in susceptibility to Listeria 

infection between untreated Caco-2 cells and ethanol treated cells. Caco-2 colonic 

epithelial cells were grown in DMEM media with 10% Fetal Bovine Serum for several 

days in order to harvest the maximum amount of cells for the infection procedure. Cells 

were then treated with 0.1% Trypsin to dissociate them from the bottom of the flask. The 

cells were then placed in the centrifuge along with 10mL of fresh media. After 

centrifuging, the cell media was poured out and replaced by 10ml of new media. The 

pellet of cells was then resuspended in the new media. Using a hemocytometer, the 
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concentration of cells was determined. A total of six million cells were added to a 24-well 

plate at 1mL per well. The cells were then placed in an aerobic incubator at 37°C for 24 

hours to allow for the cells to adhere to the bottom of the well plate. After 24 hours, the 

Caco-2 cells were treated with media supplemented with 0, 0.05, or 0.2% (v/v) ethanol. 

After another 24 hours for the cells to acclimate to the new conditions, the cells were then 

infected with 108 Listeria monocytogenes colony-forming units (CFU). After 1 hour of 

incubation with Listeria, media infused with gentamicin was added to each well to 

eliminate the extracellular bacteria. Following another hour of incubation, the cells were 

then lysed using 0.1% Triton-X and plated onto LB spread plates. The plates were placed 

in an aerobic incubator at 37°C for at least 48 hours and counted for CFU. 

 
RAW Macrophage Infections 
 

This experiment was used to determine the differences in susceptibility to Listeria 

infection between untreated RAW cells and ethanol treated cells. RAW264.7 macrophage 

cells were grown in DMEM media with 10% Fetal Bovine Serum for several days. Cells 

were then gently scraped from the bottom of the plate so they could be placed into a 

centrifuge tube. The cells were then placed in the centrifuge along with 10mL of fresh 

media. After centrifuging, the cell media was poured out and replaced by 10ml of new 

media. The pellet of cells was then resuspended in the new media. Using a 

hemocytometer, the concentration of cells was determined. A total of six million cells 

were added to a 24-well plate at 1mL per well. The cells were then placed in an aerobic 

incubator at 37°C for 24 hours to allow for the cells to adhere to the bottom of the well 

plate. After 24 hours, the RAW cells were treated with media supplemented with 0, 1, or 

2% (v/v) ethanol. After another 24 hours for the cells to acclimate to the new conditions, 
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the cells were then infected with 108 Listeria monocytogenes colony-forming units 

(CFU). After 30 minutes of incubation with Listeria, media infused with gentamicin was 

added to each well to eliminate the extracellular bacteria. Following another hour of 

incubation, the cells were then lysed using 0.1% Triton-X and plated onto LB spread 

plates. The plates were placed in an aerobic incubator at 37°C for at least 48 hours and 

counted for CFU.  

 
HAP2 Mice Infection 
 

This experiment was done in order to help determine animal susceptibility to 

Listeria monocytogenes infection. Lab mice were selected based on their preference to 

drink alcohol over water. These mice were then crossed to produce High Alcohol 

Preferring (HAP) mice (Grahame). High alcohol preferring mice were acquired from Dr. 

Nicholas Grahame and placed in single cages in order to acclimate them to the 

environment of the vivarium at University of Dayton. For this period of time, all mice 

received normal water and food. After 12 days, the experimental mice were given water 

bottles filled with 10% ethanol. At 3, 6, 9, and 12 days following the initial treatment of 

ethanol, experimental mice were given water as a substitute for 24-hour periods. At 15 

days after the initial treatment with ethanol, all mice were infected with 108 CFU of 

Listeria monocytogenes provided through inoculated Nutella. At 3 days after infection, 

all mice were sacrificed in order to harvest the liver and spleen. These organ samples 

were homogenized and plated at varying dilutions to quantify the number of colony 

forming units as the bacterial burden in these organs.  
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Results  
 
Hemolytic Assay 
 

To investigate how ethanol affects Listeria monocytogenes pathogenesis, we first 

analyzed the effect of ethanol on listeriolysin O (LLO) toxin production under aerobic or 

anaerobic conditions. LLO is a virulence factor that L. monocytogenes needs in order to 

escape the phagosome of macrophages so it can initiate its replication inside the 

macrophage cytoplasm. The experiment was performed with bacteria grown aerobically 

or anaerobically to recapitulate the different conditions where L. monocytogenes might be 

exposed to ethanol. For example, ethanol exposure in bloodstream will be aerobic, while 

ethanol exposure in the large intestines will be anaerobic. Under aerobic conditions, 

supplementation of 0.05% (v/v) ethanol resulted in a small but significant decrease in 

LLO production compared to control cultures without ethanol (Figure 1). However, this 

effect was not observed in the anaerobic cultures. Under anaerobic conditions, 

supplementation of 0.05% ethanol did not significantly alter LLO production (Figure 1). 

These results suggest that LLO production by L. monocytogenes is sensitive to regulation 

by ethanol under aerobic but not anaerobic conditions. Therefore, bloodstream alcohol 

level is likely to impact the outcome of L. monocytogenes infections more than the 

intestinal alcohol levels.   
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Figure 1: Aerobically grown L. monocytogenes (top) was grown with 0.05% ethanol for 
18 hours. A hemolytic assay was performed to quantify Listeriolysin O toxin production. 
Ethanol significantly decreases toxin production in aerobically grown L. monocytogenes. 
Anaerobically grown L. monocytogenes (bottom) was grown with 0.05% ethanol for 18 
hours. A hemolytic assay was performed to quantify Listeriolysin O toxin production. 
Ethanol does not significantly alter toxin production. 
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Caco-2 Cell Infections 
 

To better understand whether the different LLO production levels in response to 

ethanol can alter L. monocytogenes-host interactions, different cell-culture infection 

experiments were performed. The first cell type I used as a host model were Caco-2 cells, 

which are human colonic epithelial cells that represent the first cell layer L. 

monocytogenes has to invade prior to disseminating to other organs. First, I treated the 

Caco-2 cells with 0.05% ethanol prior to infections and removed ethanol during 

infections. At 1-hour post infection, there was a significant increase in the number of 

intracellular L. monocytogenes in cells pretreated with ethanol compared to that in cells 

without ethanol pretreatment. At 2 hours post infection, there were no significant 

differences in the number of intracellular L. monocytogenes between control and 

pretreated Caco-2 cells (Figure 2). These observations suggest that the effects of ethanol 

only L. monocytogenes-Caco-2 interactions are likely limited to the early stage of 

infection. 

Next, I included the ethanol treatment both prior to infections and during 

infections to determine the effect of long-term ethanol exposure only L. monocytogenes-

host interactions. At 1-hour post infection, a decreasing trend in the amount of 

intracellular L. monocytogenes was observed with the increasing ethanol concentrations 

during infections. However, this trend was not observed at 2 hours post infection (Figure 

2). These results further confirm that the effects of ethanol on L. monocytogenes infection 

are likely restricted to the initial adherence and entry. 
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Figure 2: Caco-2 cells were infected with 108 CFU of L. monocytogenes for 1 hour 
before being lysed and plated for intracellular bacterial burden at 1 and 2 hours post-
infection. When ethanol was not present during the infection procedure (top), 
intracellular CFU significantly increased for ethanol-pretreated cells. When ethanol was 
present (bottom), intracellular CFU decreased for ethanol-pretreated cells.  
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RAW Cell Infections 
 
 To investigate the effects of ethanol on immune cells, we used RAW264.7 

macrophages and assayed for intracellular bacterial burden after pre-treatment with 

ethanol. This cell line is used to represent immune cells that phagocytose Listeria 

monocytogenes and contribute to the killing of L. monocytogenes. First, we treated 

RAW264.7 cells with 1% or 2% ethanol for 24 hours prior to infection and removed the 

ethanol during infections. At 1-hour post infection, there was a significant increase in 

intracellular L. monocytogenes in RAW264.7 cells pretreated with ethanol compared to 

those without ethanol treatment (Figure 3). This trend was observed at 2 hours and 4 

hours post infection. When we analyzed the rate of clearance of L. monocytogenes by the 

RAW264.7 cells between 1 and 2 hours post infection, we saw that ethanol-treated 

macrophages were more efficient at removing L. monocytogenes than macrophages 

without the ethanol treatment (Figure 3). From these results, we concluded that, 

compared to untreated controls, ethanol-treated macrophages are more susceptible to 

infections but are better at killing the intracellular L. monocytogenes. 
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Figure 3: RAW264.7 macrophages were infected with 108 CFU of L. monocytogenes for 
30 minutes before gentimicin treatment of extracellular environment. Cells were then 
lysed at 1,2, and 4 hours post-infection and plated in order to quantify intracellular 
bacterial burden (top). Data was also analyzed in order to show clearance rate of L. 
monocytogenes over the same time intervals (bottom). Ethanol-pretreated cells had 
increased bacterial burden compared to controls. Ethanol-pretreated cells also had 
increased bacterial clearance of L. monocytogenes. 
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HAP2 Mice Infection 
 

Finally, we wanted to determine whether our observations from cell culture 

experiments have in vivo relevance. To investigate the in vivo effects of ethanol on L. 

monocytogenes infections, we used High Alcohol Preferring (HAP) mice as an animal 

model of infection. The HAP mice are bred by choosing individual mice that prefer to 

drink ethanol more than their peers. These mice are bred over several generations in order 

to produce the High Alcohol Preferring mice that we used in our experiments. During 

normal alcohol treatment of 10% v/v ethanol, they maintain a blood alcohol level around 

0.08%, which is the legal limit of intoxication in the United States. However, these mice 

are able to break down ethanol very efficiently and without many of the consequences 

that human heavy-drinkers suffer. Chronic excessive alcohol consumption is often 

coupled with liver damage. HAP mice do not exhibit these symptoms, making them 

adequate models to examine the effects of ethanol on immune health. While this animal 

model has been used to study the behavior of alcohol intoxication, to our knowledge, this 

study represents the first time this animal model was used for infectious disease research. 

Out of the 39 total mice, 20 were subjected to a 2-week treatment with 10% ethanol. The 

remaining 19 mice received water for the duration of the experiment. The mice were then 

orally infected with a single dose of L. monocytogenes. After analyzing the results we 

found a significant increase in bacterial burden in the spleens of ethanol-drinking females 

versus their male counterparts. However, no significant difference was observed between 

bacterial burden in livers and spleens of ethanol-treated versus untreated animals. When 

infection was plotted based on the average daily ethanol or water consumption, no 

significant difference was found either. (Figure 4) 
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Figure 4: High Alcohol Preferring (HAP) mice were infected with 108 CFU of L. 
monocytogenes. After 3 days, mice were sacrificed and spleens and livers were harvested, 
diluted, and plated for CFU of L. monocytogenes. Using a single-tailed T-test, we found 
there was a significant difference in the impact of ethanol between male and female mice. 
Besides this finding, there were no other significant correlations. 
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Discussion 
 
Hemolytic assay 

 
When L. monocytogenes was grown in cultures with varying concentrations of 

ethanol, only in aerobic conditions did the L. monocytogenes produce less toxin with 

ethanol present. However, no significant difference in toxin production was found in the 

anaerobic cultures. Although this is an interesting finding, the environment of the 

intestinal epithelium is most often anaerobic. Furthermore, the results obtained mean that 

any increase or decrease in Caco-2 or HAP2 mice susceptibility must be attributed to the 

host, not L. monocytogenes. Thus, the results attained from the hemolytic assay suggested 

that in the environment of the intestinal epithelium, L. monocytogenes is not affected by 

the presence of alcohol.  

 
Caco-2 Epithelial Cells 

 
Under the Caco-2 infection procedure with L. monocytogenes, two sub-

experiments were performed—with ethanol present during the infection process in one 

experiment but absent in the other experiment. These two experimental setups showed 

different results. In the experiment where ethanol was not present during infection, the 

results illustrated that prior treatment with ethanol made Caco-2 cells more susceptible to 

L. monocytogenes infection. Thus, Caco-2 cells are compromised by ethanol, increasing 

their susceptibility to L. monocytogenes infection. One possible mechanism by this 

increase is the compromisation of tight junctions. During the 24 hours before treatment 

with ethanol, Caco-2 cells are placed in wells with media where they are to form a 

monolayer of cells held together by tight junctions. Tight junctions are barriers between 
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epithelial cells that eliminate space between cells, helping to form a cell layer that 

prevents unwanted molecules and pathogens from passing through. Based on the results, 

it is likely that ethanol compromises these barriers. These results mirror a study explained 

in the Molecular Medicine Reports Journal where Caco-2 cells were subjected to 1, 2.5, 

5, 7.5 and 10% ethanol for 4 h. The researchers found that ethanol pre-treatment lower 

transepithelial resistance and higher permeability between the tight junctions were 

recorded. There was also higher expression of Claudin-1 and lower expression of ZO-1 

genes, which are key in the maintenance and creation of tight junctions. (Wang) 

In the experiment where ethanol was present during the infection, a decreasing 

trend of susceptibility was displayed at 1-hour post infection. In these ethanol treatment 

conditions, either the Caco-2 cells are more resistant to infection or the infectivity of L. 

monocytogenes was compromised. These results agree with the data attained from the 

hemolytic assay. Under aerobic conditions, toxin production of L. monocytogenes is 

reduced, thus lessening L. monocytogenes burden on the host. 

 
RAW264.7 Macrophages 

 
When RAW264.7 macrophages were pretreated with ethanol and subsequently 

infected with L. monocytogenes, the intracellular bacterial burden is increased 

significantly. However, the clearance rate of pre-treated RAW264.7 macrophages was 

significantly increased compared to ethanol-free controls. These results suggest that 

under ethanol pre-treatment, RAW264.7 macrophages are more susceptible to infection 

but can kill intracellular pathogens more efficiently. Another potential mechanism for 

these results is that when the macrophages are pre-treated with ethanol, they absorb it to 

maintain intracellular concentration of ethanol that remains long after the ethanol is 
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removed from the media. This concentration of ethanol may impact L. monocytogenes 

pathogenesis due to it being an intracellular pathogen. Based on previous experiments, 

the production of LLO toxin is relatively unaffected by the presence of ethanol. However, 

the presence of ethanol within the RAW264.7 cells may also affect L. monocytogenes in 

ways that have not been examined in this research project. Some potential mechanisms 

that could be altered by ethanol include the ability of L. monocytogenes to escape the 

macrophage phagosome, grow within the macrophages, or polymerize actin in order to 

escape the macrophage. Further research must be done in order to determine the cause of 

increased infection burden coupled with increased pathogen clearance. 

 
HAP2 Mice 
 

When HAP2 mice were orally infected with L. monocytogenes, it was shown that 

there was no significant difference in bacterial burden between ethanol supplemented 

mice and control mice. However, we observed that these mice are particularly had higher 

L. monocytogenes burden. When infected with 108 CFU, average infection rates were 

around 104 CFU per organ. One explanation of this is that because these mice are bred to 

prefer ethanol rather than water their tolerance may have made them more susceptible to 

infection. Furthermore, when plates were counted for CFU of L. monocytogenes, there 

were many contaminations present, signaling that these mice were not only susceptible to 

L. monocytogenes infection, but to other pathogens as well. Although there were no 

significant differences in infection of L. monocytogenes found between the HAP2 mice 

tested, they seem to be more vulnerable to infections than other laboratory mice typically 

used for as host models of infections. These results are similar to a study published in 

Alcoholism: Clinical and Experimental Research, where researchers tested the L. 
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monocytogenes burden and clearance rates of mice spleens and livers as well as histology 

of these organs after ethanol ingestion. Colony counts of the spleen and liver were 

significantly higher for ethanol-treated mice. Ethanol treated cells had better clearance 

rates of Listeria than their non-ethanol treated counterparts. There was also greater liver 

inflammation and damage during infection. Also, ethanol-treated mice had much higher 

mortality when infected with L. monocytogenes (Saad et. al). These results, coupled with 

mine, show that ethanol compromises and damages primary immune organs when 

followed by L. monocytogenes infection 
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Conclusion 
 
 Chronic and excessive alcohol consumption has been shown to cause problems 

for college students through lower grades as well as increased incidences of sexual 

assault and unintentional injury. In my thesis project, I wanted to focus on the biological 

effects of alcohol consumption. This was done by the use of L. monocytogenes, Caco-2 

colonic epithelial cells, RAW264.7 macrophages, and HAP2 High alcohol preferring 

mice. The results I obtained showed that ethanol exposure can impact L. monocytogenes-

host interactions and that toxin production by L. monocytogenes in response to ethanol 

exposure is regulated by the presence or absence of oxygen. More experiments are 

needed to determine the mechanisms behind the responses to ethanol.  
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