
University of Dayton University of Dayton 

eCommons eCommons 

Honors Theses University Honors Program 

4-1-2019 

Towards a Pre-Processing Algorithm for Automated Arrhythmia Towards a Pre-Processing Algorithm for Automated Arrhythmia 

Detection Detection 

Sarah Miller 
University of Dayton 

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses 

 Part of the Mechanical Engineering Commons 

eCommons Citation eCommons Citation 
Miller, Sarah, "Towards a Pre-Processing Algorithm for Automated Arrhythmia Detection" (2019). Honors 
Theses. 245. 
https://ecommons.udayton.edu/uhp_theses/245 

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It 
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more 
information, please contact frice1@udayton.edu, mschlangen1@udayton.edu. 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/245?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Towards a Pre-Processing 

Algorithm for Automated 

Arrhythmia Detection 
 

 
 

 
Honors Thesis 

Sarah Victoria Miller 

Department: Electrical and Computer Engineering 

Advisor:  Timothy Reissman, Ph.D. 

May 2019 



Towards a Pre-Processing 

Algorithm for Automated 

Arrhythmia Detection 
 

Honors Thesis 

Sarah Victoria Miller 

Department: Electrical and Computer Engineering 

Advisor:  Timothy Reissman, Ph.D. 

May 2019 

 

 

Abstract 
There are a variety of different wearable fitness/cardiac monitoring devices that are 
currently used in many people’s day to day life. The primary cardiac function of these 
devices is to monitor heart rate, however we believe that they could be utilized to detect 
different forms of arrhythmia. In order to categorize and identify different forms of 
arrhythmia, we are utilizing published EKG data sets from existing databases as a basis 
for machine learning. The challenge that comes from the existing data sets is that the 
format they present the data in does not lend itself to machine learning, which requires 
data to be in a vector. This makes the process of converting the existing data sets into 
workable vectors long and tedious. Therefore, we are working to develop an algorithm 
that will be able to vectorize the data from multiple different data sets so we, and anyone 
who wishes to use machine learning on these signals, are able to quickly and accurately 
use now workable, prior data sets. 
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Background 
 
 “An arrhythmia is a problem with the rate or rhythm of the heartbeat” that can cause 
the heart to beat too fast, too slow, or with an irregular rhythm [9]. There are several different 
causes of arrhythmia, including damage from disease, injury, and genetics, that cause 
changes in heart tissue and activity [9]. Figure 1 shows an example of several different 
arrhythmia.  

 
Figure 1: Different Forms of Arrhythmia [11] 

 The normal sinus rhythm shown in Figure 1 represents what a healthy heart beat 
would look like on an electrocardiogram (EKG or ECG). The complexes (peaks) are evenly 
spaced and the resting heart rate represented is between 60-100 beats per minute. 
Bradycardia, shown below the normal sinus rhythm, is an arrhythmia where the heart beats 
too slowly (typically a resting heart rate below 60 beats per minute) but maintains normal, 
evenly spaced complexes. Opposite of bradycardia is tachycardia, a condition in which the 
heart beats too fast (typically a resting heart rate above 100 beats per minute) but maintains 
normal, even complexes. Below bradycardia in Figure 1 is atrial fibrillation, the most 
common sustained arrhythmia that can lead to heart failure, hypertension, and valvular and 
ischemic heart disease [2]. Opposite of atrial fibrillation is an example of ventricular 
fibrillation. Ventricular fibrillation is a very serious abnormal rhythm that is responsible for 
around “75-85% of sudden deaths in persons with heart problems” [3]. There are several 
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other arrhythmia that occur and are categorized by an abnormal heart rate, complex position, 
and/or ventricular response.  

These various forms of heart arrhythmia affect millions of people around the world, 
but despite their high prevalence, their diagnosis has proven to be challenging [1]. This is due 
to the fact that many different forms of arrhythmia are not felt by those afflicted as they can 
be intermittent, short-lasting, and/or asymptomatic [1]. Detection of arrhythmia, however, 
can be lifesaving. The early detection of arrhythmia such as ventricular tachycardia and 
ventricular fibrillation can be critical in preventing sudden cardiac death [1]. Sudden cardiac 
death is a natural death that is marked by an abrupt loss of consciousness approximately one 
hour after the onset of acute symptoms [1]. It is typically “considered as the final result of a 
ventricular arrhythmia” and “accounts for approximately 300,000 deaths in the United States 
per year” [6,3]. Detection of ventricular arrhythmia and other more common arrhythmia, 
such as atrial fibrillation which affects an estimated 2.7 - 6.1 million people in the United 
States, is crucial in prolonging the life and wellbeing of those afflicted [10]. “The most 
common test used to diagnose an arrhythmia is an electrocardiogram” [9]. There are 
currently three different categories of devices that are utilized to detect different forms of 
arrhythmia: non-looping devices, external looping devices, and implantable looping devices.  
 Non-looping devices are those which are intermittently applied and do not 
continuously gather data [1]. They are typically “cordless devices that are either handheld 
devices or worn on the wrist” and are activated by the patient when their symptoms occur 
[1]. These are useful for the “investigation of sustained symptoms that are long enough to 
record the heart rhythm by applying the recorder” [1]. Non-looping devices that utilize 
smartphone technology and electrodes to record and transmit a rhythm strip, such as the 
Apple KardiaBand and FitBit, have gained popularity with those with known heart 
arrhythmias and those who are concerned they may have them [1]. These, and other non-
looping devices have several benefits. The devices are easily accessible, relatively affordable, 
and avoid the skin irritation that is “associated with the electrodes required for the looping 
event recorders” [1]. However, non-looping devices are unable to capture the onset of events, 
which can be valuable information, because they are only applied after the development of 
symptoms [1]. This is where looping devices are helpful. Figure 2 shows an example of a 
non-looping device.  
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Figure 2: Non-Looping Device [6] 

External looping devices are those which “are continuously worn and only removed 
for bathing and showering” [1]. These devices are typically used for patients who have short, 
frequent symptoms that occur at least once a week [1]. One of the most common forms of an 
external looping device is the Holter Monitor. The Holter monitor is a portable recording 
device connected to either 2,3, or 12 ECG-channels that provides continuous, real time 
monitoring for 24-48 hours [1]. Figure 3 shows an example of a 12 channel Holter Monitor. 

 
Figure 3: 12-Channel Holter Monitor [7] 

As seen in Figure 3, a Holter Monitor consists of electrodes that are placed on the chest wall 
[1]. The Holter Monitor can be very beneficial in several ways. It has a “widespread 
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availability, simple application, complete data capture (not just events) and the independence 
of patient-activated event recording” [1]. The downsides of the Holter Monitor and other 
external looping devices, however, are low diagnostic yield in patients with infrequent 
symptoms due to the short monitoring time frame, the inconvenience of wearing and 
transporting the system, and the skin irritation that can be caused by the electrodes [1]. Other, 
less common, external looping devices are initiated by the patient or automatically triggered 
based on pre-programmed criteria [1]. Patient activated devices are limited by the 
compliance of the patients and their usefulness can be hindered by improper operation [5].  

When patients have very infrequent symptoms, less than once a month, or it is 
determined that more than 48 hours of continuous monitoring is necessary, an implantable 
looping device is used [1]. “Implantable cardiac monitors are small leadless, long-term 
rhythm monitoring devices that are implanted under the skin of the left parasternal/left 
precordial chest wall” [1]. Figure 4 shows an example of an implantable looping device. 

 
Figure 4: Implantable Looping Device [8] 

While implantable looping devices are the ‘gold standard’ of event recorders, they come with 
several disadvantages. Implantable monitors carry the risk of pocket infections and have a 
tendency to ‘under-sense’ and ‘over-sense’ events leading to difficulty distinguishing 
between similar arrhythmia such as ventricular tachycardia and supraventricular tachycardia 
[5].   

Each of the event recorders described gathers data that is then analyzed by a 
cardiologist in order to determine what, if any, arrhythmia a patient has. We believe that we 
can expedite this process by coming up with a pre-processing algorithm that turns the raw 
data gathered by these devices into a vector that can be utilized with machine learning. This 
would allow neural networks to be created that would be able to classify different arrhythmia 
without the need of a cardiologist. In order for this to work, however, the data must be in a 
form that is acceptable for machine learning.  

Machine learning is a way for a computer to “learn without being programmed” [12]. 
In order for machine learning to be successful, two different datasets are needed, a training 
set and a test set [12]. The training dataset is the largest used, typically consisting of 
hundreds of thousands of categorized samples [13]. This dataset allows the neural network to 
determine how to weight different features and allows for the network to distinguish between 
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different cases and arrhythmia [13]. The test dataset is much smaller than the training set and 
is utilized after the training dataset [13]. This dataset is used to see if the network is able to 
accurately distinguish and identify the data presented based off of the patterns formed 
through the training dataset [13]. 

 We believe that if we are able to transform ECG waveforms into vectors utilizing the 
existing data from open share sources such as Physionet that we will be able to create a 
comprehensive training set that will allow for easier detection of arrhythmia. It is imperative 
that the data be in a standardized vector format in order for linear algebra operations to be 
applied and deep learning to be successful.  

 
Manual Method 
 

Typical datasets provide the timestamp and corresponding voltage at varying points 
along the EKG. For machine learning to be successful, we first standardize voltage 
recordings at 100 Hz. This in of itself is challenging as different datasets provide different 
variations in their timestamps given, ranging from random intervals to set intervals of 300 Hz 
to 1kHz. To retain dataset accuracy, we filter as close to 0.01 second accuracy as possible. 
From there, we take the voltage values that are associated with each of these standardized 
times and map them into a concise vector form. This form includes those voltages and a set 
spacing between each value to create an array-like unit. It is important that datasets be 
mapped in this way because machine learning algorithms require the imported dataset format 
to allow for linear algebra operations.  

The process of manually converting a dataset into a workable vector form is long and 
tedious, taking approximately six hours to convert each ten second EKG into a usable format. 
The process begins with the standardization of voltage recordings at 100 Hz. To do this, the 
given values are sorted through to find timestamps that most consistently have a 0.01 second 
time difference between the them. If a given waveform does not have timestamps perfectly 
spaced at a 100 Hz rate, linear extrapolation is used to infer the value that would appear at 
the desired timestamp. This process is repeated until all 1,000 standardized data points are 
determined. From here, the standardized data is typed out into the proper matrix format. An 
overview of the manual process can be seen in Figure 5a-5c below.  
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Figure 5a: Example Partial Online ECG Data Set 
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Figure 5b: Standardization 

 

 
Figure 5c: Partial Finalized Vector 

 
Our manual method of pre-processing the online EKG datasets is able to create a 

vector that can be imported into machine learning algorithms. However, due to the large 
value of data sets required in order to successfully train and test a neural network, the manual 
method is not a feasible way to gather data sets. This led to us creating an automated process 
that is able to successfully carry out the same standardization and vectorization in under a 
second.  
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Automated Method 
 

To create an automated version of the pre-processing algorithm, first a base code is 
created utilizing Java and the Abdominal and Direct Fetal ECG Database [14,15]. The base 
code consists of two elements: the main class and the ReadFile class. The ReadFile class is 
common to all datasets, while the main class is individualized based on which dataset is 
being read in. Figure 6 shows the ReadFile class that is utilized with the Abdominal and 
Direct Fetal ECG Database pre-processing algorithm.  
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Figure 6: ReadFile for Abdominal and Direct Fetal ECG Database 

 The purpose of the ReadFile class is to allow the main code to read in and classify the 
data that is provided by physionet [15]. To do this, the user selects a dataset, record, and 
signal from the input section of the PhysioBank ATM, then selects ‘show samples as text’ 
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from the toolbox section of the PhysioBank ATM. This provides the timestamp and 
corresponding voltage value for the selected ECG. The user then copies and saves the 
provided values into a document, which is read into the pre-processing algorithm through the 
ReadFile class. The ReadFile class analyzes the data line-by-line and stores it in a format that 
is accessible by the main class. Figure 7 shows the main class for the Abdominal and Direct 
Fetal ECG Database.  

 
Figure 7: Main Class for Abdominal and Direct Fetal ECG Database 

 The main class begins by creating a file name based on where the user has the 
aforementioned document saved. This information is then utilized by the ReadFile class to 
ensure that the main class is able to work with the timestamp and voltage value data 
provided. From here, the main code standardizes the given timestamp and voltage value data 
to 100 Hz. In the case of the base code, the data is provided at a 1000 Hz so all this entails is 
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creating a new vector containing the voltage values from every 10th sample. The vector is 
then printed out for the user in a format that is compatible with machine learning. It is found 
that the automated version of the pre-processing algorithm is able to produce a vector that is 
a perfect match for the manual method in under a second. Figure 8 shows an example of a 
partial vector produced using data from the Abdominal and Direct Fetal ECG Database along 
with the runtime for the total vector creation.  

 
Figure 8: Partial Finalized Vector and Runtime 

From Figure 8 it can be seen that the creation of the standardized vector took less than a 
second to create.  

A unique version of the pre-processing algorithm is created for each of the existing 
datasets utilizing this base code. To do this, first the pattern in the timestamps of a given 
database is analyzed manually. Once the pattern is identified, the for loop of the base main 
code is altered to create a vector that correctly standardizes the data to 100 Hz. It is found 
that the automated pre-processing algorithm is able to quickly and accurately create workable 
vectors for each of the databases it is designed for.  

 
Future Recommendations 
 
 We believe that with the successful creation of the pre-processing algorithm, the data 
from Physionet will be able to be utilized to create a successful training dataset for machine 
learning. Following the creation of the training set, it is recommended that data from varying 
monitors - Fitbit, Apple Kardiaband, chest straps, holter monitors, etc. - be analyzed within 
the neural network as the test dataset. The results of the test data should be compared with 
cardiologist diagnosis to ensure that the neural network is functioning as intended.  
 We believe that our pre-processing algorithm will be able to help others interested in 
the field of automated arrhythmia detection. There are several different conferences, such as 
Computing in Cardiology, that are relevant to the work that we have accomplished and show 
the widespread interest in the subject. Due to this interest, we recommend that our pre-
processing algorithm(s) be shared openly with the public.   
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