
University of Dayton University of Dayton 

eCommons eCommons 

Honors Theses University Honors Program 

4-26-2020 

Understanding Chemolithotrophic Reduction Mechanisms from Understanding Chemolithotrophic Reduction Mechanisms from 

the Dark Marine Biosphere the Dark Marine Biosphere 

Anna Gwendolyn Blair 
University of Dayton 

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses 

eCommons Citation eCommons Citation 
Blair, Anna Gwendolyn, "Understanding Chemolithotrophic Reduction Mechanisms from the Dark Marine 
Biosphere" (2020). Honors Theses. 249. 
https://ecommons.udayton.edu/uhp_theses/249 

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It 
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more 
information, please contact frice1@udayton.edu, mschlangen1@udayton.edu. 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/249?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Understanding Chemolithotrophic 

Reduction Mechanisms from the 

Dark Marine Biosphere 

 

 

 

 

Honors Thesis 

Anna Gwendolyn Blair 

Department:  Chemistry 

Advisor: Justin Biffinger, Ph.D. 

April 2020 



Understanding Chemolithotrophic 

Reduction Mechanisms from the 

Dark Marine Biosphere 

Honors Thesis 

Anna Gwendolyn Blair 

Department:  Chemistry 

Advisor:  Justin Biffinger, Ph.D. 

April 2020 

 

Abstract 

As greenhouse gas emissions contribute to global warming and an increase in CO2 concentration in the 

earth’s atmosphere, the scientific community is under pressure not just to examine new technologies to 

reduce emissions, but also to consider the effect that increased CO2 concentration has on our terrestrial and 

marine ecosystems. In marine ecosystems, atmospheric CO2 dissolves and reacts with water to form 

carbonic acid. This diprotic acid then dissociates, contributing to a lowered pH of ocean water and affecting 

all levels of marine life. Fortunately, nature already has carbonate reduction mechanisms in place that can 

reduce the harmful effects of ocean acidification. Being able to identify individual bacteria in biological 

carbonate-fixing consortia can lead to adaptive systems engineered around biofilms. In this study, 

environmental samples taken from defined sites the dark marine biosphere (ocean depth of 2100-2300 

meters) in the Gulf of Mexico will be grown in a number of selective medias with defined carbonate 

contents. Bacterial samples will then be analyzed using ion chromatography to measure carbonate 

consumption as a function of time. The data collected thus far suggests that by selectively pressuring 

environmental consortia from the dark marine biosphere toward the purpose of fixing carbon, mechanisms 

and pathways can be generated to control the level of CO2 in the marine environment. 
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Introduction 

The dark marine biosphere (DMB) is an environment that is permanently 

separated from light-driven energy production mechanisms. Survival in the DMB defies 

the normal rules for life: no light, extremes in temperature, oxygen limitation, and sparse 

sources of energy with ever increasing concentrations of carbon dioxide (CO2). Despite 

these extremes, ~70% of the Earth’s microorganisms live in and are adapted to generate 

cellular energy in the sub-seafloor sediments [1], yet only ~5% of the sea floor has been 

explored [2]. The DMB covers more than two-thirds of the Earth’s area and is known as 

the most isolated region of the largest CO2 sink [3].  This biosphere has the largest 

capacity to absorb and convert CO2 based on not just surface area but also passive and 

active pumping mechanisms from microbial activity in the sediment and surrounding 

water. Thus, the microbiome (all microorganisms, their genetic elements and their abiotic 

interactions) of the DMB is actively adapting to ever increasing concentrations of CO2 

and must adjust to this environment for survival. Therefore, this biosphere is the greatest 

untapped resource for the discovery of new carbon fixation pathways and could provide 

evidence for how some of the most untouched areas on earth are responding to global 

climate change. 

Synthetic biology is used as a biotechnological technique to create solutions for 

novel biological agents, intermediates and even fuels.  However, many of these genetic 

pathways are transposed from the target organisms to an easily mutable model; but this is 

the inherent limitation to all synthetic biology approaches.  Our ability to predict and 

model pathways better than the organisms themselves is still in its infancy. Thus, large 

advancements to the synthetic biology field will be contained in discovering new 

microorganisms and identifying the metabolic mechanisms and key enzymes they 

manipulate to survive. The DMB is currently the major geological sink for inorganic 

carbon and organisms from this extreme environment must adapt by utilizing novel 

metabolic pathways for survival. This untapped resource of unique microbes will lead to 

transformative biotechnological processes superior to current system biology approaches 

and models for carbon fixation.   

Despite the potential discoveries in the DMB that could lead to carbon 

sequestration technologies, the majority of bioenergy studies remain focused on 
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harnessing the process and byproducts (e.g., cellulosic biomass) of oxygenic 

photosynthetic microbial carbon fixation. Photosynthesis is highly evolved but restricted 

by numerous limiting factors (nutrients, oxidizing conditions, light limitation/inhibition, 

2D geometries, and defined enzyme systems). Given the variability and austerity of the 

DMB, the microbiome and metabolic potential in the DMB has evolved in a 3D space.  

Unlike current photosynthetic biological systems (such as algae) which are limited by 

unfavorable energy balances or water limitation, the DMB can offer highly efficient dark 

carbon fixation pathways which can lead to revolutionary technologies. 

This program used selective electron donor/acceptor pressure in anaerobic marine 

media to stimulate consortia from DMB marine sediments by coupling growth conditions 

that would stimulate anammox (anaerobic oxidation of ammonium) with dark carbonate 

fixation (reduction of carbonate) (Figure 1). In saltwater, the soluble form of CO2 is 

ultimately carbonate and is governed by solubility constants, acidity, and the temperature 

primarily [4, 5] so carbonate conversion was the principal focus of this work. Anammox 

is a strategy for ammonia removal from wastewater under anoxic conditions and could be 

part of the natural cycling of ammonia in the anaerobic DMB. Anammox is carried out by 

several bacterial species that have yet to be classified taxonomically [6, 7]. 

 

Figure 1 Schematic for proposed conditions to stimulate consortia suitable for dark carbon fixation 

from environmental sediment samples. 

The goal of this project is to isolate, contour, identify, and categorize novel 

microbial consortia from the DMB capable of concentrating and fixing inorganic carbon 

in seawater from 4 to 25°C.  The isolation of consortia and single strains that could 

contribute to unprecedented rates of CO2 fixation would be a major advancement toward 

applicability in clean coal and biotechnology solutions to CO2 reduction. 
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Methodology 

This project was carried out in 3 phases. Phase 1 entailed the acquisition and 

initial culturing of environmental sediment samples from the DMB. Samples were 

collected on board R/V Point Sur during a research expedition which took place June 11-

16, 2017 (PS 17-27) Surface sediment samples were collected from three deep sites 

during this research expedition. Sediment samples were sliced on board R/V Point Sur 

after collection at 2 cm intervals and stored in a 15 mL falcon tube for future studies. 

Thirty total sediment slices from the three sites were collected. 

 

Figure 2 Location of deep site samples used in Phase 1 

Sediment cores are stored in 2cm increments (0-2cm depth, 2-4cm depth, etc.) at 

4℃ (the approximate temperature of the samples’ natural environment) and are cultured 

anaerobically in a number of minimal media containing a vitamin solution and cocktail of 

electron acceptors at both 4℃ and 25℃. Sediment is cultured in duplicate, with one of 

each duplicate kept in the dark.  

We suggested that coupling anammox and carbonate fixation would be a path to 

stimulate and isolate dark carbonate fixing anaerobic microorganisms from the sediment 

samples.  The high throughput growth experiments were performed in selected media 

formulations (Table 1) using ammonium and carbonate as the core carbon and nitrogen 

source. All three solutions used to make the modified ONR7A medium were autoclaved 

(121°C, 30 min) separately and added after they had cooled to room temperature. Six 

samples (Labeled DS1, DS2, and DS3 of native sediment and DS1, DS2, and DS3 

sediment exposed to marine broth (BD 2216)) were suspended in a modified formulation 
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of ONR7A.  The modified medium had a salinity of 35% and is consistent with the 

salinity of saltwater.  Since this medium had many of the common electron acceptors 

removed from it, the salinity of the base salt formulation was maintained with sodium 

and potassium chloride salts. Growth was confirmed in these experiments using the 

change in optical density at 600 nm; a common indicator of change in turbidity and 

cellular growth. These microbial isolates were cultured on agar plates formulated from 

the same saltwater medium that showed growth of the consortium. The original cultures 

were diluted by 10-fold until single colonies could be isolated from agar plates. 

Solution 1 Quantity added Units Formula Weight Concentration (mM) 

NaCl 22.79 g 58.44 389.97 

KCl 0.72 g 74.55 9.66 

NaBr 0.083 g 102.89 0.81 

H3BO3 0.027 g 61.83 0.44 

NaF 0.0026 g 41.99 0.06 

Na2HPO4 · 7 H2O 0.0890 g 268.07 0.33 

TAPSO 1.30 g 259.28 5.01 

H2O 500.00 ml 
  

Adjusted to pH 7.6 with NaOH 
     

Solution 2 Quantity added Units Formula Weight Concentration (mM) 

MgCl2 · 6 H2O 1.0165 g 203.3 5.00 

CaCl2 · 2 H2O 0.1830 g 147.01 0.90 

SrCl2 · 6 H2O 0.0183 g 266.62 0.09 

NaCl 7.30 g 58.44 125.00 

KCl 0.2386 g 74.55 3.20 

H2O 450.00 ml 
  

     

Solution 3 Quantity added Units Formula Weight Concentration (mM) 

FeCl2 · 4 H2O 0.0020 g 198.81 0.01 

H2O 50.00 ml 
  

Table 1 Salt composition of the three solutions used to formulate Modified ONR7A growth media.  

 

Phase 2 of the project integrated quantitative analytical techniques using ion 

chromatography (IC). The CO2 concentration and rate of fixation based on carbonate 

consumption and the resulting reduced products was analyzed in parallel with nitrate and 

sulfate reduction using a Dionex ICS5000 designed specifically for the analysis of 

carbonate and bicarbonate in saltwater.  
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We developed ion chromatographic methods (with conductivity detection) to 

analyze the changes in bicarbonate and acetate concentration from a total of 650 saltwater 

medium growth samples from our growth experiments. All ion chromatography samples 

from growth experiments and controls were centrifuged (5 min, 13k rpm) and passed 

through a 0.2 µm polycarbonate syringe filter.  All samples were injected twice, and the 

average concentrations of the selected ions were calculated from calibration curves of 

samples with a known concentration of the ion of interest. The injection volumes were 25 

µL for carbonate/acetate analysis and 10 µL for anion analysis. The use of ion exclusion 

chromatography was necessary because the bulk salts from the saltwater are eluted with 

the solvent front allowing for organic acids like carbonate and acetate to be analyzed 

directly.  

In Phase 3 of the project, metagenomic data was gathered from the growth 

experiments. Metagenomic DNA was collected and sequenced to help better characterize 

the consortia dynamics that influence carbonate fixation occurring in the native samples.  

 

Results and Data Analysis 

Successful growth experiments from Phase 1 were used for ion chromatography 

to detect carbon fixation. A representative chromatograph from the separation of 

carbonate from the same saltwater sample over 15 days is shown in Figure 3.  This 

experiment confirmed that not only the sampling method was stable but also that residual 

atmospheric carbon dioxide was not entering the sampling vials and leading to 

inconsistent results. Acetate had a retention time of 12.3 minutes and this method resulted 

in the calculation of both acetate and carbonate concentration changes from a single 

injection (Figure 4). 



P a g e  | 6 

 

 

Figure 3 Ion Chromatography results from the injection of 1 mM sodium bicarbonate in defined ONR7A 

growth medium. 

Figure 14 footnote: Chromatography Conditions; Temperature = 30°C, Flow Rate: 0.8 mL/min; Mobile phase: 

1mM HNO3; Ion Suppression: 5mM Tetrabutylammonium hydroxide with ACRS-ICE 500 suppressor; Column: Ionpac ICE-

AS1 (9x250mm). Injection Volume: 25 µL 

 

Figure 4 Representative ion chromatography data of modified ONR7A growth medium from DS3 (Room 
Temperature) growth sample over 35 days. 

Figure 15 footnote: Chromatography Conditions; Temperature = 30°C, Flow Rate: 0.8 mL/min; Mobile phase: 

1mM HNO3; Ion Suppression: 5mM Tetrabutylammonium hydroxide with ACRS-ICE 500 suppressor; Column: Ionpac ICE-

AS1 (9x250mm). Injection Volume: 25 µL 
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The total volume removed in the original samples for ion chromatography was     

1 mL.  This sample size only allowed for a maximum of 5-10 injections to collect the 

required data for the program.  Thus, we calculated the relative uncertainty in our 

analysis of carbonate to determine if we were observing a statistical decrease in the 

concentration of carbonate over time using 2 injections. Also, carbonate was used in two 

different concentration ranges (10 mM and below 0.7 mM) from the growth experiments. 

The results from this analysis are shown in Table 2. Our data concluded we could predict 

if there was a decrease in carbonate concentration by 3% with cultures using a carbonate 

concentration of 9 mM and 4.7% for cultures with a concentration of 0.7 mM. The 

difference in the concentration change of carbonate needs to be >3.0% to be 95% 

confident that the sample concentration is lower than another sample using the Student’s 

t-test assuming equal variances.  This also confirmed our method was accurate enough to 

screen for small changes in carbonate concentrations over time.  

 

 High Concentration (~9 mM) Low Concentration (~0.7 mM) 

Average 9.030 mM 0.6754 mM 

n 5 5 

Standard Deviation 0.275 0.0328 

Confidence Interval (95%) 0.341 0.0407 

% Relative Uncertainty 3.0% 4.7% 

Table 2 Calculation of relative uncertainty from 5 identical 25 µL injections of carbonate containing 

salt water using two different concentration ranges. 

With this quantitative analysis completed, we then processed 450 samples 

generated in previous growth experiments. These samples were injected twice and the 

averages and standard deviations in the concentration of carbonate and acetate were used 

to develop a predictive model for growth conditions resulting in carbonate fixation. We 

used any decrease in concentration, significant at a 95% level, to define if the sample was 

a potential consortium for carbonate fixation. The result was a table with the locations 

and growth conditions for the sample and designation for if the sample was a candidate 
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for organisms that could fix carbonate under our defined conditions. Samples indicated in 

green in the table were viable candidates that could fix carbonate under our defined 

conditions and were used in future experiments. 

 

Figure 5 Summary of Go/No-Go with different cultures and media conditions. 

DNA from three native samples (DS1, DS2 and DS3; 0-2 cm sediment slices) was 

isolated and sent to Genewiz (NJ, USA) for metagenomic analysis (Figure 6). DS2 was 

unique with 21% of the microbes unclassified at the genus level. The diversity of the 

samples is seen with the large ‘other’ category ranging from 44-53% of the total 

metagenome. 

 

Figure 6 Metagenomics on select deep sea sediment samples. 

Instead of looking at the microbial community, we narrowed our studies down to 

one microbe from DS3 which is a 99.87% match to Marinobacter hydrocarbonoclasticus 

based on 16S rRNA match. In order to sequence the whole genome, we cultured the 

isolate on MB agar, grew up a colony in MB broth and then extracted the genomic DNA 

(Figure 46). The purified DNA was sent to Seqmatic for whole genome sequencing. 
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Figure 7 Summary of Marinobacter hydrocarbonoclasticus whole genome sequence. 

It was important to determine the pathway this microbe is using to sequester 

carbon. In Tables 3 through 8, each of the six known carbon fixation pathways are 

shown. The genes written in black are genes that ‘match’ our marinobacter isolate and 

are present in the carbon fixation pathway. The genes written in red are absent from our 

marinobacter isolate, but present in the known carbon fixation pathway. After looking at 

all the genes identified in the six known carbon fixation pathways, it became clear this 

microbe is using an unknown mechanism to sequester carbon. There was not one 

pathway that had all the genes encoded within the whole marinobacter genome. 
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Table 3 Genes involved in the reductive Calvin-Benson cycle. 

 

Table 4 Genes involved in the reductive acetyl-CoA cycle. 
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Table 5 Genes involved in the reverse tricarboxylic acid cycle. 
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Table 6 Genes involved in the 3-hydroxypropionate bicycle. 

 

Table 7 Genes involved in the 3-hydroxypropionate/4-hydroxybutyrate cycle 
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Table 8 Genes involved in the dicarboxylate/4-hydroxybutyrate cycle. 

 

Discussion and Conclusion 

Sediment samples isolated from the DMB were successfully cultured in selective 

media and ion chromatography shows that some consortia were capable of fixing carbon. 

Using optimal growth conditions resulted in the growth of a microbe capable of 

sequestering carbonate from media. This microbe was identified as a Marinobacter 

hydrocarbonoclasticus with 16S sequence analysis. Whole genome sequencing was used 

to determine that the microbe does not contain a complete set of genes typically observed 

in published dark carbon fixation pathways. Future studies are required to determine the 

pathway this microbe is using to sequester carbonate. This microbe and the results from 

this program will lead to the discovery of a new, potentially energetically favorable, dark 

carbon fixation pathway which can be used downstream in synthetic biology techniques 

which will lead to transformative biotechnological processes superior to current system 

biology approaches and models for carbon fixation.  
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